JPH01232968A - Antithrombogenic composite material - Google Patents

Antithrombogenic composite material

Info

Publication number
JPH01232968A
JPH01232968A JP8857387A JP5738788A JPH01232968A JP H01232968 A JPH01232968 A JP H01232968A JP 8857387 A JP8857387 A JP 8857387A JP 5738788 A JP5738788 A JP 5738788A JP H01232968 A JPH01232968 A JP H01232968A
Authority
JP
Japan
Prior art keywords
heparin
hydrogel
solvent
meth
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8857387A
Other languages
Japanese (ja)
Other versions
JP2640114B2 (en
Inventor
Mitsuru Akashi
満 明石
Tokuyuki Miyauchi
宮内 徳之
Eiji Yashima
栄次 八島
Takeshi Miyazaki
剛 宮崎
Takashige Murata
村田 敬重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP63057387A priority Critical patent/JP2640114B2/en
Publication of JPH01232968A publication Critical patent/JPH01232968A/en
Application granted granted Critical
Publication of JP2640114B2 publication Critical patent/JP2640114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To obtain a heparin-containing polymer material, by immobilizing heparin and a salt thereof by electrostatically attracting the same to a hydrogel of every kind to synthesize a fine particle of a heparin supported bydrogel and kneading said fine particle along with a polymer material or dispersing the same in said polymer material using an org. solvent. CONSTITUTION:A heparine-containing dry hydrogel fine particle is dispersed in a polymer material equipped with the characteristics as a medical material such as polyvinyl chloride, segmented polyurethane, a polyurethane- polydimethylsiloxane copolymer or the like by a mechanical processing method such as kneading or the above-mentioned material is dissolved in a proper org. solvent to prepare a high concn. polymer solution. A synthesized fine particulate hydrogel is dispersed therein and the solvent is removed from the resulting dispersion to form a solid solution of heparin to make it possible to prepare an antithrombogenic composite material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、抗血栓性医用高分子材料に関するもので、よ
り詳細には、血液凝固阻害剤であるヘパリンを含有し、
このヘパリンの放出を自在に制御し、必要に応じ長時間
にわたって徐放することができる抗血栓性複合材料に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an antithrombotic medical polymer material, and more specifically, a material containing heparin, which is a blood coagulation inhibitor,
The present invention relates to an antithrombotic composite material that can freely control the release of heparin and can sustainably release it over a long period of time as necessary.

(従来の技術) 従来、医用高分子材料としては、医薬品、医療機器の材
料、衛生材料、歯科材料、あるいは人工臓器などが、医
学あるいは、医療の分野に於いて、広く応用され、その
ために数多くの高分子材料などが用いられてきている。
(Prior art) Conventionally, medical polymer materials have been widely applied in the medical field, such as pharmaceuticals, medical device materials, sanitary materials, dental materials, and artificial organs. Polymer materials such as these have been used.

これらのうちで、医薬品と人工臓器への応用は今後より
一層重要になる分野である。
Among these, applications to pharmaceuticals and artificial organs are areas that will become even more important in the future.

人工臓器は、疾患や外傷等により機能が低下し、あるい
は停止した臓器の補助、あるいは代替臓器として使用し
て、生命の維持を図るという点において非常に重要であ
り、今後とも重要性は増加していくものと思われる。し
かも、これまでの人工腎臓のように血液中の老廃物や毒
物を生体外で透析する型式の人工臓器では、種々の点に
おいて不備があるため、今後機能をより高め、小型軽量
化、携帯化、そして生体内埋込み化を図る必要があり、
ほかの人工臓器においても同様なことが言われている。
Artificial organs are extremely important in maintaining life by supporting organs whose function has decreased or stopped due to disease or trauma, or as substitute organs, and their importance will continue to increase in the future. I think it will go well. Furthermore, existing artificial organs, such as artificial kidneys, which dialyze waste products and poisons in the blood outside the body, have various deficiencies, so in the future, we will need to improve their functionality, make them smaller, lighter, and more portable. , and it is necessary to aim for in-vivo implantation.
Similar things have been said about other artificial organs.

例えば、人工血管のようなものに使用する場合、長期に
わたって生体に反応を起こさずに適合させる必要がある
ばかりでなく、血液を凝固させたり血栓形成が促進され
たりしないような材料(抗血栓性材料)であることが非
常に大切である。
For example, when used in something like an artificial blood vessel, it is not only necessary to be compatible with the living body over a long period of time without causing a reaction, but also to use materials that do not coagulate blood or promote thrombus formation (antithrombotic). material) is very important.

従って、これまでの材料の生体適合の評価法として抗血
栓性が最も重要とされ、抗血栓性材料を作り出す方法と
して、下記のような方法が考え出されている。
Therefore, antithrombotic properties have been considered the most important methods for evaluating the biocompatibility of materials, and the following methods have been devised as methods for producing antithrombotic materials.

1)血液成分との相互作用を弱める。1) Weakens interaction with blood components.

2)血栓形成を阻害する物質を利用する。2) Utilize substances that inhibit thrombus formation.

3)生体自身を利用する。3) Utilize the living body itself.

(発明が解決しようとする課題) これらのうち、1)では例えば、表面エネルギーが低く
不活性表面を持つ高分子(シリコーンゴム、フルオロシ
リコーンゴム及びテフロン)があるが、シリコーンゴム
では加工性や屈折性に冨むものの抗血栓性は完全ではな
い。また、フルオロシリコーンゴムもそれほど抗血栓性
としての効果はない。テフロンは抗凝血性よりも偽内股
法に適しているが、内膜法として使用する際に血栓形成
を防ぎ速やかに内膜形成に持ち込むという点において不
安が残る。次に血液と接している血管の表面には負のζ
ポテンシャルが認られることから、例えばポリウレタン
に活性炭を混入して導電性をよくしたり、正常の血管の
生理条件と同様な微小電流が流れる状態に保つ工夫もな
されているが、抗血栓性の持続性と組織損傷等に欠点が
ある。
(Problems to be Solved by the Invention) Among these, for example, there are polymers (silicone rubber, fluorosilicone rubber, and Teflon) that have low surface energy and inert surfaces, but silicone rubber has problems with processability and refraction. Although it is rich in sex, its antithrombotic properties are not perfect. Also, fluorosilicone rubber does not have much antithrombotic effect. Although Teflon is more suitable for the pseudointernal method than its anticoagulant property, there are concerns that it prevents thrombus formation and promptly leads to intimal formation when used as an intimal method. Next, the surface of blood vessels that are in contact with blood has a negative ζ
Because of this potential, efforts have been made, for example, to improve conductivity by mixing activated carbon into polyurethane, or to maintain a state in which a microcurrent flows similar to the physiological conditions of normal blood vessels, but the antithrombotic properties have not been maintained. There are disadvantages in terms of performance and tissue damage.

また生体適合性には、適当な長さの硬い結晶性セグメン
トと柔らかい屈折性セグメントとを持っているコポリマ
ーが望ましい。そこでポリウレタンとポリジメチルシロ
キサンの共重合体のカルディオサン(Cardioth
ane)やセグメント化ポリウレタンのバイオマー(B
iomer)、TM−3(東洋紡)やポリスチレン−ポ
リヒドロキシエチルメタクリレートのブロック共重合体
等が実用化されているが、器質化が遅れ生体組織と密着
せず剥離する等の欠点がある。
For biocompatibility, copolymers having hard crystalline segments and soft refractive segments of appropriate length are also desirable. Therefore, we developed Cardiothan, a copolymer of polyurethane and polydimethylsiloxane.
ane) and segmented polyurethane biomer (B
iomer), TM-3 (Toyobo Co., Ltd.), and polystyrene-polyhydroxyethyl methacrylate block copolymers have been put into practical use, but they have drawbacks such as slow organization and non-adherence to living tissue, resulting in peeling.

更に高含水率の3次元網目構造を持つヒドロゲルは、優
れた血液適合性を持つが、含水率やゲルの網目の大きさ
等によって血液適合性に影響が生じやす(、合成上の条
件や再現性に問題がある。
Furthermore, hydrogels with a three-dimensional network structure with a high water content have excellent blood compatibility, but blood compatibility is likely to be affected by the water content, gel mesh size, etc. (due to synthesis conditions and reproducibility). I have a sexual problem.

2)では、血液凝固阻害作用を持つ物質であるヘパリン
を、共有結合によりポリマー表面に固定したものがある
。しかしながら、ヘパリンは多くの有機溶剤に溶けない
ため反応条件に制約があること、ヘパリンの水酸基が多
価のため反応が複雑であること、結合したヘパリン量が
少ないこと、結合したヘパリンのコンフォーメーション
の変化のため失活しやすい等の欠点が挙げられる。
In 2), heparin, a substance that inhibits blood coagulation, is immobilized on the polymer surface through covalent bonds. However, heparin is insoluble in many organic solvents, so there are restrictions on the reaction conditions, the reaction is complicated because the hydroxyl group of heparin is polyvalent, the amount of bound heparin is small, and the conformation of bound heparin is limited. Disadvantages include easy deactivation due to changes.

3)では、体内にエキスパンデッドテフロン(expa
nded teflon)といった人工材料を埋め込み
、速やかに、フィブリンを表面に沈着し、その上に繊維
芽細胞や内皮細胞によって表面を被覆しているが、表面
から内皮組織が剥離したり、器質化が遅れるという欠点
が生じる。
3) Expanded Teflon (expa) is placed inside the body.
An artificial material such as fused teflon is implanted, and fibrin is quickly deposited on the surface, which is then covered with fibroblasts and endothelial cells, but the endothelial tissue may detach from the surface or the organization may be delayed. There is a drawback.

本発明の目的は、ヘパリンの放出時間を自在に制御でき
、必要に応じ長期にわたり徐放することが可能で、かつ
実用強度を有する抗血栓性複合材料を提供することであ
る。
An object of the present invention is to provide an antithrombotic composite material that can freely control the release time of heparin, can perform sustained release over a long period of time if necessary, and has practical strength.

(課題を解決するための手段) 本発明によれば、ヘパリン及びその塩から成る群から選
ばれた1種以上を含有するヒドロゲルを分散させた高分
子材料からなる抗血栓性複合材料が提供される。
(Means for Solving the Problems) According to the present invention, there is provided an antithrombotic composite material made of a polymeric material in which a hydrogel containing one or more selected from the group consisting of heparin and its salts is dispersed. Ru.

以下、本発明につき更に詳細に説明する。The present invention will be explained in more detail below.

本発明に用いるヘパリンは、市販のヘパリンを使用する
ことができ、また、その塩としては、例えばナトリウム
塩又はカリウム塩等を好ましく挙げることができる。
Commercially available heparin can be used as the heparin used in the present invention, and preferred examples of the salt include sodium salt or potassium salt.

本発明に用いるヒドロゲル成分としては、例えば、親水
性官能基を有するモノマー、アミド基を有するモノマー
、水酸基を有するモノマー又はカルボキシル基を有する
モノマー等から合成されたポリマー、その他の物質を好
ましく挙げることができる。
Preferred examples of the hydrogel component used in the present invention include polymers synthesized from monomers having a hydrophilic functional group, monomers having an amide group, monomers having a hydroxyl group, or monomers having a carboxyl group, and other substances. can.

前記ヒドロゲル成分として更に詳しくは、例えば、(メ
タ)アクリルアミド((メタ)アクリルはメタクリル及
びアクリルを示す)、N、N−ジメチル(メタ)アクリ
ルアミド、N、N−ジエチル(メタ)アクリルアミド、
N、N−ジプロピル(メタ)アクリルアミド、N、N−
ジプチル(メタ)アクリルアミド、N、N−ジメチルア
ミノエチル(メタ)アクリレート、N、N−ジエチルア
ミノエチル(メタ)アクリレート、N、N−ジプロピル
アミノエチル(メタ)アクリレート、N。
More specifically, the hydrogel components include, for example, (meth)acrylamide ((meth)acrylic refers to methacryl and acrylic), N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide,
N,N-dipropyl(meth)acrylamide, N,N-
Diptyl (meth)acrylamide, N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-dipropylaminoethyl (meth)acrylate, N.

N−ジメチルアミノプロピル(メタ)アクリルアミド、
N、N−ジエチルアミノプロピル(メタ)アクリルアミ
ド、N、N−ジプロピルアミノプロビル(メタ)アクリ
ルアミド、N−エチル(メタ)アクリルアミド、N−プ
ロピル(メタ)アクリルアミド、(メタ)アクリロイル
モルホリン、2−ヒドロキシエチル(メタ)アクリレー
ト、2−ヒドロキシプロピル(メタ)アクリレート、3
−ヒドロキシプロピル(メタ)アクリレート、(メタ)
アクリル酸、p−安息香酸ビニル、N−ビニルピロリド
ン、p−アミノスチレン、p−N−メチルアミノスチレ
ン、p−N、N−ジメチルアミノスチレン、p−N、N
−ジエチルアミノスチレン、p−N、N−ジメチルアミ
ノメチルスチレン、p−N、N−ジメチルアミノエチル
スチレン、p−N、 N−ジエチルアミノメチルスチレ
ン、p−N。
N-dimethylaminopropyl (meth)acrylamide,
N,N-diethylaminopropyl (meth)acrylamide, N,N-dipropylaminopropyl (meth)acrylamide, N-ethyl (meth)acrylamide, N-propyl (meth)acrylamide, (meth)acryloylmorpholine, 2-hydroxy Ethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3
-Hydroxypropyl (meth)acrylate, (meth)
Acrylic acid, p-vinyl benzoate, N-vinylpyrrolidone, p-aminostyrene, p-N-methylaminostyrene, p-N, N-dimethylaminostyrene, p-N, N
-diethylaminostyrene, p-N, N-dimethylaminomethylstyrene, p-N, N-dimethylaminoethylstyrene, p-N, N-diethylaminomethylstyrene, p-N.

N−ジメチルアミノエチルスチレン、p−N、N−ジメ
チルアミノプロピルスチレン、p−スルホン酸スチレン
、p−スルホン酸メチルスチレン等のモノマーを、ビス
アクリルアミド等の架橋剤を用いたラジカル共重合によ
って得られる親水性コポリマーが挙げられる。
Obtained by radical copolymerization of monomers such as N-dimethylaminoethylstyrene, p-N, N-dimethylaminopropylstyrene, p-styrene sulfonate, and p-methylstyrene sulfonate using a crosslinking agent such as bisacrylamide. Hydrophilic copolymers may be mentioned.

またポリビニルアルコールや、天然由来の物質であるデ
ンプン、コンニャク粉、カラジーナン等のヒドロゲルも
挙げられる。
Other hydrogels include polyvinyl alcohol and naturally derived substances such as starch, konjac powder, and carrageenan.

通常のヒドロゲルの合成方法としては、例えば、ラジカ
ル重合、カチオン重合、アニオン重合、レドックス重合
等が挙げられる。しかしながら、通常のラジカル重合で
は重合温度が高く、ヘパリンが失活するおそれがあるの
で、低温にてラジカル重合を行うことが好ましく、また
特に好ましくはレドックス重合法にてヒドロゲルを合成
することが望ましい。レドックス開始剤としては、例え
ば、過硫酸カリウム、過硫酸カリウム−NaHSOz、
H2O2−Fe”、uzot−チオオキザル酸、KMn
O4−シュウ酸、NaCl0z  NaHSOz過硫酸
アンモニウム−N、N。
Examples of common hydrogel synthesis methods include radical polymerization, cationic polymerization, anionic polymerization, and redox polymerization. However, in normal radical polymerization, the polymerization temperature is high and heparin may be deactivated, so it is preferable to carry out radical polymerization at a low temperature, and it is particularly preferable to synthesize the hydrogel by redox polymerization. Examples of the redox initiator include potassium persulfate, potassium persulfate-NaHSOz,
H2O2-Fe”, uzot-thioxalic acid, KMn
O4-oxalic acid, NaCl0z NaHSOz ammonium persulfate-N,N.

N’、N’−テトラメチレンジアミン等を挙げることが
できる。
N',N'-tetramethylenediamine and the like can be mentioned.

本発明に用いられるヒドロゲルを分散させるための高分
子材料としては疎水性物質があり、例えば、ポリ塩化ビ
ニル、ポリスチレン、ポリエチレン、ポリプロピレン、
ポリカーボネート、ポリシロキサン、ポリウレタン、ポ
リアクリロニトリル、ポリフルオロカーボン、ポリエス
テル、ポリエーテル、ポリ (メタ)アクリレート、及
びスチレン−アクリロニトリ共重合体、スチレン−メタ
クリル酸メチル共重合体等の種々の共重合体や合成天然
ゴム類等が例示できる。薫た本発明に用いられる高分子
材料として親水/疎水層分離構造を有する物質があり、
例えば、その親水部分として、ポリエーテル、ポリアク
リルアミド、ヒドロキシエチル(メタ)アクリレート、
ポリ−N−メチル−2−ピロリドン、ポリ−N−ビニル
ピリジン等の親水性高分子及びそのマクロモノマー類、
また疎水性部分としてはポリオレフィン類、及び種々の
共重合性高分子やそのマクロマーならびにポリアミド、
ポリイミド、ポリエーテル、ポリエステル、ポリスルホ
ン等の縮合性高分子や、そのマクロマー、さらには合成
又は天然ゴム類等が例示できる。
Examples of the polymer material for dispersing the hydrogel used in the present invention include hydrophobic substances, such as polyvinyl chloride, polystyrene, polyethylene, polypropylene,
Polycarbonate, polysiloxane, polyurethane, polyacrylonitrile, polyfluorocarbon, polyester, polyether, poly(meth)acrylate, and various copolymers such as styrene-acrylonitrile copolymer, styrene-methyl methacrylate copolymer, and synthetic natural Rubbers etc. can be exemplified. There is a substance having a hydrophilic/hydrophobic layer separation structure as a polymer material used in the present invention.
For example, as its hydrophilic moiety, polyether, polyacrylamide, hydroxyethyl (meth)acrylate,
Hydrophilic polymers such as poly-N-methyl-2-pyrrolidone and poly-N-vinylpyridine and their macromonomers,
In addition, as hydrophobic parts, polyolefins, various copolymerizable polymers and their macromers, polyamides,
Examples include condensing polymers such as polyimide, polyether, polyester, and polysulfone, macromers thereof, and synthetic or natural rubbers.

本発明のヘパリンを含有するヒドロゲルの製造法は、例
えば前記レドックス重合開始剤等と、ヘパリン及びその
塩のうち1種以上を含んだ水溶液に、水溶性上ツマ−及
び水溶性多官能性モノマーを加えて、水冷下にてラジカ
ル重合を行い、ヒドロゲルを合成することが望ましい。
The method for producing a hydrogel containing heparin of the present invention includes, for example, adding a water-soluble polymer and a water-soluble polyfunctional monomer to an aqueous solution containing the redox polymerization initiator, etc., and one or more of heparin and its salts. In addition, it is desirable to perform radical polymerization under water cooling to synthesize a hydrogel.

前記ヒドロゲル中へのヘパリンの含有量は0.1〜30
重量%、特に1〜10重量%が好ましい。0.1重量%
未満ではヘパリンが少なすぎて抗血栓性が得られず、ま
た30重量%を超える量のヘパリンを含有させることは
技術的に困難であるばかりでなく、ヘパリンの徐放量が
多くなり過ぎるので好ましくない。
The content of heparin in the hydrogel is 0.1 to 30
% by weight, especially 1 to 10% by weight is preferred. 0.1% by weight
If it is less than 30% by weight, the heparin content is too small and antithrombotic properties cannot be obtained, and it is not only technically difficult to contain heparin in an amount exceeding 30% by weight, but also the sustained release amount of heparin becomes too large, which is not preferable. .

この様にして得られたヘパリン含有ヒドロゲルを凍結乾
燥した後、低温で機械的に粉砕を行う等の方法により乾
燥微粒子を得るか、前述のレドックス重合開始剤とヘパ
リン含有水溶液に水溶性上ツマ−及び水溶性多官能性モ
ノマーを加え、さらにベンゼン、トルエン、ヘキサン、
石油エーテル等の水に不溶性の有機溶媒とアラセルCの
ような界面活性剤を加えて、超音波等の処理を行って、
逆相懸濁系を作り、これを氷冷下でラジカル重合させ、
微粒子状のヘパリン含有ヒドロゲルを合成し、次に凍結
乾燥を行い乾燥微粒子を得る方法がある。
After freeze-drying the heparin-containing hydrogel obtained in this way, dry fine particles can be obtained by a method such as mechanically pulverizing at a low temperature, or a water-soluble polymer can be added to the above-mentioned redox polymerization initiator and heparin-containing aqueous solution. and water-soluble polyfunctional monomers, and further benzene, toluene, hexane,
By adding an insoluble organic solvent such as petroleum ether and a surfactant such as Aracel C to water, and performing treatment such as ultrasonication,
Create a reverse phase suspension system and radically polymerize it under ice cooling.
There is a method of synthesizing a heparin-containing hydrogel in the form of fine particles and then freeze-drying it to obtain dry fine particles.

これらの方法によって合成されたヘパリン含有乾燥ヒド
ロゲル微粒子をポリ塩化ビニル、セグメント化ポリウレ
タン(ポリエーテル型ポリウレタン)、ポリウレタン−
ポリジメチルシロキサン共重合体等の医用材料としての
特質を備えた高分子材料に混練等の機械的加工方法によ
り分散させるか、あるいは上記材料を適当な有機溶媒に
溶解して高濃度の高分子溶液とし、これに前述の方法で
合成した微粒子化ヒドロゲルを分散させた後、脱溶媒を
行ってヘパリンの固定化を行い、抗血栓性複合材料とす
ることができる。
Heparin-containing dry hydrogel fine particles synthesized by these methods are combined with polyvinyl chloride, segmented polyurethane (polyether type polyurethane), and polyurethane.
A highly concentrated polymer solution can be obtained by dispersing a polymer material with properties suitable for medical use, such as a polydimethylsiloxane copolymer, using a mechanical processing method such as kneading, or by dissolving the above material in an appropriate organic solvent. After dispersing the micronized hydrogel synthesized by the method described above in this, the solvent is removed to immobilize heparin, thereby making it possible to obtain an antithrombotic composite material.

また従来から抗血栓性複合材料としては不適とされてき
た一般的な高分子材料、例えばポリスチレン、ポリアク
リロニトリル、ポリ (メタ)アクリレート類、ポリビ
ニルエステル類、スチレン−アクリロニトリル共重合体
、スチレン−ブタジェン共重合体、スチレン−(メタ)
アクリレート共重合体、スチレン−アクリロニトリル−
ブタジェン共重合体等の高分子、あるいはポリエチレン
、ポリプロピレン、ポリブテン等のポリオレフィン類や
、ポリテトラフルオロエチレン、その他にポリカーボネ
ート類、ポリアミドあるいはポリイミド類、ポリスルホ
ン類等に対しても、前述のヘパリン担持ヒドロゲルの乾
燥微粒子を混練等によって分散させるか、あるいは上記
高分子を適当な有機溶媒を高濃度高分子とし、これに微
粒子を分散させた後、脱溶媒を行うと、ヘパリン担持ヒ
ドロゲル含有高分子が得られ、抗血栓性複合材料とする
ことができる。
In addition, common polymer materials that have traditionally been considered unsuitable as antithrombotic composite materials, such as polystyrene, polyacrylonitrile, poly(meth)acrylates, polyvinyl esters, styrene-acrylonitrile copolymers, and styrene-butadiene copolymers, are also used. Polymer, styrene (meth)
Acrylate copolymer, styrene-acrylonitrile
The above-mentioned heparin-supported hydrogel can be used against polymers such as butadiene copolymers, polyolefins such as polyethylene, polypropylene, and polybutene, polytetrafluoroethylene, polycarbonates, polyamides, polyimides, polysulfones, etc. A heparin-supported hydrogel-containing polymer can be obtained by dispersing dry fine particles by kneading or the like, or by dispersing the fine particles in a high-concentration polymer in a suitable organic solvent, and then removing the solvent. , an antithrombotic composite material.

(発明の効果) 本発明の抗血栓性複合材料は、抗血栓性を発現させるの
に優れた物質であるヘパリン及び/又はその塩を、例え
ば各種のヒドロゲルに静電的に吸着させて固定化を行い
、ヘパリン担持ヒドロゲルの微粒子を合成し、この微粒
子を種々の高分子材料に混練あるいは有機溶媒等を用い
て分散させたので、ヘパリン含有の高分子複合材料を得
ることが可能となった。
(Effects of the Invention) The antithrombotic composite material of the present invention immobilizes heparin and/or its salts, which are excellent substances for expressing antithrombotic properties, by electrostatically adsorbing them onto various hydrogels, for example. By doing this, we synthesized microparticles of heparin-supported hydrogel, and then kneaded these microparticles into various polymeric materials or dispersed them using an organic solvent, etc., making it possible to obtain a heparin-containing polymeric composite material.

しかもヒドロゲルの選択、含有させるヘパリンの量、さ
らには分散させるヘパリン担持ヒドロゲル微粒子の分散
量等によって、材料からのヘパリンの徐放を長時間にわ
たって自由に制御することも可能で、これらの条件を目
的に応じて選択することができる。またこれまで機械的
強度や物理・化学的安定、加工性等の点に優れているに
も関わらず、生体適合性に欠けている理由で用いられる
ことがなかった各種の高分子材料に抗血栓性を付与し、
物性の優れた抗血栓性複合材料として使用することが可
能となった。
Moreover, it is possible to freely control the sustained release of heparin from the material over a long period of time by selecting the hydrogel, the amount of heparin it contains, and the amount of heparin-supported hydrogel particles dispersed, etc. You can choose according to your needs. In addition, various polymeric materials that have antithrombotic properties have not been used due to lack of biocompatibility despite their excellent mechanical strength, physical and chemical stability, and processability. give gender,
It has become possible to use it as an antithrombotic composite material with excellent physical properties.

(実施例) 以下、実施例に基づき本発明を具体的に説明するが、本
発明はこれらに限定されるものではない。
(Examples) Hereinafter, the present invention will be specifically described based on Examples, but the present invention is not limited thereto.

実施例1 内容量100−のガラス性アンプルに50艷の1%アラ
セルC−ベンゼン溶液をとり、30分間10〜15℃で
窒素置換を続け、一方で、アクリルアミド9.95ミリ
モル、N、N’  −メチレンビスアクリルアミド0.
05 ミリモル、4.5g/lのヘパリンナトリウム塩
(Kodak社製)を含む1/15モルリン酸緩衝液(
pH7,0)  5 yd、過硫酸アンモニウム0.0
1ミリモルを混合し、水冷下で、0.01ミリモルのN
Example 1 Fifty volumes of 1% Aracel C-benzene solution was placed in a glass ampoule with an internal capacity of 100 mm, and nitrogen substitution was continued at 10 to 15 °C for 30 minutes, while 9.95 mmol of acrylamide, N, N' -Methylenebisacrylamide 0.
05 mmol, 1/15 molar phosphate buffer containing 4.5 g/l heparin sodium salt (manufactured by Kodak) (
pH7.0) 5 yd, ammonium persulfate 0.0
1 mmol of N and 0.01 mmol of N under water cooling.
.

N、N’、N’−テトラメチレンジアミンをすばや(加
えた後、直ちに上記のベンゼン中に注ぎ込み、2分間超
音波照射を行う。これを徐々に室温に戻しながら窒素気
流下で30分攪拌して重合を行い、約10分間静置し、
上澄みのベンゼンを精製ベンゼンで十分に置換した。
After adding N,N',N'-tetramethylenediamine, immediately pour it into the above benzene and irradiate it with ultrasonic waves for 2 minutes.While gradually returning it to room temperature, stir it for 30 minutes under a nitrogen stream. Polymerization was performed using
The benzene in the supernatant was sufficiently replaced with purified benzene.

次に、得られたアクリルアミドビーズ/ベンゼン分散溶
液を液体窒素中で凍結させ、減圧上乾燥させ、微粒子状
のアクリルアミド系ヒドロゲルを得た。次にアクリルア
ミド系のヘパリン含有ヒドロゲル微粒子0.05 gを
10重量%のポリ塩化ビニル−テトラハイドロフラン溶
液9.5g中に均一に分散させ、ガラス製フラットシャ
ーレに流し込み、溶媒を蒸発させてヘパリン担持ヒドロ
ゲル含有、ポリ塩化ビニルフィルムを作製した。このフ
ィルムを一定量とり、生理食塩水を4〇−加え、フロー
インジェクション装置のライン上で試料の上澄み液を約
20μ!採取し、これと0.16%セチルピリジウムク
ロリドを含む0.64モルNaC1溶液30μlとを混
合し、生成するヘパリン−セチルビリジウムクロリド錯
体の濁り度をフローセルを備えた吸光光度針で測定し、
あらかじめ作成した検量線を用いてヘパリン濃度に換算
し、ヘパリンの放出量を決定した。
Next, the obtained acrylamide bead/benzene dispersion solution was frozen in liquid nitrogen and dried under reduced pressure to obtain a particulate acrylamide hydrogel. Next, 0.05 g of acrylamide-based heparin-containing hydrogel particles were uniformly dispersed in 9.5 g of a 10% by weight polyvinyl chloride-tetrahydrofuran solution, poured into a glass flat Petri dish, and the solvent was evaporated to support heparin. A hydrogel-containing polyvinyl chloride film was prepared. Take a certain amount of this film, add 40 μm of physiological saline, and add about 20 μm of the supernatant liquid of the sample on the line of the flow injection device. This was collected and mixed with 30 μl of a 0.64 M NaCl solution containing 0.16% cetylpyridium chloride, and the turbidity of the resulting heparin-cetylpyridium chloride complex was measured using an absorbance needle equipped with a flow cell. ,
The amount of heparin released was determined by converting it into a heparin concentration using a calibration curve prepared in advance.

その結果を第1図に示す。図において、Oはアクリルア
ミド系ヒドロゲル含量が5重量%、△はアクリルアミド
系ヒドロゲル含量が20重量%を示す。図から、ポリ塩
化ビニルからヘパリンが長時間徐放されることがわかる
The results are shown in FIG. In the figure, O indicates an acrylamide hydrogel content of 5% by weight, and Δ indicates an acrylamide hydrogel content of 20% by weight. The figure shows that heparin is sustainedly released from polyvinyl chloride over a long period of time.

実施例2 実施例1と同様の方法にて得られたヘパリンナトリウム
塩を含有するアクリルアミド系ヒドロゲル粒子を用いて
、このヒドロゲルを20重量%含有するように分散させ
て実施例1と同様にポリ塩化ビニルフィルムを作成して
、ヘパリンの徐放性を測定した。その結果を第1図に示
した。
Example 2 Using acrylamide hydrogel particles containing heparin sodium salt obtained in the same manner as in Example 1, this hydrogel was dispersed to contain 20% by weight and polychlorinated in the same manner as in Example 1. A vinyl film was prepared and the sustained release properties of heparin were measured. The results are shown in Figure 1.

実施例3 アクリルアミドの代わりに2−ヒドロキシエチルメタク
リレート9ミリモルを用いた他は、実施例1と同様のの
方法により行い、2−ヒドロキシエチルメタクリレート
系のヘパリン含有ヒドロゲル微粒子0.1gを合成し、
さらにこの2−ヒドロキシエチルメタクリレート系のヒ
ドロゲル0.1gをポリ塩化ビニルに分散させて溶媒を
蒸発させ複合フィルムを作製し、ヘパリンの徐放量を同
装置を用いて24時間後の値について算出した。結果を
第1表にまとめた。
Example 3 The same method as in Example 1 was used except that 9 mmol of 2-hydroxyethyl methacrylate was used instead of acrylamide, and 0.1 g of 2-hydroxyethyl methacrylate-based heparin-containing hydrogel particles were synthesized.
Further, 0.1 g of this 2-hydroxyethyl methacrylate-based hydrogel was dispersed in polyvinyl chloride, the solvent was evaporated, a composite film was prepared, and the sustained release amount of heparin was calculated after 24 hours using the same device. The results are summarized in Table 1.

実施例4 アクリルアミドの代わりにアクリル酸9ミリモルを用い
た他は実施例1と同様の方法により、アクリル酸系のヘ
パリン含有ヒドロゲル微粒子を合成した。次に、ポリメ
チルメタクリレートの10重量%のベンゼン溶液に上記
微粒子0.1gを分散させた後、溶媒を蒸発させてポリ
メチルメタクリレート複合フィルムを作製し、実施例3
と同様に24時間後の徐放されたヘパリンを求めた。結
果を第1表にまとめた。
Example 4 Acrylic acid-based heparin-containing hydrogel fine particles were synthesized in the same manner as in Example 1 except that 9 mmol of acrylic acid was used instead of acrylamide. Next, after dispersing 0.1 g of the above fine particles in a 10% by weight benzene solution of polymethyl methacrylate, the solvent was evaporated to prepare a polymethyl methacrylate composite film.
In the same manner as above, sustained release heparin after 24 hours was determined. The results are summarized in Table 1.

実施例5 アクリルアミドの代わりにN−ビニルピロ+J l’ノ
ン5ミモルを用いた他は実施例1と同様の方法により、
N−ビニルピロリドン系のヘパリン含有ヒドロゲル微粒
子を合成した。次に、ポリスチレンの15重量%のベン
ゼン溶液に微粒子0.1gを分散させ、溶媒を蒸発させ
てポリスチレンのフィルムを作製した。以下実施例3と
同様に行った。結果を第1表にまとめた。
Example 5 In the same manner as in Example 1, except that 5 mmol of N-vinylpyro+Jl'non was used instead of acrylamide,
N-vinylpyrrolidone-based heparin-containing hydrogel particles were synthesized. Next, 0.1 g of fine particles were dispersed in a 15% by weight polystyrene solution in benzene, and the solvent was evaporated to produce a polystyrene film. The following steps were carried out in the same manner as in Example 3. The results are summarized in Table 1.

実施例6 アクリルアミドの代わりにポリビニルアルコール0.4
0gを用いた他は実施例1と同様の方法により、ポリビ
ニルアルコール系のヒドロゲルを合成し、このヒドロゲ
ル0.1gを20重量%のポリ4−メチルペンテンのシ
クロヘキサノン溶液に分散させた後、溶媒を蒸発させて
ポリ4−メチルペンテンのフィルムをつくり、ヘパリン
の徐放性を測定した。結果を第1表にまとめた。
Example 6 Polyvinyl alcohol 0.4 instead of acrylamide
A polyvinyl alcohol-based hydrogel was synthesized in the same manner as in Example 1, except that 0.0 g of polyvinyl alcohol was used. After dispersing 0.1 g of this hydrogel in a 20% by weight solution of poly-4-methylpentene in cyclohexanone, the solvent was removed. A film of poly4-methylpentene was made by evaporation, and the sustained release of heparin was measured. The results are summarized in Table 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1及び実施例2で得た複合材料からのヘ
パリンの徐装置を示す図である。これは、15mgのフ
ィルムからのヘパリンの徐放挙動(蒸留水中、37℃)
について検討した結果を示す図である。 第1図 時間(B号藺)
FIG. 1 is a diagram showing a device for removing heparin from the composite materials obtained in Examples 1 and 2. This shows the sustained release behavior of heparin from 15 mg of film (in distilled water at 37°C).
It is a figure showing the result of examination about. Figure 1 Time (No. B)

Claims (1)

【特許請求の範囲】[Claims] (1)ヘパリン及びその塩から成る群から選ばれた1種
以上を含有するヒドロゲルを分散させた高分子材料から
なる抗血栓性複合材料。
(1) An antithrombotic composite material made of a polymer material in which a hydrogel containing one or more selected from the group consisting of heparin and its salts is dispersed.
JP63057387A 1988-03-12 1988-03-12 Antithrombotic composite material Expired - Lifetime JP2640114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63057387A JP2640114B2 (en) 1988-03-12 1988-03-12 Antithrombotic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63057387A JP2640114B2 (en) 1988-03-12 1988-03-12 Antithrombotic composite material

Publications (2)

Publication Number Publication Date
JPH01232968A true JPH01232968A (en) 1989-09-18
JP2640114B2 JP2640114B2 (en) 1997-08-13

Family

ID=13054202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63057387A Expired - Lifetime JP2640114B2 (en) 1988-03-12 1988-03-12 Antithrombotic composite material

Country Status (1)

Country Link
JP (1) JP2640114B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945457A (en) * 1997-10-01 1999-08-31 A.V. Topchiev Institute Of Petrochemical Synthesis, Russian Academy Of Science Process for preparing biologically compatible polymers and their use in medical devices
CN113952508A (en) * 2021-09-13 2022-01-21 广东省科学院健康医学研究所 Macroporous hydrogel and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166543U (en) * 1982-04-30 1983-11-07 日本電気ホームエレクトロニクス株式会社 film feeder
JPS5910360A (en) * 1982-07-07 1984-01-19 Toppan Printing Co Ltd Coating device of adhesive agent
JPS60179168A (en) * 1984-01-27 1985-09-13 ザ・ウイギンズ・テイープ・グループ・リミテツド Paper coating method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166543U (en) * 1982-04-30 1983-11-07 日本電気ホームエレクトロニクス株式会社 film feeder
JPS5910360A (en) * 1982-07-07 1984-01-19 Toppan Printing Co Ltd Coating device of adhesive agent
JPS60179168A (en) * 1984-01-27 1985-09-13 ザ・ウイギンズ・テイープ・グループ・リミテツド Paper coating method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945457A (en) * 1997-10-01 1999-08-31 A.V. Topchiev Institute Of Petrochemical Synthesis, Russian Academy Of Science Process for preparing biologically compatible polymers and their use in medical devices
CN113952508A (en) * 2021-09-13 2022-01-21 广东省科学院健康医学研究所 Macroporous hydrogel and preparation method and application thereof

Also Published As

Publication number Publication date
JP2640114B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
Kikuchi et al. Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs
Ratner et al. Synthetic hydrogels for biomedical applications
US3826678A (en) Method for preparation of biocompatible and biofunctional materials and product thereof
Engberg et al. Protein diffusion in photopolymerized poly (ethylene glycol) hydrogel networks
Mishra et al. Preparation, properties and application of hydrogels: a review
JPH04152952A (en) Organism-compatible medical material
CA2531687C (en) Thermosensitive polymers for therapeutic use and methods of preparation
Refojo et al. Poly (methyl acrylate‐co‐hydroxyethyl acrylate) hydrogel implant material of strength and softness
Zhao et al. Synthesis of macroporous thermosensitive hydrogels: A novel method of controlling pore size
JPS5823410B2 (en) Hydrogel Youkizai
Iemma et al. Synthesis and release profile analysis of thermo-sensitive albumin hydrogels
JPH01232968A (en) Antithrombogenic composite material
CN111748053A (en) Preparation method and application of anticoagulant copolymer
JP2577245B2 (en) Antithrombotic composite material
Bayramoğlu et al. A novel pH sensitive porous membrane carrier for various biomedical applications based on pHEMA/chitosan: Preparation and its drug release characteristics
JPH0311787B2 (en)
CN113413483B (en) Adhesive-non-adhesive integrated hydrogel, preparation method thereof and application thereof in wound repair
Bajpai et al. Designing of macroporous biocompatible cryogels of PVA–haemoglobin and their water sorption study
JP7312030B2 (en) blood treatment beads
Bajpai et al. Evaluation of water sorption property and in vitro blood compatibility of poly (2-hydroxyethyl methacrylate)(PHEMA) based semi interpenetrating polymer networks (IPNs)
JPH0333340B2 (en)
Thimma Reddy et al. Synthesis and characterization of semi‐interpenetrating polymer networks based on polyurethane and N‐isopropylacrylamide for wound dressing
JP2004298223A (en) Biocompatible material
JPH08723A (en) Blood compatible medical material
Horák Application of poly (2-hydroxyethylmethacrylate) in medicine