JPH01234312A - Method for averting damage of chlorine - Google Patents

Method for averting damage of chlorine

Info

Publication number
JPH01234312A
JPH01234312A JP63059428A JP5942888A JPH01234312A JP H01234312 A JPH01234312 A JP H01234312A JP 63059428 A JP63059428 A JP 63059428A JP 5942888 A JP5942888 A JP 5942888A JP H01234312 A JPH01234312 A JP H01234312A
Authority
JP
Japan
Prior art keywords
chlorine
alkali
sulfite
gas
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63059428A
Other languages
Japanese (ja)
Other versions
JP2567023B2 (en
Inventor
Masanobu Ajioka
正伸 味岡
Hiroyuki Ito
洋之 伊藤
Yoshitsugu Jinno
神野 嘉嗣
Shinji Takenaka
竹中 慎司
Isao Kikuchi
菊地 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63059428A priority Critical patent/JP2567023B2/en
Priority to IL89280A priority patent/IL89280A0/en
Priority to DE68928021T priority patent/DE68928021T2/en
Priority to CS902043A priority patent/CS276386B6/en
Priority to DE68917335T priority patent/DE68917335T3/en
Priority to EP89301394A priority patent/EP0329385B2/en
Priority to BR898900671A priority patent/BR8900671A/en
Priority to CA000591062A priority patent/CA1319316C/en
Priority to HU89765A priority patent/HU205867B/en
Priority to EP94100177A priority patent/EP0594558B1/en
Priority to CS89998A priority patent/CS276380B6/en
Priority to AU29959/89A priority patent/AU597523B2/en
Priority to RO138274A priority patent/RO103830B1/en
Priority to US07/310,929 priority patent/US5000006A/en
Priority to KR1019890001794A priority patent/KR910005983B1/en
Priority to CN 89101852 priority patent/CN1017414B/en
Publication of JPH01234312A publication Critical patent/JPH01234312A/en
Priority to AU50669/90A priority patent/AU614220B2/en
Priority to KR1019910008973A priority patent/KR910005984B1/en
Priority to CA000616106A priority patent/CA1320120C/en
Priority to CN 92101858 priority patent/CN1027313C/en
Priority to US07/921,606 priority patent/US5254323A/en
Application granted granted Critical
Publication of JP2567023B2 publication Critical patent/JP2567023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To absorb and remove Cl2 alone, by washing gas contg. Cl2 and CO3 with an aq. mixed soln. of alkali(earth) metal hydroxide and alkali(earth) metal sulfite while regulating the pH value of the aq. mixed soln. to a specified range. CONSTITUTION:The Cl2 alone in the gas contg. Cl2 and CO2 is removed, by using the aq. soln. or suspension contg. alkali(earth) metal sulfite (e.g., Na2SO3) and alkali(earth) metal hydroxide (e.g., NaOH) in <=2times molar ratio to the sulfite, as washing liq., as occasion demands, while supplying the liq. having the compsn. same to one of the aq. soln. or suspension initially charged, so as to regulate the pH value of the washing liq. to 1.9-6.3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、塩素の製造及び利用に際し生成する炭酸ガス
に含まれる、塩素ガスを吸収除去する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for absorbing and removing chlorine gas contained in carbon dioxide gas generated during the production and use of chlorine.

〔従来の技術〕[Conventional technology]

塩素は、工業的に大規模に製造され、また利用されてい
るが、その際に生成するその他のガスで薄まった塩素ガ
スは、その毒性のためにそのまま大気に放出することは
出来ず、通常アルカリ性の物質に吸収させて除かれる。
Chlorine is produced and used on a large scale industrially, but the chlorine gas diluted with other gases produced during this process cannot be released directly into the atmosphere due to its toxicity, and is usually It is removed by absorption with alkaline substances.

しかし、塩素に混入したガスが炭酸ガスの様に酸性の場
合には、塩素だけでなく炭酸ガスもアルカリ液に吸収さ
れるため、吸収に必要なアルカリ量が炭酸ガスと塩素ガ
スの合計量に対して決まる。特に、含まれる塩素が微量
の場合には、わずかな塩素を除害するために大量のアル
カリを必要とする不都合が生じる。
However, if the gas mixed with chlorine is acidic like carbon dioxide, not only chlorine but also carbon dioxide will be absorbed by the alkaline solution, so the amount of alkali required for absorption will be the total amount of carbon dioxide and chlorine gas. It is decided against. In particular, when the amount of chlorine contained is very small, a large amount of alkali is required to remove the small amount of chlorine, which is disadvantageous.

そこで、炭酸ガス中の塩素を選択的に吸収除去する方法
が望まれる。
Therefore, a method for selectively absorbing and removing chlorine in carbon dioxide gas is desired.

西独特許2413358号では、アルカリ金属水酸化物
及び/又はアルカリ土類金属水酸化物による多段向流式
吸収設備を用い、液側の最終段のpHを約7.5にして
運転することにより炭酸ガスと、塩素の混合物から塩素
のみをアルカリ金属、アルカリ土類金属の次亜塩素酸塩
として吸収する方法が示されている。
In West German Patent No. 2413358, carbonic acid is removed by using a multi-stage countercurrent absorption equipment using an alkali metal hydroxide and/or alkaline earth metal hydroxide and operating the final stage on the liquid side at a pH of approximately 7.5. A method of absorbing only chlorine from a mixture of gas and chlorine as hypochlorite of alkali metals and alkaline earth metals is shown.

しかし、p117.5は図1に示した如く炭酸の第一解
離定数(pKa)の6.35以上であり、炭酸ガスはア
ルカリ金属水酸化物及び/又はアルカリ土類金属水酸化
物と反応して炭酸水素塩を生成する領域である。
However, as shown in Figure 1, p117.5 is greater than the first dissociation constant (pKa) of carbonic acid, which is 6.35, and carbon dioxide gas reacts with alkali metal hydroxides and/or alkaline earth metal hydroxides. This is the area where hydrogen carbonate is produced.

従ってこの領域で炭酸ガスと塩素の混合物から塩素のみ
吸収する為には、アルカリを塩素と丁度等モル使用する
必要があり、塩素の含有濃度が変動する場合にアルカリ
のバランスを取ることが困難となる。
Therefore, in order to absorb only chlorine from a mixture of carbon dioxide gas and chlorine in this region, it is necessary to use exactly the same mole of alkali as chlorine, and it is difficult to balance the alkali when the concentration of chlorine fluctuates. Become.

また、I)H7,5は次亜塩素酸の解離定数付近である
為、pHがこれより小さくなると次亜塩素酸が遊離酸の
形になって分解し易くなるために、pHのコントロール
をきびしく行うことが必要となる。また、塩素の除害が
目的とすれば生成する次亜塩素酸塩溶液は、強い酸化性
と臭気の為にそのまま廃棄できないので、これを別途還
元しなければならない。
In addition, I) H7,5 is close to the dissociation constant of hypochlorous acid, so if the pH is lower than this, hypochlorous acid becomes free acid and easily decomposes, so the pH must be controlled strictly. It is necessary to do so. Furthermore, if the purpose is to remove chlorine, the generated hypochlorite solution cannot be disposed of as it is due to its strong oxidizing properties and odor, so it must be reduced separately.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、塩素と二酸化炭素を含む混合ガスから、広い
pH域で、簡便で効率よく塩素のみを無害な塩化物とし
て除く方法を提供するものである。
The present invention provides a method for simply and efficiently removing only chlorine as a harmless chloride in a wide pH range from a mixed gas containing chlorine and carbon dioxide.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記の方法を実現するために鋭意検討の
結果、アルカリ金属水酸化物/又はアルカリ土類金属水
酸化物と、アルカリ金属、アルカリ土類金属の亜硫酸塩
の混合水溶液で塩素と炭酸ガスを含む混合ガスを洗浄す
るとき、洗浄液のpHを特定の範囲に調整して洗浄すれ
ば、塩素のみ吸収還元することが可能であることを見出
し、本発明を完成させた。
As a result of intensive studies in order to realize the above method, the present inventors have discovered that chlorination is possible using a mixed aqueous solution of an alkali metal hydroxide/or alkaline earth metal hydroxide and a sulfite of an alkali metal or alkaline earth metal. The present inventors have discovered that when cleaning a mixed gas containing carbon dioxide and carbon dioxide, it is possible to absorb and reduce only chlorine by adjusting the pH of the cleaning solution to a specific range, and have completed the present invention.

即ち、本発明はアルカリ金属及び/又はアルカリ土類金
属亜硫酸塩と、アルカリ金属及び/又はアルカリ土類金
属亜硫酸塩の2倍モル比以下の割合の、アルカリ金属水
酸化物及び/又はアルカリ土類金属水酸化物を含む水溶
液、または懸濁液を供給して、洗浄液のpHlを1.9
〜6.3の範囲に調整しながら、この洗浄液で塩素ガス
と炭酸ガスを含む混合ガスを洗浄し、混合ガス中の塩素
のみを除くことを特徴とする塩素の除害方法である。
That is, the present invention provides an alkali metal hydroxide and/or alkaline earth metal sulfite and an alkali metal hydroxide and/or alkaline earth metal sulfite in a molar ratio less than twice that of the alkali metal and/or alkaline earth metal sulfite. Supply an aqueous solution or suspension containing metal hydroxide to adjust the pH of the cleaning solution to 1.9.
This is a chlorine abatement method characterized by cleaning a mixed gas containing chlorine gas and carbon dioxide gas with this cleaning liquid while adjusting it to a range of 6.3 to remove only chlorine from the mixed gas.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で用いるアルカリ金属水酸化物としてリチウム、
ナトリウム、カリウム等のアルカリ金属の水酸化物であ
り、アルカリ土類金属水酸化物としては、マグネシウム
、カルシウム、バリウム等の水酸化物である。
As the alkali metal hydroxide used in the present invention, lithium,
These are hydroxides of alkali metals such as sodium and potassium, and examples of alkaline earth metal hydroxides include hydroxides of magnesium, calcium, barium, etc.

又、亜硫酸塩としての金属は、マグネシウム、ガルシウ
ム、バリウムのようなアルカリ土類金属塩でもよいが、
水に対する溶解度が大きいアルカリ金属が好ましい。
Further, the metal as the sulfite may be an alkaline earth metal salt such as magnesium, galcium, or barium, but
Alkali metals having high solubility in water are preferred.

本発明で用いるアルカリ金属水酸化物及び/又はアルカ
リ土類金属水酸化物と、アルカリ金属及び/又はアルカ
リ土類金属亜硫酸塩量の比は、該水酸化物を該亜硫酸塩
の2倍モル比以下にすることが必要である。
The ratio of the alkali metal hydroxide and/or alkaline earth metal hydroxide to the alkali metal and/or alkaline earth metal sulfite used in the present invention is such that the hydroxide is twice the molar ratio of the sulfite. It is necessary to do the following.

本方法では、塩素を中和するに必要なアルカリを加える
と同時に、塩素を還元するに必要な亜流酸塩を加える必
要があるために、中和に必要な2当量のアルカリに対し
、最低1当量の還元性の該亜硫酸塩が必要である。
In this method, it is necessary to add the alkali necessary to neutralize chlorine and at the same time add the sulfite necessary to reduce chlorine. An equivalent amount of the reducing sulfite is required.

アルカリが該亜硫酸塩の2倍モルを越える場合ば、ρ1
1を1.9〜6.3に調整していても還元性の該亜硫酸
塩が不足し塩素が吸収されなくなる。
If the alkali exceeds twice the mole of the sulfite, ρ1
Even if 1 is adjusted to 1.9 to 6.3, the reducing sulfite is insufficient and chlorine is not absorbed.

2倍モル以下の場合では、該亜硫酸塩が水酸化物の代用
として作用し、また該亜硫酸塩が多ければ多い程、吸収
液中の重亜硫酸イオンが多くなり、その緩衝作用のため
にpHjli節が容易になる。よってアルカリが存在し
なく、該亜硫酸塩のみでも吸収することも可能である。
When the amount is less than 2 times the mole, the sulfite acts as a substitute for hydroxide, and the more sulfite there is, the more bisulfite ions in the absorption liquid, and its buffering effect lowers the pH. becomes easier. Therefore, no alkali is present, and it is also possible to absorb the sulfite alone.

本方法にて、塩素を吸収する反応の適当な91(範囲は
1,9〜6.3であり、6.3を越える高いpHlでは
第1図に示したごとく、炭酸ガスが重炭酸イオンとなり
、アルカリが消費されるために、消費されるアルカリの
量が多くなって不経済である。
In this method, an appropriate pH value of 91 (range is 1.9 to 6.3) for the reaction that absorbs chlorine, and at high pHl exceeding 6.3, carbon dioxide gas becomes bicarbonate ions as shown in Figure 1. , since alkali is consumed, the amount of alkali consumed increases and is uneconomical.

また、pHが1.9未満になると、遊離亜硫酸を生じ分
解して亜硫酸ガスを生じ易くなるために好ましくない。
Furthermore, if the pH is less than 1.9, it is not preferable because free sulfurous acid is generated and decomposition tends to occur to generate sulfurous acid gas.

該水溶液のpH調整は、アルカリ金属亜硫酸塩及び/又
はアルカリ土類金属亜硫酸塩と、該亜硫酸塩の2倍モル
比以下の割合のアルカリ金属水酸化物及び/又はアルカ
リ土類金属水酸化物の添加量を調整しながらpHが1.
9〜6.3の範囲 になるようおこなえば良い。
The pH of the aqueous solution is adjusted by adding an alkali metal sulfite and/or alkaline earth metal sulfite to an alkali metal hydroxide and/or alkaline earth metal hydroxide in a molar ratio less than twice that of the sulfite. While adjusting the amount added, the pH is 1.
All you have to do is keep it in the range of 9 to 6.3.

この場合、該水酸化物および該亜硫酸塩は固体、又は水
溶液で添加してもよいが、好ましくは水溶液の方が望ま
しく、混合液で給液してもかまわないし、もちろん別々
に水溶液で加えてもよい。
In this case, the hydroxide and the sulfite may be added as a solid or an aqueous solution, but an aqueous solution is preferable, and a mixed solution may be used, or of course they may be added separately as an aqueous solution. Good too.

該水溶液の濃度は、アルカリ金属塩、アルカリ土類金属
塩の場合、原料や生成する食塩及び硫酸塩が溶解してい
る範囲が好ましいが、スラリー状態で操作すことも可能
である。
In the case of alkali metal salts and alkaline earth metal salts, the concentration of the aqueous solution is preferably within a range in which the raw materials and the produced salt and sulfate are dissolved, but it is also possible to operate in a slurry state.

反応温度は、塩の飽和fil!ちかく均一系にて操作す
る場合には、溶解度との兼ね合いで考慮する必要がある
が、通常アリカリ金属、アルカリ土類金属の亜硫酸塩、
塩化物いずれも飽和濃度の温度に対する依存性がそれほ
ど大きくないので、温度をあげることによる濃度アンプ
のメリットはそれほど大きくない。
The reaction temperature is the saturation fil! of the salt! When operating in a nearly homogeneous system, consideration must be given to solubility, but usually alkali metal, alkaline earth metal sulfites,
Since the saturation concentration of all chlorides does not have a large dependence on temperature, the advantage of concentration amplifier by raising the temperature is not so great.

塩素と亜硫酸塩との反応速度は、温度上昇と共に大きく
なるが、反応器材質の−m食や劣化の問題から、0°C
以上70°C以下が好ましい。
The reaction rate between chlorine and sulfite increases as the temperature rises, but due to the problems of corrosion and deterioration of the reactor material,
The temperature is preferably above 70°C.

反応形式は、攪拌槽中へのガスのバブリングによる吸収
でも、洗浄塔形式での吸収でも良い。
The reaction type may be absorption by bubbling gas into a stirring tank or absorption in a washing tower type.

段数は処理後のガス中の許容塩素量にもよるが、反応吸
収の速度が大きいのでそれほど多くの段数を必要としな
い。
The number of stages depends on the permissible amount of chlorine in the gas after treatment, but because the reaction and absorption speed is high, so many stages are not required.

〔作用及び効果〕[Action and effect]

従来の塩素の除害方法は、塩素濃度変化に対応したアル
カリの適量供給や、又吸収液のpH調整を厳密に行う方
法等煩雑な方法であった。
Conventional chlorine abatement methods have been complicated, such as supplying an appropriate amount of alkali in response to changes in chlorine concentration, and strictly adjusting the pH of the absorption liquid.

本発明の方法では、吸収待管理するpH範囲も広く、ア
ルカリ、又亜硫酸塩等を簡便な供給方法で、効率良く塩
素のみを吸収除害できる。
In the method of the present invention, the pH range for absorption control is wide, and only chlorine can be efficiently absorbed and removed using a simple method of supplying alkali, sulfite, etc.

このように本発明は実用上極めて価値あるものである。As described above, the present invention is of great practical value.

〔実施例〕〔Example〕

以下、実施例にて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 1O重量%亜硫酸ソーダ水溶液1Nを仕込んだ底抜きオ
ーバーフロー管を備えたフラスコに攪拌下、11重mi
nの炭酸ガスと、100 #li!/l1inの塩素ガ
スの混合物をバブリングさせ、ρ■の変化を追跡した。
Example 1 A 10% by weight sodium sulfite aqueous solution (1N) was placed in a flask equipped with a bottomed overflow tube under stirring at 11 min.
n carbon dioxide gas and 100 #li! A mixture of chlorine gas of 1/1 inch was bubbled through the tube, and changes in ρ■ were monitored.

始めのうち、吹き込んだガスの全量が吸収されるが、吹
き込みを続けるに従いpHが低下し、pH6以下になる
と一部のガスが通過し始めた。 pHが4以下になった
所で、lOχ亜硫酸ソーダ水溶液を15.7cc/wi
nの速度で供給し始めpl+を4に維持するようにした
At first, the entire amount of gas blown was absorbed, but as the blown gas continued, the pH decreased, and when the pH reached 6 or less, some gas began to pass through. When the pH becomes 4 or less, add 15.7cc/wi of lOx sodium sulfite aqueous solution.
Feed was started at a rate of n to maintain pl+ at 4.

この状態で、溶液中に吸収されずに通過したガスをN/
2沃化カリウム溶液と、N/2苛性ソーダ水溶液のトラ
ップに通し、澱粉水溶液を指示薬としてN/10チオ硫
酸ソーダにより滴定し、トラップ中の塩素の通宝を行っ
たところ、廃ガス中の塩素濃度はlppm容量以下であ
った。
In this state, the gas that has passed through the solution without being absorbed is removed by N/
When a potassium diiodide solution and an N/2 caustic soda aqueous solution were passed through a trap and titrated with N/10 sodium thiosulfate using a starch aqueous solution as an indicator to detect the chlorine in the trap, the chlorine concentration in the waste gas was determined. It was less than lppm capacity.

また、前記のN/2沃化カリウム溶液と、N/2苛性ソ
ーダ溶液に吸収された炭酸をメチルオレンジを指示薬と
して、それぞれN/10 NaOHとN/IQIICf
fiで滴定し、吹き込んだ炭酸ガスが全量吸収されず通
過していること確かめた。
In addition, the carbonic acid absorbed in the N/2 potassium iodide solution and the N/2 caustic soda solution was mixed with N/10 NaOH and N/IQIICf, respectively, using methyl orange as an indicator.
Titration was carried out using fi, and it was confirmed that all of the carbon dioxide gas that was blown into the reactor was not absorbed but passed through.

実施例2 実施例1と同様の反応装置に、8.6重量%の亜硫酸ソ
ーダと1.4重量%の苛性ソーダを含む水溶液を入れ、
同じ< 1 (! /l1inの炭酸ガスと100cc
/winの塩素ガスを混合して流し、pHが4になった
ところで、仕込み液と同じ組成の水溶液を、12.1m
l / m i nで供給し始め、pHを4に維持する
。この状態で通過したガスを実施例1と同様の方法で分
析し、塩素は1pρ−容!%以下であり、また炭酸ガス
は全量通過していることを確かめた。
Example 2 A reactor similar to Example 1 was charged with an aqueous solution containing 8.6% by weight of sodium sulfite and 1.4% by weight of caustic soda.
Same < 1 (!/l1in of carbon dioxide and 100cc
/win chlorine gas was mixed and flowed, and when the pH reached 4, an aqueous solution with the same composition as the preparation solution was added to 12.1 m
Start feeding at l/min and maintain pH at 4. The gas that passed through this state was analyzed in the same manner as in Example 1, and chlorine was found to be 1 pρ-vol. % or less, and it was confirmed that the entire amount of carbon dioxide gas was passing through.

実施例3 第2図に示した1インチのラシヒリングを充填した直径
0.8mの吸収塔7の下部から、炭酸ガス30容量χ、
窒素と酸素を70容量χ、塩素ガス1,000容量pp
mを含む混合ガス(1)を50ONrrr/Hrを導入
し、塔上部から10rrf/firで循環する吸収液(
2)により洗浄した。塔内には、水(5)278kg/
Hrを加えながら、亜硫酸ソーダ10重Iχを含む水溶
液(3)を約94.5kg/HrによりpH4,0に調
整すると同時に液量はオーバーフロー(4)により一定
に保たれる。
Example 3 30 volumes of carbon dioxide χ,
Nitrogen and oxygen 70 volume χ, chlorine gas 1,000 volume pp
A mixed gas (1) containing m is introduced at 50ONrrr/Hr, and an absorption liquid (
2). Inside the tower, there is water (5) 278 kg/
While adding Hr, the aqueous solution (3) containing 10 parts Ix of sodium sulfite is adjusted to pH 4.0 at about 94.5 kg/Hr, and at the same time the liquid volume is kept constant by overflow (4).

塔上部から通過した処理後ガス(6)をサンプリングし
て、N/10ヨウ化カリウム水溶液による吸収分析を行
ったところ、塩素は1 ppm容量以下であった。
When the treated gas (6) that passed through the upper part of the column was sampled and subjected to absorption analysis using an N/10 aqueous potassium iodide solution, the amount of chlorine was 1 ppm or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明で吸収剤として用いる該水溶液中の、
ρ11による各イオンの状態を示すものである。 第2図は実施例3での塩素吸収のフローを示すものであ
り、図中のそれぞれの符号は次の意味である。 1、 混合ガス    2.吸収液 3.10重量2亜硫酸ソーダ水溶液 4、 オーバーフロー管 5.水 6、 処理後ガス  7.吸収塔 8、 循環ポンプ  9.定量ポンプ 10、 10重量%亜硫酸ソーダ水溶液貯槽特許出願人
 三井東圧化学株式会社 ρ目 手続補正書岨発) 平成1年2月色日 特許庁長官 吉 1)文 毅 殴 1、事件の表示 昭和63年特許願第59428号 2、発明の名称 塩素の除害方法 3、補正をする者 事件との関係  特許出願人 住所 東京都千代田区霞が関三丁目2番5号名称(31
2)  三井東圧化学株式会社4、補正により増加する
発明の数  零5、補正の対象 明細書の発明の詳細な説明の欄および図面の第1図 6、補正の内容 (2)別紙のとおり。 7.53 H
FIG. 1 shows the aqueous solution used as an absorbent in the present invention.
It shows the state of each ion according to ρ11. FIG. 2 shows the flow of chlorine absorption in Example 3, and each symbol in the figure has the following meaning. 1. Mixed gas 2. Absorption liquid 3.10 weight 2 Sodium sulfite aqueous solution 4 Overflow pipe 5. Water 6, Gas after treatment 7. Absorption tower 8, circulation pump 9. Metering Pump 10, 10% by weight Sodium Sulfite Aqueous Solution Storage Tank Patent Applicant Mitsui Toatsu Chemical Co., Ltd. ρ-Procedure Amendment Report) February 1999 Commissioner of the Patent Office Yoshi 1) Takeshi Moon 1, Incident Display Showa 1963 Patent Application No. 59428 2 Name of the invention Method for eliminating chlorine 3 Relationship with the case of the person making the amendment Patent applicant address 3-2-5 Kasumigaseki, Chiyoda-ku, Tokyo Name (31
2) Mitsui Toatsu Chemical Co., Ltd. 4. Number of inventions increased by the amendment: 0 5. Detailed explanation column of the invention in the specification subject to the amendment and Figure 1 6 of the drawings, Contents of the amendment (2) As shown in the attached sheet . 7.53H

Claims (1)

【特許請求の範囲】[Claims] アルカリ金属及び/又はアルカリ土類金属亜硫酸塩と、
アルカリ金属及び/又はアルカリ土類金属亜硫酸塩の2
倍モル比以下の割合の、アルカリ金属水酸化物及び/又
はアルカリ土類金属水酸化物を含む水溶液、または懸濁
液を供給して、洗浄液のpHを1.9〜6.3の範囲に
調整しながら、この洗浄液で塩素ガスと炭酸ガスを含む
混合ガスを洗浄し、混合ガス中の塩素のみを除くことを
特徴とする塩素の除害方法。
an alkali metal and/or alkaline earth metal sulfite;
2 of alkali metal and/or alkaline earth metal sulfites
Supply an aqueous solution or suspension containing an alkali metal hydroxide and/or alkaline earth metal hydroxide at a ratio of twice the molar ratio or less to adjust the pH of the cleaning solution to a range of 1.9 to 6.3. A chlorine abatement method characterized by cleaning a mixed gas containing chlorine gas and carbon dioxide gas with this cleaning liquid while adjusting it, and removing only chlorine from the mixed gas.
JP63059428A 1988-02-16 1988-03-15 Method of removing chlorine Expired - Lifetime JP2567023B2 (en)

Priority Applications (21)

Application Number Priority Date Filing Date Title
JP63059428A JP2567023B2 (en) 1988-03-15 1988-03-15 Method of removing chlorine
IL89280A IL89280A0 (en) 1988-02-16 1989-02-14 Industrial process for the separation and recovery of chlorine
AU29959/89A AU597523B2 (en) 1988-02-16 1989-02-15 Industrial process for the separation and recovery of chlorine
DE68917335T DE68917335T3 (en) 1988-02-16 1989-02-15 Industrial process for the separation and recovery of chlorine.
EP89301394A EP0329385B2 (en) 1988-02-16 1989-02-15 Industrial process for the separation and recovery of chlorine
BR898900671A BR8900671A (en) 1988-02-16 1989-02-15 PROCESSES FOR THE SEPARATION AND RECOVERY OF CHLORINE FROM A GAS MIXTURE UNDERSTANDING CHLORINE, CARBON DIOXIDE AND NON-CONDENSABLE GAS, AND PROCESSES FOR THE REMOVAL OF CHLORINE FROM A GAS MIXTURE UNDERSTANDING CHLORINE AND CARBON DIOXIDE GAS
CA000591062A CA1319316C (en) 1988-02-16 1989-02-15 Industrial process for the separation and recovery of chlorine
HU89765A HU205867B (en) 1988-02-16 1989-02-15 Method for separating and recuperating chlorine from gaseous medium
EP94100177A EP0594558B1 (en) 1988-02-16 1989-02-15 Industrial process for the separation and recovery of chlorine
CS89998A CS276380B6 (en) 1988-02-16 1989-02-15 Process of chlorine industrial isolation
DE68928021T DE68928021T2 (en) 1988-02-16 1989-02-15 Industrial process for the separation and recovery of chlorine
CS902043A CS276386B6 (en) 1988-03-15 1989-02-15 Process for removing chlorine from a gaseous mixture
RO138274A RO103830B1 (en) 1988-02-16 1989-02-16 Separation and recovery method of chlorine
KR1019890001794A KR910005983B1 (en) 1988-02-16 1989-02-16 Separation and recapturing method of chlorine
CN 89101852 CN1017414B (en) 1988-02-16 1989-02-16 Industrial process for separation and recovery of chlorine
US07/310,929 US5000006A (en) 1988-02-16 1989-02-16 Industrial process for the separation and recovery of chlorine
AU50669/90A AU614220B2 (en) 1988-02-16 1990-03-02 Industrial process for the removal of chlorine
KR1019910008973A KR910005984B1 (en) 1988-02-16 1991-05-30 Chlorine removing method
CA000616106A CA1320120C (en) 1988-02-16 1991-06-28 Industrial process for the separation and recovery of chlorine
CN 92101858 CN1027313C (en) 1988-02-16 1992-03-16 Industrial process for separation and recovery of chlorine
US07/921,606 US5254323A (en) 1988-02-16 1992-08-03 Industrial process for the separation and recovery of chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63059428A JP2567023B2 (en) 1988-03-15 1988-03-15 Method of removing chlorine

Publications (2)

Publication Number Publication Date
JPH01234312A true JPH01234312A (en) 1989-09-19
JP2567023B2 JP2567023B2 (en) 1996-12-25

Family

ID=13112983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63059428A Expired - Lifetime JP2567023B2 (en) 1988-02-16 1988-03-15 Method of removing chlorine

Country Status (2)

Country Link
JP (1) JP2567023B2 (en)
CS (1) CS276386B6 (en)

Also Published As

Publication number Publication date
JP2567023B2 (en) 1996-12-25
CS204389A3 (en) 1992-05-13
CS276386B6 (en) 1992-05-13

Similar Documents

Publication Publication Date Title
AU670392B2 (en) Method and compositions for chlorine dioxide manufacture
EP2452740B1 (en) Exhaust gas treating method using gaseous iodine
US3622273A (en) Method for the removal of hydrogen sulfide from gaseous streams
US20070269358A1 (en) Processes for absorbing chlorine from a gas containing chlorine and carbon dioxide
EP0594558B1 (en) Industrial process for the separation and recovery of chlorine
JP2000505037A (en) Method and apparatus for producing aqueous chlorine dioxide
US5102638A (en) Process for the selective absorption of chlorine from CO2 -containing off-gases
US3932583A (en) Method of removing hydrogen sulfide from a gas containing carbon dioxide
JP4862314B2 (en) Method and apparatus for desulfurization of gas containing hydrogen sulfide
US4696805A (en) Method for desulfurizing exhaust gas
ES2953739T3 (en) Procedure and device for preparing an aqueous solution containing chlorine dioxide
JPH01234312A (en) Method for averting damage of chlorine
JP2788477B2 (en) Method for eliminating fluorine, bromine and iodine
CN102026706B (en) Method for absorbing chlorine from gas streams
JP2008110339A (en) Method for removal of chlorine gas
DK167102B1 (en) PROCEDURE FOR TREATMENT OF EXHAUST GAS CONTAINING SO2, HCL AND EVENTS HF
JP5591446B2 (en) Exhaust gas treatment method
JPS5913889B2 (en) cleaning equipment
US3123554A (en) Method of disinfecting and automati-
US3829549A (en) Process for treating waste photographic processing solution and recovering residual silver therefrom as a silver halide
JPS6315547B2 (en)
JP2006063410A (en) Method for producing chlorine containing low bromine
JP3568294B2 (en) How to prevent chlorate from increasing in salt water
JPS6335297B2 (en)
JPS6321523B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12