JPH01233290A - Production of lysolecithin - Google Patents

Production of lysolecithin

Info

Publication number
JPH01233290A
JPH01233290A JP5943988A JP5943988A JPH01233290A JP H01233290 A JPH01233290 A JP H01233290A JP 5943988 A JP5943988 A JP 5943988A JP 5943988 A JP5943988 A JP 5943988A JP H01233290 A JPH01233290 A JP H01233290A
Authority
JP
Japan
Prior art keywords
lysolecithin
lecithin
liquid
cpc
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5943988A
Other languages
Japanese (ja)
Inventor
Hidehiko Hibino
日比野 英彦
Nobuo Fukuda
信雄 福田
Osamu Nakachi
仲地 理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP5943988A priority Critical patent/JPH01233290A/en
Publication of JPH01233290A publication Critical patent/JPH01233290A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To directly and rapidly obtain lysolecithin useful as a carcinostatic agent, modifier for ribosomes, etc., from lecithin in high yield with a good accuracy, by treating a lysolecithin-containing lecithin using a centrifugal liquid- liquid multistage fractionator. CONSTITUTION:Natural and synthetic lysolecithin-containing lecithin as a raw material is treated in a centrifugal liquid-liquid continuous multistage fractionator (hereinafter referred to as CPC) to separate and collect lysolecithin. Furthermore, natural lecithin concentrate or synthetic lecithin subjected to regiospecific hydrolysis treatment with snake venom phospholipase A2, etc., have a high lysolecithin content and are preferred as the raw material lecithin. The eluate of the CPC is preferably prepared by mixing and stirring a hydrophobic solvent, such as hexane, with a hydrophilic solvent, such as acetonitrile, and partitioning the mixture into two phases, and further using the respective phases as liquids for a stationary and mobile phases of the CPC.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、リゾレシチンを含む天然および合成レシチン
原料から直接リゾレシチンを分取する新規な方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a novel method for directly separating lysolecithin from natural and synthetic lecithin raw materials containing lysolecithin.

(従来の技術) リゾレシチンはレシチンの脂肪酸が1個脱離したもので
、生体内では細胞膜のコンホメーションを修飾する事が
知られている。特に赤血球膜に対するリシスは溶血作用
を引き起こす程の強力な生理効果を有している。リゾレ
シチンは自然界の動植物の細胞膜を構成するリン脂質中
に広く分布している。工業用のリン脂質原料中のリゾレ
シチンの含量は大豆レシチンや卵黄レシチンでは1〜2
%であり、脱脂処理を行っても3%前後と微量である。
(Prior Art) Lysolecithin is obtained by removing one fatty acid from lecithin, and is known to modify the conformation of cell membranes in vivo. In particular, lysis on red blood cell membranes has such a strong physiological effect that it causes hemolysis. Lysolecithin is widely distributed in the phospholipids that constitute the cell membranes of plants and animals in nature. The content of lysolecithin in industrial phospholipid raw materials is 1 to 2 for soybean lecithin and egg yolk lecithin.
%, and even after degreasing, the amount is only around 3%.

そのため、リゾレシチンを得るためには溶剤分別などに
よって濃縮化はできるが高純度にすることが難しい。高
純度化する方法には薄層クロマトグラフィーやカラム分
画法等が脂質化学の分野で応用されてきた。
Therefore, in order to obtain lysolecithin, it is difficult to achieve high purity, although it can be concentrated by solvent fractionation. Thin layer chromatography and column fractionation methods have been applied in the field of lipid chemistry to achieve high purity.

(発明が解決しようとする課題) リゾレシチンの分画を目的とする原料として、現在市販
されているリン脂質はその含量が低く、そのまま使用す
る事は分離精製の面から好ましくないので、原料中のリ
ゾレシチン含量を高める必要がある。
(Problem to be solved by the invention) Currently commercially available phospholipids as raw materials for the purpose of fractionation of lysolecithin have a low content, and it is not preferable to use them as they are from the standpoint of separation and purification. It is necessary to increase the lysolecithin content.

薄層クロマトグラフィーによる精製は、分取用プレート
を使用しても1回にチャージできる量は数十■であり、
分取できるリゾレシチンは数■程度と微量である。カラ
ム分画法による精製は、オープンカラム方式、中圧カラ
ム方式、高性能液体クロマトグラフィー等が利用されて
いる。このいずれの方式においても、レシチン共存下に
おけるリゾレシチンの分画は、同一溶媒による溶出では
流出に非常に時間がかかり、流出時間を短縮したり処理
量を高めるような溶媒系では、分画されるリゾレシチン
含量が著しく低下する。また加圧溶出では見掛は上流用
時間は短縮するが、保持容量に変化がないため分画され
る量に対する溶媒量は非常に大きい。このため分画量を
高めるためにはステップワイズに詳細に設定されたグラ
ジェント溶出が要求される。その結果、煩雑な溶媒設定
、大量の溶出溶媒量、著しく長い溶出時間を必要とする
等の問題点がある。
In purification by thin layer chromatography, even if a preparative plate is used, the amount that can be charged at one time is several tens of cubic meters.
The amount of lysolecithin that can be separated is only a few micrometers. For purification by column fractionation, open column method, medium pressure column method, high performance liquid chromatography, etc. are used. In both of these methods, the fractionation of lysolecithin in the coexistence of lecithin takes a very long time to elute with the same solvent, and it is difficult to fractionate with a solvent system that shortens the elution time or increases the throughput. Lysolecithin content is significantly reduced. In pressurized elution, the upstream time is apparently shortened, but since there is no change in retention capacity, the amount of solvent relative to the amount to be fractionated is extremely large. Therefore, in order to increase the fractionation amount, stepwise gradient elution is required. As a result, there are problems such as complicated solvent settings, a large amount of elution solvent, and an extremely long elution time.

(課題を解決するための手段) 本発明は、リゾレシチンを含む天然および合成レシチン
を原料とし、遠心液々多段分画装置を用いてリゾレシチ
ンを分取することを特徴とする。
(Means for Solving the Problems) The present invention is characterized in that natural and synthetic lecithins containing lysolecithin are used as raw materials, and lysolecithin is fractionated using a centrifugal liquid-liquid multi-stage fractionation device.

本発明者らは、従来リゾレシチンの原料として用いられ
てきた天然リン脂質の組成を詳細に検討した。その結果
市販の大豆レシチンや卵黄レシチンにはリゾレシチンが
1〜2%含まれ、それらのアセトンによる脱脂処理で3
%前後になることがわかった。またリゾレシチンは溶剤
分画やカラム分画においてレシチンと類似な挙動を行い
、レシチンの濃縮に従ってリゾレシチンの含量も増加す
ることがわかった。例えばレシチン含量を70%以上に
濃縮すれば、いずれもリゾレシチンが5〜7%に濃縮さ
れるので市販品よりも原料として好ましい。
The present inventors conducted a detailed study on the composition of natural phospholipids that have been conventionally used as raw materials for lysolecithin. As a result, commercially available soybean lecithin and egg yolk lecithin contain 1 to 2% lysolecithin, and when defatted with acetone, 3%
It turned out that it was around %. It was also found that lysolecithin behaves similarly to lecithin in solvent fractionation and column fractionation, and the content of lysolecithin increases as lecithin is concentrated. For example, if the lecithin content is concentrated to 70% or more, the lysolecithin will be concentrated to 5 to 7%, so it is preferable as a raw material than commercially available products.

さらに原料中のリゾレシチン含量を高めるため、上記の
天然レシチン濃縮物や合成レシチンを部分的に加水分解
した。加水分解はヘビ毒ホスホリパーゼA2による位置
特異的加水分解、低濃度のテトラブチルアンモニウムヒ
ドロキシドやアルカリ金属塩によるアルコリシスで行っ
た。部分的加水分解物中にはレシチン、リゾレシチン、
脂肪酸およびグリセロホスホコリンが認められた。これ
らの混合物をクロロホルム抽出後、冷アセトン処理によ
りリゾレシチンとレシチンの混合物が得られる。リゾレ
シチンは30〜70%含有されるので、ヘビ毒ホスホリ
パーゼA2処理の方がリゾレシチン含量の点からより好
ましい。
Furthermore, in order to increase the lysolecithin content in the raw materials, the natural lecithin concentrate and synthetic lecithin described above were partially hydrolyzed. Hydrolysis was performed by position-specific hydrolysis using snake venom phospholipase A2 and alcoholysis using low concentrations of tetrabutylammonium hydroxide or alkali metal salts. Lecithin, lysolecithin,
Fatty acids and glycerophosphocholine were observed. After extracting these mixtures with chloroform, a mixture of lysolecithin and lecithin is obtained by treatment with cold acetone. Since 30 to 70% lysolecithin is contained, snake venom phospholipase A2 treatment is more preferable from the viewpoint of lysolecithin content.

また、合成レシチン製造時の中間反応生成物中にしばし
ばリゾレシチンが大量に出現する。レシチン合成は、脱
アシルリン指体であるグリセロホスホコリンに脂肪酸の
無水物またはハロゲン化物を、塩基性エステル化触媒の
存在下に、高極性溶媒中で反応することによって行われ
る。この際、グリセロホスホコリンに対する脂肪酸誘導
体の使用量をレシチン合成時の半分で反応させると、リ
ゾレシチンが生成する。この反応混合物中にはレシチン
、リゾレシチン、脂肪酸、グリセロホスホコリンおよび
塩基性触媒と未反応物の複合体が認められた。これらの
混合物にシリカ処理と冷アセトン処理を行うと、リゾレ
シチンとレシチンの混合物が得られる。リゾレシチンは
15〜60%含有されるのでリゾレシチン原料として好
ましい。
Furthermore, large amounts of lysolecithin often appear in intermediate reaction products during the production of synthetic lecithin. Lecithin synthesis is carried out by reacting glycerophosphocholine, which is a desacyl phosphoric acid, with fatty acid anhydrides or halides in a highly polar solvent in the presence of a basic esterification catalyst. At this time, if the amount of fatty acid derivative used for glycerophosphocholine is half of that used for lecithin synthesis, lysolecithin is produced. In this reaction mixture, lecithin, lysolecithin, fatty acids, glycerophosphocholine, and a complex of the basic catalyst and unreacted substances were observed. When these mixtures are treated with silica and cold acetone, a mixture of lysolecithin and lecithin is obtained. Since lysolecithin is contained in an amount of 15 to 60%, it is preferable as a raw material for lysolecithin.

本発明に用いる原料レシチンはリゾレシチン4%以上を
含むものが好ましく、前述の種々の原料レシチンが使用
できる。リゾレシチン含量が4%以下のものは後の遠心
液々連続多段分画工程において高濃度のリゾレシチンが
得にくくなる。
The raw material lecithin used in the present invention preferably contains 4% or more of lysolecithin, and the various raw material lecithins described above can be used. If the lysolecithin content is less than 4%, it will be difficult to obtain a high concentration of lysolecithin in the subsequent centrifugal liquid continuous multi-stage fractionation process.

本発明においては、部分分解された原料レシチンから従
来の充填カラムを用いないでリゾレシチンを精密に分離
するために、遠心液々連続多段分画装置(以下CPC)
を用いた。
In the present invention, in order to precisely separate lysolecithin from partially decomposed raw material lecithin without using conventional packed columns, a centrifugal liquid-liquid continuous multi-stage fractionator (hereinafter referred to as CPC) is used.
was used.

cpcは、第4図に示すように、2相の分離液のうち一
方を固定相として遠心力により保持しつつ、他方を移動
相として連続的に固定相内を通過させて、移動相内に注
入された試料を連続的に分画する向流分配クロマトグラ
フィーである。即ち、cpcは比重および極性が異なり
、2相に分離する2種の溶媒の一方を固定相、他方を移
動相とし、遠心加速度の作用により固定相中を移動相で
移動させ、試料中の各成分を分配係数の差を利用して多
段分配平衡によりクロマトグラフィー的に分画する。そ
のため、CPCはカラムの充填物としてシリカゲルを使
用しないため、レシチン分離に伴う保持容量の変化とい
う工業的生産への応用に対する問題を解決した。
As shown in Figure 4, in CPC, one of the two phase separated liquids is held as a stationary phase by centrifugal force, while the other is continuously passed through the stationary phase as a mobile phase. It is a countercurrent partition chromatography that continuously fractionates the injected sample. That is, CPC has different specific gravity and polarity, and is separated into two phases.One of the two solvents is used as a stationary phase and the other as a mobile phase, and the mobile phase is moved through the stationary phase by the action of centrifugal acceleration. Components are chromatographically fractionated by multistage partition equilibrium using differences in partition coefficients. Therefore, since CPC does not use silica gel as a column packing, it solves the problem of change in retention capacity due to lecithin separation for application to industrial production.

本発明において用いる疎水性溶媒はヘキサン、ヘプタン
、エーテル、石油エーテル、クロロホルム等であり、親
水性溶媒はエタノール、メタノール、含水アルコール、
アセトニトリル、酢酸、リン酸緩衝液であり、金属錯体
の添加が分離性能および収率の面で特に好ましい。溶離
液は前述の各種溶剤や添加物の入った疎水性および親水
性の溶媒をあらかじめ混合攪拌後、2相に分配し、下層
液を固定相液、上層液を移動相液として、またはその反
対の組合せで用いた。
Hydrophobic solvents used in the present invention include hexane, heptane, ether, petroleum ether, chloroform, etc., and hydrophilic solvents include ethanol, methanol, hydrous alcohol,
Acetonitrile, acetic acid, and phosphate buffers are used, and addition of a metal complex is particularly preferred in terms of separation performance and yield. The eluent is prepared by premixing and stirring the hydrophobic and hydrophilic solvents containing the various solvents and additives mentioned above, and then dividing the mixture into two phases.The lower layer liquid is used as the stationary phase liquid and the upper layer liquid is used as the mobile phase liquid, or vice versa. It was used in combination.

CPCはローター上に多数のカートリ・7ジ(以下分配
管という)を円周状に配列し、分配管同士をチューブで
直列に接続しである。分配管はフッ素系の樹脂板に細い
溝をジグザグ状に施し、樹脂板を数枚重ねて1個の分配
管を構成する。固定相液をポンプで分配管に充填した後
、ローターを回転させて一定の遠心力を与えながら、移
動相液を連続的に送液する。固定相液は遠心力により分
配管の中に保持され、移動相液がその中を微細な液滴と
なって連続的に通過し多段連続液々分配抽出が行われる
。溶出液はイヤトロスキャン(TLC/FID)でチエ
ツクし、分画はフラクションコレクターで行う。なお、
移動相液の送液の終了後に、送液方向を逆転して固定相
液を入口側から押し出すと、固定相液中に保持されてい
た成分を分取することができる。
In a CPC, a large number of cartridges (hereinafter referred to as distribution pipes) are arranged in a circumferential manner on a rotor, and the distribution pipes are connected in series with each other using tubes. The distribution pipe is made by forming thin grooves in a zigzag pattern on a fluorine-based resin plate, and stacking several resin plates to form one distribution pipe. After filling the distribution pipe with the stationary phase liquid using a pump, the mobile phase liquid is continuously pumped while rotating the rotor and applying a constant centrifugal force. The stationary phase liquid is held in the distribution pipe by centrifugal force, and the mobile phase liquid passes through the pipe continuously in the form of fine droplets, thereby performing multistage continuous liquid-liquid distribution extraction. The eluate is checked using IATROScan (TLC/FID) and fractionation is performed using a fraction collector. In addition,
After the feeding of the mobile phase liquid is completed, by reversing the liquid feeding direction and pushing out the stationary phase liquid from the inlet side, the components retained in the stationary phase liquid can be fractionated.

(発明の効果) 本発明はcpcを用いて、合成および天然レシチンから
、直接リゾレシチンを精度良く迅速に好収率で分離する
ことができる。このリゾレシチンは細胞膜のコンホメー
ションを修飾する作用を利用して制癌剤やリポソーム改
質剤に使用できる。
(Effects of the Invention) The present invention allows lysolecithin to be directly separated from synthetic and natural lecithins with high accuracy, speed, and high yield using CPC. This lysolecithin can be used as an anticancer drug or a liposome modifier by utilizing its action of modifying the conformation of cell membranes.

又リゾレシチンは脳へのコリン供給剤として使用できる
し、腹腔マクロファージを活性化することから非特異的
な免疫強化剤としても使用できる。
Furthermore, lysolecithin can be used as a choline supply agent to the brain, and since it activates peritoneal macrophages, it can also be used as a non-specific immune-enhancing agent.

(実施例) 以下、実施例に基づき本発明を具体的に説明する。尚、
実施例中の%は重量%を示す。
(Examples) Hereinafter, the present invention will be specifically described based on Examples. still,
% in the examples indicates weight %.

実施例1 市販精製大豆レシチンを冷アセトン処理により脱脂処理
を施した。得られた脱脂大豆レシチンをエタノールによ
る溶剤分画と硫酸マグネシウム処理を行いレシチン以外
のリン脂質を除去した。得られた大豆レシチン濃縮物が
溶解しているエタノール溶液を丸底の大型エバポレータ
ーで薄膜状にして脱溶媒して原料リン脂質を調製した。
Example 1 Commercially available purified soybean lecithin was defatted by cold acetone treatment. The obtained defatted soybean lecithin was subjected to solvent fractionation using ethanol and magnesium sulfate treatment to remove phospholipids other than lecithin. The obtained ethanol solution in which the soybean lecithin concentrate was dissolved was made into a thin film using a large round-bottomed evaporator, and the solvent was removed to prepare a raw material phospholipid.

上記の粗リン脂質の組成はイヤトロスキャン法(ヤトロ
ン社製)で、展開液組成りロロホルム/メタノール/水
(65/25/4)で測定した。組成はレシチン71%
、リゾレシチン6%、その他24%であった。
The composition of the above-mentioned crude phospholipid was measured by the Yatroscan method (manufactured by Yatron) using a developing solution composition of loloform/methanol/water (65/25/4). Composition: 71% lecithin
, 6% for lysolecithin, and 24% for others.

上記リン脂質2gを原料とした。分配液はn−ヘキサン
とアセトニトリルを同量混合し、二層に分離するまで静
置し調製した。試料は下層液5Mに溶解して本体に接続
されているサンプル管に充填した。次いで、あらかじめ
調製した分配液の下層液をCPC(CPC−L  B9
2−N型、三鬼エンジニアリング■製)の分配管に充填
した。分配管に試料溶液を送液した後、ロータを160
Or、p、m。
2 g of the above phospholipid was used as a raw material. A distributed solution was prepared by mixing equal amounts of n-hexane and acetonitrile and allowing the mixture to stand until separated into two layers. The sample was dissolved in 5M of the lower layer liquid and filled into a sample tube connected to the main body. Next, the lower layer liquid of the distribution liquid prepared in advance was subjected to CPC (CPC-L B9
2-N type, manufactured by Miki Engineering ■) distribution pipe was filled with the solution. After sending the sample solution to the distribution tube, move the rotor to the 160°
Or, p, m.

で回転させながら下層液を5m11分の流速で1600
m1送ン夜して、100mf毎にフラクションコレクタ
ーで分画した。
While rotating the lower layer liquid at a flow rate of 5 m 11 minutes,
ml was sent overnight, and fractionated at every 100 mf using a fraction collector.

分画した溶出液を、前述のイヤトロスキャンでチエツク
しなからリゾレシチンの溶出部分を分取した。得られた
下層溶出液画分の第7フラクシヨンから第16フラクシ
ヨンのレシチンとリゾレシチンの含有率を第1図に示し
た。下層溶出液の第7フラクシヨンから第9フラクシヨ
ンまでの収量は0.1gで、第1Oフラクシヨンから第
16フラクシヨンまでの収量は0.7gであった。
The fractionated eluate was checked with the aforementioned IATROScan, and the lysolecithin eluted portion was fractionated. The contents of lecithin and lysolecithin in the 7th to 16th fractions of the obtained lower eluate fraction are shown in FIG. The yield of the lower eluate from the 7th fraction to the 9th fraction was 0.1 g, and the yield from the 1st O fraction to the 16th fraction was 0.7 g.

次いで分配管に保持されているリゾレシチンを分離する
ために上層反転溶出を行った。即ちローターを160O
r、plm、で回転させながら、分配管の出口側から逆
方向に上層液を5m11分の流速で10100O送液し
て、100 ml毎にフラクションコレクターで分画し
た。
Next, upper layer inversion elution was performed to separate the lysolecithin retained in the distribution tube. That is, the rotor is 160O
While rotating at r, plm, the upper layer liquid was fed in the opposite direction from the outlet side of the distribution pipe at a flow rate of 5 ml and 11 minutes at 10,100 O, and fractionated every 100 ml using a fraction collector.

反転溶出で得られた上層溶出画分の第1フラクシヨンか
ら第10フラクシヨンのレシチンとリゾレシチンの含有
率を第2図に示した。上層溶出液の第2フラクシヨンか
らの収量は0.1gで、第3フラクシヨンから第10フ
ラクシヨンまでの収量は0.9gであり、上層溶出画分
の前フラクシヨンのリゾレシチン含有率は95%であっ
た。下層溶出画分と上層溶出画分からの収量は回収率9
0%であった。
FIG. 2 shows the contents of lecithin and lysolecithin in the 1st to 10th fractions of the upper elution fraction obtained by reverse elution. The yield from the second fraction of the upper eluate was 0.1 g, the yield from the third to tenth fractions was 0.9 g, and the lysolecithin content of the previous fraction of the upper eluate was 95%. . The yield from the lower eluted fraction and the upper eluted fraction is a recovery rate of 9.
It was 0%.

実施例2 パルミチン酸6.0g(23,6mM)を無水トリフル
オロ酢酸9 、8g (46、7mM)を添加し、38
℃で1時間攪拌した。窒素ガス気流下、攪拌しながら徐
々に加熱し、温度が85℃に達してから5〜50mmH
gで無水トリフルオロ酢酸を除去した。得られた無水パ
ルミチン酸全量にジメチルスルホキ9120m1.グリ
セロホスホコリン無水物2.0g(7,8mM)および
N、N−ジメチル−4−アミノピリジン1.6g(13
,2mM)を加え、80℃で2時間激しく攪拌した。
Example 2 6.0g (23.6mM) of palmitic acid was added with 9.8g (46.7mM) of trifluoroacetic anhydride,
The mixture was stirred at ℃ for 1 hour. Under a stream of nitrogen gas, gradually heat while stirring, and after the temperature reaches 85°C, heat for 5 to 50 mmH.
Trifluoroacetic anhydride was removed with g. 9120ml of dimethylsulfochloride was added to the total amount of palmitic anhydride obtained. 2.0 g of glycerophosphocholine anhydride (7.8 mM) and 1.6 g of N,N-dimethyl-4-aminopyridine (13
, 2mM) and stirred vigorously at 80°C for 2 hours.

室温放置後、脱水アセトン200 dを添加して撹拌す
ると白色沈澱が生じた。これを−20°Cの冷凍庫に1
時間放置後、回転数300Or、p、m、で10分間遠
心分離した。回収した沈澱物に脱水アセトン100m1
を添加し、遠心分離を2回行った。さらに脱水アセトン
で沈澱物を繰り返し洗浄して減圧下で脱溶媒した。上澄
液も上記と同様に操作した。
After standing at room temperature, 200 d of dehydrated acetone was added and stirred to produce a white precipitate. Place this in the freezer at -20°C.
After standing for a period of time, centrifugation was performed for 10 minutes at a rotation speed of 300 Orr, p, m. Add 100ml of dehydrated acetone to the collected precipitate.
was added and centrifuged twice. Furthermore, the precipitate was repeatedly washed with dehydrated acetone and the solvent was removed under reduced pressure. The supernatant liquid was also operated in the same manner as above.

得られた白色沈澱物2.7gはクロロホルム/メタノー
ル(1/1)に溶解した。溶解液はシリカゲルを充填し
たガラス管(2cmφX3cm)に通した後に脱溶媒し
た。得られた粗リン脂質2.5gの組成は前述のイヤト
ロスキャン法で測定した。組成はレシチン73%、リゾ
レシチン19%、その他8%であった。
2.7 g of the obtained white precipitate was dissolved in chloroform/methanol (1/1). The solution was passed through a glass tube (2 cm φ x 3 cm) filled with silica gel, and then the solvent was removed. The composition of 2.5 g of the obtained crude phospholipid was determined by the Iatroscan method described above. The composition was 73% lecithin, 19% lysolecithin, and 8% others.

上記リン脂質2gを原料とした。分配液はクロロホルム
/酢酸/メタノール/水(2/1/1/2)に混合し、
二層に分離するまで静置し調製した。
2 g of the above phospholipid was used as a raw material. The distribution liquid was mixed with chloroform/acetic acid/methanol/water (2/1/1/2),
The mixture was prepared by allowing it to stand until it separated into two layers.

試料は上層液5Mに溶解して本体に接続されているサン
プル管に充填した。次いで、あらかじめ調製した分配液
の上層液をCPC(CPC−L、B92−N型、三鬼エ
ンジニアリング(I萄製)の分配管に充填した。試料溶
液の注入を兼ねて分配管に上層液を2.5m11分の送
液速度で2000m1送液してから、下層反転溶出を行
うため下層液1000mffを送液した。各溶出液は溶
出状態によって10〜100m1毎に分画した。この際
のローターの回転数は1500r、p、m、で行った。
The sample was dissolved in 5M upper layer liquid and filled into a sample tube connected to the main body. Next, the upper layer liquid of the distribution liquid prepared in advance was filled into the distribution tube of a CPC (CPC-L, B92-N type, manufactured by Miki Engineering (manufactured by Ibu).The upper layer liquid was also poured into the distribution tube to serve as the injection of the sample solution. After sending 2000 ml at a liquid sending rate of 2.5 ml and 11 minutes, 1000 mff of the lower layer liquid was sent to perform lower layer inversion elution.Each eluate was fractionated into 10 to 100 ml portions depending on the elution condition.The rotor at this time The rotation speed was 1500 r, p, m.

分画した溶出液を前述のイヤトロスキャンでチエツクし
なからリゾレシチンの溶出部分を分取した。上N溶出で
は溶出ff1540 dから600 mlの区間にリゾ
レシチン濃縮区分が認められ、この区間から回収された
収量は0.3gであった。この区間のレシチンとリゾレ
シチンの含有率を第3図に示した。
The fractionated eluate was checked with the aforementioned IATROScan, and the lysolecithin eluate was fractionated. In the upper N elution, a lysolecithin enriched section was observed in a 600 ml section from elution ff1540d, and the yield recovered from this section was 0.3 g. The contents of lecithin and lysolecithin in this section are shown in Figure 3.

この区間以降に溶出した上層溶出液からの収量は0.1
gであり、下層溶出液からの収量は1.4gであり全体
の回収率は90%であった。
The yield from the upper eluate eluted after this interval is 0.1
g, the yield from the lower eluate was 1.4 g, and the overall recovery rate was 90%.

上層溶出画分の前フラクションのリゾレシチン含有率は
89%であった。
The lysolecithin content of the pre-upper elution fraction was 89%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酵素分解粗リン脂質のcpcの下層溶出におけ
る各区分の組成図であり、 第2図は上層反転溶出における各区分の組成図であり、 第3図は化学合成粗リン脂質のcpcの上層溶出の前フ
ラクションの組成図であり、 第4図はcpcを示す環路線図である。 第1図 沼川t1mll 第2図 シ@出量1mll 第3図 溶出量(ml) 第4図 7ウクシヨン】し7q−
Figure 1 is a composition diagram of each division in the lower layer elution of enzymatically decomposed crude phospholipid CPC, Figure 2 is a composition diagram of each division in upper layer inversion elution, and Figure 3 is a composition diagram of CPC of chemically synthesized crude phospholipid. FIG. 4 is a diagram showing the composition of the pre-eluting fraction in the upper layer, and FIG. 4 is a circular map showing CPC. Figure 1: Numakawa t1ml Figure 2: Elution volume: 1ml Figure 3: Elution volume (ml) Figure 4: 7q-

Claims (1)

【特許請求の範囲】[Claims]  リゾレシチンを含む天然および合成レシチンを原料と
し、遠心液々多段分画装置を用いてリゾレシチンを分取
することを特徴とするリゾレシチンの製造法。
A method for producing lysolecithin, which comprises using natural and synthetic lecithin containing lysolecithin as raw materials and separating lysolecithin using a centrifugal liquid-liquid multi-stage fractionator.
JP5943988A 1988-03-15 1988-03-15 Production of lysolecithin Pending JPH01233290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5943988A JPH01233290A (en) 1988-03-15 1988-03-15 Production of lysolecithin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5943988A JPH01233290A (en) 1988-03-15 1988-03-15 Production of lysolecithin

Publications (1)

Publication Number Publication Date
JPH01233290A true JPH01233290A (en) 1989-09-19

Family

ID=13113312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5943988A Pending JPH01233290A (en) 1988-03-15 1988-03-15 Production of lysolecithin

Country Status (1)

Country Link
JP (1) JPH01233290A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028270A1 (en) * 1996-02-02 1997-08-07 Biomolecular Products, Inc. Methods for making lysophosphatidylcholine
US5891466A (en) * 1990-08-13 1999-04-06 Yesair; David W. Mixed Liped-Bicarbonate colloidal particles for delivering drugs or calories

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891466A (en) * 1990-08-13 1999-04-06 Yesair; David W. Mixed Liped-Bicarbonate colloidal particles for delivering drugs or calories
WO1997028270A1 (en) * 1996-02-02 1997-08-07 Biomolecular Products, Inc. Methods for making lysophosphatidylcholine

Similar Documents

Publication Publication Date Title
CN104529772B (en) A kind of simulated moving bed chromatography prepares high-purity EPA ester and the method for DHA ester monomer
FI68158C (en) FOERFARANDE FOER AVSKILJNING AV OLJA OCH / ELLER FOSFATIDYLETANOLAMIN FRAON ALKOHOLLOESLIGA FOSFATIDYLKOLINPRODUKTER INNEHAOLLANDE DESSA
JPS61145189A (en) Isolation of phosphatidyl choline
US4814111A (en) Process for purification of phospholipids
US4425276A (en) Process for the separation of oil and/or phosphatidylethanolamine from alcohol soluble phosphatidylcholine products containing the same
JPS5942655B2 (en) Method for producing oil-containing high-purity phosphatidylcholine
EP0703918B1 (en) Process for obtaining highly purified phosphatidylcholine
JP2805522B2 (en) Method for fractionating and purifying phospholipid fraction derived from milk or dairy products
US5084215A (en) Process for purification of phospholipids
JP2003512481A (en) Method for fractionating raw materials consisting of several components using supercritical solvent
AU675116B2 (en) Method for extracting sphingomyelin from phospholipid con taining fat concentrate
JPH01233290A (en) Production of lysolecithin
JPH02180995A (en) Method for separating glycolipid from lipid mixture
US3869482A (en) Method of producing highly purified phosphatides
JPS61129190A (en) Polymerizable glycerophospholipid
JPH02149588A (en) Concentration of phosphatidylethanolamine
JPH05132490A (en) Fractionation and purification of lipid fractions
JPH01131189A (en) Production of docosahexaenoic acid-containing phosphoilipid
KR830000794B1 (en) Process for preparing oil-containing high purity phosphatidylcholine
JPS62120340A (en) Fractionation of high unsaturated fatty acid
JP2793317B2 (en) Method for separating phosphatidylcholine or phosphatidylethanolamine
JPH0311086A (en) Purification of lysolecithin
JPH0439398A (en) Method for fractionating and purifying lipid fraction from hydrophilic organic solvent extract of animal fats and oils
CN110862536B (en) pH-sensitive lipid material and preparation method and application thereof
JPH07252493A (en) Method for separating and purifying docosahexaenoic ester from marine fine algae