JPH01233242A - Hydrogenation of carbon monoxide - Google Patents

Hydrogenation of carbon monoxide

Info

Publication number
JPH01233242A
JPH01233242A JP63058701A JP5870188A JPH01233242A JP H01233242 A JPH01233242 A JP H01233242A JP 63058701 A JP63058701 A JP 63058701A JP 5870188 A JP5870188 A JP 5870188A JP H01233242 A JPH01233242 A JP H01233242A
Authority
JP
Japan
Prior art keywords
catalyst
indium
carbon monoxide
hydrogen
iridium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63058701A
Other languages
Japanese (ja)
Inventor
Satoyuki Inui
智行 乾
Masashi Inoue
正志 井上
Akira Kurusu
来栖 暁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP63058701A priority Critical patent/JPH01233242A/en
Publication of JPH01233242A publication Critical patent/JPH01233242A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain an alcohol useful as fuel for automobiles, etc., in high selectivity and in high yield, by reacting CO with H2 by using an indium carrying catalyst having raised activity of indium catalyst by specific treatment to efficiently carry out hydrogenation of CO. CONSTITUTION:CO is hydrogenated at 200-400 deg.C at GHSV=5,000-50,000/h under 20-300kg/cm<2> in the presence of an indium carrying catalyst such as no indium catalyst supported on alumina or indium composite catalyst supported on alumina treated with CO and H2 or a catalyst obtained by treating a prepared indium carrying catalyst with CO and H2 and hydrogenating to give an alcohol. The indium carrying catalyst is prepared by dissolving a water-soluble indium compound and a compound to be optionally added and to become a promoter component in water, impregnating a carrier such as alumina with the aqueous solution, concentrating, drying in air, thermally decomposing at >=20 deg.C and then reducing with hydrogen.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は一酸化炭素の水素化方法、一酸化炭素からアル
コールを製造する方法およびそれらに用いる触媒の処理
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for hydrogenating carbon monoxide, a method for producing alcohol from carbon monoxide, and a method for treating catalysts used therein.

従来の技術 イリジウム触媒は一般に、極めて低活性メタン化触媒と
考えられてきた(Catal、Rev、 、8.159
(1973)およびJ、Catal、、37.449(
1975)) 、極めて高圧下ではメタノール合成活性
を示すことも知られていたが、パラジウム触媒より10
倍以上低い活性しか示さないU、Catal、、52.
157(1987))。
Prior Art Iridium catalysts have generally been considered very low activity methanation catalysts (Catal, Rev., 8.159).
(1973) and J, Catal, 37.449 (
1975)), was also known to exhibit methanol synthesis activity under extremely high pressure;
U, Catal, which shows more than twice the lower activity, 52.
157 (1987)).

また、本発明者らはアルミナ担持イリジウム複合触媒が
アルコール合成に高い活性を示すことを見出し、報告し
ている。
The present inventors have also discovered and reported that an alumina-supported iridium composite catalyst exhibits high activity in alcohol synthesis.

発明が解決しようとする課題 本発明はイリジウム担持触媒を用いて一酸化炭素を水素
化するに当たって、一酸化炭素の転化率を高めること又
はアルコールの収量を高めることを目的とする。また、
他の目的は一酸化炭素の水素化活性、アルコール生成活
性の高められたイリジウム担持触媒の処理方法を提供す
ることにある。
Problems to be Solved by the Invention The present invention aims to increase the conversion rate of carbon monoxide or the yield of alcohol when hydrogenating carbon monoxide using an iridium-supported catalyst. Also,
Another object of the present invention is to provide a method for treating an iridium-supported catalyst with enhanced carbon monoxide hydrogenation activity and alcohol production activity.

課題を解決するための手段 本発明は一酸化炭素と水素とで反応処理したイリジウム
担持触媒の存在下、一酸化炭素と水素を反応させて一酸
化炭素を水素化する方法又はアルコールを製造する方法
であり、また他の発明は調製されたイリジウム担持触媒
を一酸化炭素と水素とで反応処理したのち、水素還元処
理する一酸化炭素の水素化触媒の処理方法である。
Means for Solving the Problems The present invention provides a method for hydrogenating carbon monoxide or a method for producing alcohol by reacting carbon monoxide and hydrogen in the presence of an iridium-supported catalyst that has been subjected to a reaction treatment with carbon monoxide and hydrogen. Another invention is a method for treating a carbon monoxide hydrogenation catalyst, in which a prepared iridium-supported catalyst is subjected to a reaction treatment with carbon monoxide and hydrogen, and then subjected to a hydrogen reduction treatment.

イリジウム担持触媒はアルミナ等の担体にイリジウム又
は酸化イリジウム等のイリジウム化合物を担持させたも
のであればよく、6族金属又はこの化合物等の助触媒成
分を加えても差支えない。
The iridium-supported catalyst may be one in which iridium or an iridium compound such as iridium oxide is supported on a support such as alumina, and a promoter component such as a group 6 metal or a compound thereof may be added thereto.

助触媒成分としてはモリブデン、バナジウム、クロム、
レニウム、タングステン、ジルコニラふ、マンガン、ラ
ンタン等があり、この序列に従ってアルコール生成活性
が高くなり、例えばモリブデン添加触媒はイリジウム単
元触媒の約300倍の活性示す。更に、助触媒成分は2
以上加えてもよく、アルカリ金属、アルカリ土類金属、
希土類金属の酸化物等の化合物を前記のような助触媒成
分と組み合わせて使用してもよい。イリジウムの担持量
は金属イリジウムとして1〜10%、好ましくは2〜5
%程度が適当である。モリブデン、クロム等を加える場
合はイリジウムの量は上記の範囲が適当であり、モリブ
デン、クロム等は0. 1〜10%の範囲が適当である
。好適な触媒組成を例示すれば、3%Ir/アルミナ、
3%Ir−5%Mo−1,25%Na、O/アルミナ、
3%Ir−0,5%M o /アルミナ等がある。
Co-catalyst components include molybdenum, vanadium, chromium,
There are rhenium, tungsten, zirconium, manganese, lanthanum, etc., and the alcohol production activity increases according to this order. For example, a molybdenum-added catalyst exhibits about 300 times the activity of an iridium monocatalyst. Furthermore, the promoter component is 2
The above may be added, such as alkali metals, alkaline earth metals,
Compounds such as rare earth metal oxides may be used in combination with co-catalyst components as described above. The amount of iridium supported is 1 to 10%, preferably 2 to 5% as metallic iridium.
% is appropriate. When adding molybdenum, chromium, etc., the appropriate amount of iridium is within the above range; for molybdenum, chromium, etc., the amount is 0. A range of 1 to 10% is suitable. Examples of suitable catalyst compositions include 3% Ir/alumina,
3% Ir-5% Mo-1, 25% Na, O/alumina,
Examples include 3% Ir-0.5% Mo/alumina.

イリジウム担持触媒は例えば、次のようにして調製する
ことができる。水溶性のイリジウム化合物および場合に
より添加される助触媒成分となる化合物を水に溶かし、
アルミナ等の担体に含浸させ、濃縮、風乾したのち、2
00℃以上の温度、好ましくは250〜700℃で熱分
解し、次いで水素還元処理を行って触媒とする。水素還
元処理は水素気流中、200〜700℃、好ましくは3
00〜500℃程度で約5分間以上行うことがよい。
The iridium-supported catalyst can be prepared, for example, as follows. A water-soluble iridium compound and a compound added as a co-catalyst component are dissolved in water,
After impregnating a carrier such as alumina, concentrating and air drying, 2
The catalyst is thermally decomposed at a temperature of 00°C or higher, preferably 250 to 700°C, and then subjected to hydrogen reduction treatment to form a catalyst. The hydrogen reduction treatment is carried out at 200-700°C, preferably at 3°C in a hydrogen stream.
It is preferable to carry out the heating at a temperature of about 00 to 500°C for about 5 minutes or more.

調製されたイリジウム担持触媒は一酸化炭素と水素とで
反応処理する6反応処理はこの触媒の存在下、一酸化炭
素と水素とを反応させることをいう、この反応処理では
一酸化炭素の転化率は通常極めて低いが、この反応処理
を繰り返すことによって徐々に高くなり、ついにはパラ
ジウム触媒より高い転化率を示すようになる0反応処理
条件としては、通常の反応条件で差し支えないが200
〜400℃、好ましくは300〜350℃、GH3V=
5000〜50000/h、20〜300Kg/cd、
H,7GO=2前後がよい、なお、最適反応処理条件は
一般に、最高の収量を与える条件であるが、これは触媒
によって異なる。反応処理時間は1時間以上、好ましく
は5時間以上であり、これを1回以上、好ましくは2回
以上行うことがよい、また、1回の反応処理が終わった
ら、次いで上記と同様な水素還元処理を行うことが触媒
の表面状態を良好に保つため好ましい。
The prepared iridium-supported catalyst is subjected to a reaction treatment with carbon monoxide and hydrogen.6 The reaction treatment refers to the reaction of carbon monoxide and hydrogen in the presence of this catalyst.In this reaction treatment, the conversion rate of carbon monoxide is is usually extremely low, but by repeating this reaction treatment it gradually increases until it finally shows a higher conversion rate than the palladium catalyst.200
~400°C, preferably 300-350°C, GH3V=
5000~50000/h, 20~300Kg/cd,
It is preferable that H,7GO=about 2.The optimum reaction treatment conditions are generally those that give the highest yield, but these vary depending on the catalyst. The reaction treatment time is 1 hour or more, preferably 5 hours or more, and this is preferably performed at least once, preferably 2 or more times.Furthermore, after one reaction treatment is completed, hydrogen reduction as described above is then carried out. It is preferable to carry out the treatment in order to maintain a good surface condition of the catalyst.

上記の処理を行った触媒を用いて一酸化炭素と水素を反
応させる。反応条件は上記の反応処理条件と同様な条件
が採用できる。原料の合成ガスの組成をH2/C0=2
前後とすることにより、メタノール等のアルコールの収
量を最大にすることができる。また、反応温度を高くす
るとアルコールの空時収量は増大するが、選択率は低下
する。
Carbon monoxide and hydrogen are reacted using the catalyst treated as described above. The reaction conditions may be similar to the reaction treatment conditions described above. The composition of the raw material synthesis gas is H2/C0=2
The yield of alcohol such as methanol can be maximized by adjusting the amount of alcohol before or after that. Furthermore, when the reaction temperature is raised, the space-time yield of alcohol increases, but the selectivity decreases.

7JL、コールの主成分は通常、メタノールであるが、
触媒、条件を選択することにより、エタノール等の炭素
数の多いアルコールの割合を増加させることができる。
7JL, the main component of coal is usually methanol,
By selecting the catalyst and conditions, the proportion of alcohol with a large number of carbon atoms such as ethanol can be increased.

このような、アルコール混合物は自動車燃料等の用途に
好適である。その他、ジメチルエーテル等の含酸素化合
物1、メタン等の炭化水素を生成させることができる。
Such alcohol mixtures are suitable for applications such as automobile fuels. In addition, oxygen-containing compounds 1 such as dimethyl ether and hydrocarbons such as methane can be produced.

作用 イリジウム触媒を反応処理することにより、新しい活性
点が出現し、これによりルコール生成活性等の活性が向
上すると考えられる。
It is thought that by subjecting the active iridium catalyst to a reaction treatment, new active sites appear, thereby improving activities such as alcohol production activity.

実施例 実施例1 触媒成分を所定量の水(1ml/アルミナ1g)に溶解
したのち、バイヤー法ジブサイトを900℃で焼成して
得たアルミナ担体に含浸させ、60℃水浴上で濃縮、そ
の後室温で風乾させた。
Examples Example 1 After dissolving the catalyst component in a predetermined amount of water (1 ml/1 g of alumina), it was impregnated into an alumina support obtained by baking Bayer method gibbsite at 900°C, concentrated on a 60°C water bath, and then heated to room temperature. It was air-dried.

これを、空気中250℃で10分間熱分解し、水素気流
中、200℃/hで400℃まで界温し、10分間保っ
て還元して触媒を調製した。この条件を標準として熱分
解条件、還元条件等を変えて調製した触媒についても検
討を行った。触媒成分としては、IrCl4 ・Hz 
Oを用いた。
This was thermally decomposed in air at 250°C for 10 minutes, brought to ambient temperature at 200°C/h to 400°C in a hydrogen stream, maintained for 10 minutes, and reduced to prepare a catalyst. Using these conditions as standard, we also investigated catalysts prepared by changing thermal decomposition conditions, reduction conditions, etc. As a catalyst component, IrCl4 Hz
O was used.

固定床加圧流通反応装置を用い、内径7mmのステンレ
ス管にこの触媒を0.3ml充填し、H! /C0=2
.5V=15000/h、86Kg/−の条件で反応を
行った。第1図に温度の昇降プログラムを示す。
Using a fixed bed pressurized flow reactor, 0.3 ml of this catalyst was filled into a stainless steel tube with an inner diameter of 7 mm, and H! /C0=2
.. The reaction was carried out under the conditions of 5V=15000/h and 86Kg/-. Figure 1 shows the temperature increase/decrease program.

表面の還元状態を一定にするため、反応管内で再度水素
還元(40ml/minの水素気流中、200℃/hで
400℃まで昇温し、10分間保持)を行ったのち、室
温まで冷却、チッソ置換後、雰囲気ガスを合成ガスに切
り換え、加圧、10℃/minで230℃まで昇温、定
常に達してから約1時間後にガス状生成物の分析を行っ
た。以後、順次反応温度を上げて分析を繰り返し、最終
的に350℃までの各温度での触媒性能を測定した。
In order to keep the surface reduction state constant, hydrogen reduction was performed again in the reaction tube (heated to 400°C at 200°C/h in a hydrogen flow of 40ml/min and held for 10 minutes), then cooled to room temperature. After replacing the atmosphere with nitrogen, the atmospheric gas was switched to synthesis gas, the temperature was increased to 230°C at a rate of 10°C/min, and the gaseous products were analyzed about 1 hour after reaching steady state. Thereafter, the analysis was repeated by increasing the reaction temperature one after another, and finally the catalyst performance was measured at each temperature up to 350°C.

なお、降温時の250℃でも分析を行った。 上記の反
応処理および水素還元を1サイクルとし、これを1回行
ったのち、250℃で反応を行った。
The analysis was also conducted at 250° C. when the temperature was lowered. The above reaction treatment and hydrogen reduction were performed as one cycle, and after this was performed once, the reaction was performed at 250°C.

なお、分析はガスクロマトグラフィーにより行った。条
件および結果を第1表に示す。
Note that the analysis was performed by gas chromatography. The conditions and results are shown in Table 1.

第1表 *注 STYはアルコールの空時収率 Alc、はアルコールで、大部分(90%以上)がメタ
ノール、D、[!、はジメチルエーテル、 Met、は
メタン、11.c、はメタン以外の炭化水素、C,!+
、はクロロメタン。
Table 1 *Note: STY is the space-time yield of alcohol, Alc, is alcohol, with the majority (90% or more) being methanol, D, [! , is dimethyl ether, Met is methane, 11. c, is a hydrocarbon other than methane, C,! +
, is chloromethane.

実施例2 実施例1と同様にして調製した3%Ir/アルミナ触媒
(Ir源1ra  (co)+z  )および3%Ir
−0,5%Cr/アルミナ触媒(Ir源■r CI4・
Hl O,Cr源CNH4) 2 Crz Ol)につ
いて、同様な反応処理を6又は7サイクル行い、各サイ
クルにおける250℃でのガス状反応生成物の分析を行
った。結果を第2図および第3図に示す。
Example 2 3% Ir/alumina catalyst prepared as in Example 1 (Ir source 1ra(co)+z) and 3% Ir
-0.5% Cr/Alumina catalyst (Ir source ■r CI4・
The same reaction treatment was performed for 6 or 7 cycles for the Hl 2 O, Cr source CNH4) 2 Crz Ol), and the gaseous reaction products at 250° C. in each cycle were analyzed. The results are shown in FIGS. 2 and 3.

なお、比較のためPd/アルミナ触媒(Pd源pdcl
x)を使用した他は同様にして反応した結果は、反応処
理1サイクル後のCO転化率0゜52.5TY26.9
であり、その前の転化率0゜48.5TY22.3に対
し反応処理による向上が殆ど認められなかった。
For comparison, Pd/alumina catalyst (Pd source pdcl
The reaction was carried out in the same manner except for using
As compared to the previous conversion rate of 0°48.5TY22.3, almost no improvement was observed due to the reaction treatment.

発明の効果 本発明によればイリジウム触媒を用いて一酸化炭素の水
素化を効率的に行うことができる。また、アルコールを
生産性よく製造することができる。
Effects of the Invention According to the present invention, carbon monoxide can be efficiently hydrogenated using an iridium catalyst. Moreover, alcohol can be manufactured with high productivity.

さらに、イリジウム触媒の活性を著しく高めることがで
きる。
Furthermore, the activity of the iridium catalyst can be significantly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反応処理の実施例を示す図であり、第2図およ
び第3図は反応処理回数と空時収量の関係を示す図であ
る。 特許出願人 新日鐵化学株式会社 乾 智行
FIG. 1 is a diagram showing an example of reaction treatment, and FIGS. 2 and 3 are diagrams showing the relationship between the number of reaction treatments and space-time yield. Patent applicant: Tomoyuki Inui, Nippon Steel Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1、一酸化炭素と水素とで反応処理したイリジウム担持
触媒の存在下、一酸化炭素と水素を反応させることを特
徴とする一酸化炭素の水素化方法。 2、一酸化炭素と水素とで反応処理したイリジウム担持
触媒を水素還元処理したのち、一酸化炭素と水素を反応
させることを特徴とする一酸化炭素の水素化方法。 3、一酸化炭素と水素とで反応処理したイリジウム担持
触媒の存在下、一酸化炭素と水素を反応させることを特
徴とするアルコールの製造方法。 4、調製されたイリジウム担持触媒を一酸化炭素と水素
とで反応処理したのち、水素還元処理することを特徴と
する一酸化炭素の水素化触媒の処理方法。 5、イリジウム担持触媒がアルミナ担持イリジウム触媒
又はアルミナ担持イリジウム複合触媒である請求項5記
載の処理方法。
[Scope of Claims] 1. A method for hydrogenating carbon monoxide, which comprises reacting carbon monoxide and hydrogen in the presence of an iridium-supported catalyst that has been subjected to a reaction treatment with carbon monoxide and hydrogen. 2. A method for hydrogenating carbon monoxide, which comprises subjecting an iridium-supported catalyst that has been reacted with carbon monoxide and hydrogen to a hydrogen reduction treatment, and then reacting carbon monoxide with hydrogen. 3. A method for producing alcohol, which comprises reacting carbon monoxide and hydrogen in the presence of an iridium-supported catalyst that has been subjected to a reaction treatment with carbon monoxide and hydrogen. 4. A method for treating a carbon monoxide hydrogenation catalyst, which comprises subjecting the prepared iridium-supported catalyst to a reaction treatment with carbon monoxide and hydrogen, and then subjecting it to a hydrogen reduction treatment. 5. The treatment method according to claim 5, wherein the iridium supported catalyst is an alumina supported iridium catalyst or an alumina supported iridium composite catalyst.
JP63058701A 1988-03-12 1988-03-12 Hydrogenation of carbon monoxide Pending JPH01233242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63058701A JPH01233242A (en) 1988-03-12 1988-03-12 Hydrogenation of carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058701A JPH01233242A (en) 1988-03-12 1988-03-12 Hydrogenation of carbon monoxide

Publications (1)

Publication Number Publication Date
JPH01233242A true JPH01233242A (en) 1989-09-19

Family

ID=13091825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058701A Pending JPH01233242A (en) 1988-03-12 1988-03-12 Hydrogenation of carbon monoxide

Country Status (1)

Country Link
JP (1) JPH01233242A (en)

Similar Documents

Publication Publication Date Title
Iwasa et al. Methanol synthesis from CO 2 under atmospheric pressure over supported Pd catalysts
AU592980B2 (en) Alcohols production by hydrogenation of carboxylic acids
Inoue et al. Hydrogenation of carbon dioxide and carbon monoxide over supported rhodium catalysts under 10 bar pressure
JP3010314B2 (en) Hydrocarbon preparation method
Yang et al. Mesoporous bimetallic PdCl2-CuCl2 catalysts for dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol
EP4066938A1 (en) Catalyst for the hydrogenation of co2 to methane at low temperatures
Moggi et al. Ruthenium cluster-derived catalysts for ammonia synthesis
CN114471540A (en) Sub-nano Pt selective hydrogenation catalyst, preparation method and application thereof
US4632774A (en) Process for reforming alcohols
CN107406775B (en) Fischer-tropsch process using a reduction-activated cobalt catalyst
US11981632B2 (en) Process for producing hydrogen, carbon, and ethylene from methane-containing feedstock
Nakagawa et al. Oxidized diamond supported Ni catalyst for synthesis gas formation from methane
JPH01233242A (en) Hydrogenation of carbon monoxide
CA1209804A (en) Methanol conversion process
CN110327923B (en) Biomass sugar alcohol hydrogenolysis catalyst and preparation method and application thereof
Martins et al. The effect of support on methane activation over Pt catalysts in the presence of MoO3
Guerrero-Ruiz et al. Effect of the basic function in Co, MgO/C catalysts on the selective oxidation of methane by carbon dioxide
CN112237926A (en) Metal supported catalyst and preparation method thereof
AU592356B2 (en) Syngas conversion catalyst
US5013764A (en) Catalyst and method for producing lower aliphatic alcohols
Yang et al. Synergistic promotion of CeO2 and La2O3 in Pd/Al2O3 catalysts for methanol decomposition
US11858886B2 (en) Process of selectively hydrogenating gas mixture having high acetylene content
KINTAICHI et al. Hydrogenation of carbon monoxide into C2-oxygenated compounds over silica-supported bimetallic catalyst composed of Ir and Ru
KR20130067011A (en) Method and apparatus for producing methane
KR20120021799A (en) Manganese based catalysts for carbon dioxide reforming of methane, preparing method thereof, and preparing method of syngas using the same