JPH01232323A - Light guide type modulator - Google Patents

Light guide type modulator

Info

Publication number
JPH01232323A
JPH01232323A JP5885088A JP5885088A JPH01232323A JP H01232323 A JPH01232323 A JP H01232323A JP 5885088 A JP5885088 A JP 5885088A JP 5885088 A JP5885088 A JP 5885088A JP H01232323 A JPH01232323 A JP H01232323A
Authority
JP
Japan
Prior art keywords
electrode
space
substrate
refractive index
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5885088A
Other languages
Japanese (ja)
Other versions
JP2663486B2 (en
Inventor
Minoru Kiyono
實 清野
Naoyuki Megata
直之 女鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63058850A priority Critical patent/JP2663486B2/en
Publication of JPH01232323A publication Critical patent/JPH01232323A/en
Application granted granted Critical
Publication of JP2663486B2 publication Critical patent/JP2663486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure

Abstract

PURPOSE:To widen the modulation band of the modulator by a simple process by forming a space part near the outside of an electrode for signals along the longitudinal direction thereof. CONSTITUTION:An earth electrode 3b and the electrode 3a for signals are formed via a buffer layer 4 on a lithium niobate substrate 11 on which light guides 2 are formed. The space part 11a is provided near the outside of the electrode 3a for signals along the longitudinal direction thereof. An air layer of a small dielectric constant is, therefore, provided by this space and the effective refractive index of the microwaves propagating in the electrode 3a is lowered by as much as the space part 11a and is approximated to the refractive index of the light waves propagating in the light guides 2. As a result, the speed difference between the light waves and the microwaves is decreased and the modulation speed is increased. The modulation band is thus widened by using the simple production process.

Description

【発明の詳細な説明】 〔概 要〕 光通信システム等に利用される導波路型光変調器に関し
、 簡単な製造プロセスを用いて、変調帯域の広帯域化を実
現できることを目的とし、 導波路の形成されたリチウムナイオベート基板上に、該
導波路に対応して進行波電極を設けてなる導波路型光変
調器において、信号用電極の外側近傍に溝を設けるよう
に硝酸する。
[Detailed Description of the Invention] [Summary] With regard to waveguide type optical modulators used in optical communication systems, etc., the present invention aims to achieve a wide modulation band using a simple manufacturing process. In a waveguide type optical modulator in which a traveling wave electrode is provided on the formed lithium niobate substrate in correspondence with the waveguide, nitric acid is applied so as to form a groove near the outside of the signal electrode.

〔産業上の利用分野〕[Industrial application field]

不発明は、光通信システム等に利用される導波路型光変
調器に関する。
The present invention relates to a waveguide type optical modulator used in optical communication systems and the like.

近年、数G b / s以上の変調速度を持つ光通信シ
ステムが活発に研究されており、例えばLiNb0m導
彼路を用いた導波路型光変調器A器は上記のような高速
変調に有望と考えられている。
In recent years, optical communication systems with modulation speeds of several Gb/s or more have been actively researched, and for example, waveguide type optical modulator A using a LiNb0m waveguide is promising for the above-mentioned high-speed modulation. It is considered.

〔従来の技術〕[Conventional technology]

従来の導波路型光変調器の一例として、マツハツエンダ
型光変調器の構成を第3図に示す。同図(a)は斜視図
であり、同図(b)はそのA−A拡大断面図である。同
図において、基板1は2板LiNbQsからなり、その
所定領域にTi拡散を施すことにより導波路2が形成さ
れている。更に、基板1上には、導波路2のつちの分岐
された平行な2本の導波路2a 、2bに対応して、一
対の非対称なfit極3a、3bからなる進行?B1.
′a極が配設されている。
As an example of a conventional waveguide type optical modulator, the configuration of a Matsuhatsu Enda type optical modulator is shown in FIG. FIG. 5(a) is a perspective view, and FIG. 2(b) is an enlarged sectional view taken along the line AA. In the figure, a substrate 1 is made of two LiNbQs plates, and a waveguide 2 is formed by diffusing Ti in a predetermined region thereof. Further, on the substrate 1, a pair of asymmetric fit poles 3a, 3b are arranged, corresponding to the two parallel waveguides 2a, 2b branched from the waveguide 2. B1.
'a pole is arranged.

ここに示しだ光変調器では、上記進行波電極の長さlが
す]えば21と長く形成されており、一方の電極3aに
対し導波路2中の光波の進行方向と同一方向にマイクロ
aを伝播させて光変調を行う。
In the optical modulator shown here, the length l of the traveling wave electrode is formed long, for example 21, and a micro a is formed in the same direction as the traveling direction of the light wave in the waveguide 2 with respect to one electrode 3a. propagates to perform optical modulation.

すなわち、上記のマイクロ波に官′まれる変調信号に応
じて、2本の導波路2a、2b中を伝播する光波に「0
」もしくは「π」の位相差を生じさせ、これらの光波が
合流(干渉)シて得られる強弱の元を変調光として出力
するものである。
That is, depending on the modulation signal applied to the microwave, the light waves propagating in the two waveguides 2a and 2b are
” or “π”, and the source of the intensity obtained by combining (interfering) these light waves is output as modulated light.

〔発明が解決しようとする6pA題〕 第3図に示したようなLiNb0.導波路を利用した光
変調器では、光波の屈折率が約2.14であるのに対し
、マイクロ波の屈折率は約4と大きい。
[6pA problem to be solved by the invention] LiNb0. In an optical modulator using a waveguide, the refractive index of light waves is about 2.14, whereas the refractive index of microwaves is as large as about 4.

ここでマイクロ波の屈折率を問題にするのは、マイクロ
波が電極から基板内へ深く染み出している丸めである。
What makes the refractive index of microwaves a problem here is the roundness in which microwaves seep deeply from the electrodes into the substrate.

すると、上記の屈折率差から、光波とマイクロ波の間に
は速度差が生じることになる。
Then, due to the above refractive index difference, a speed difference will occur between the light wave and the microwave.

このような速度差があると、特に、上述したような進行
e、電極を持つものでは、その長い電極下において光波
が変調16号を追い越してしまうような場合が考えられ
るため、このようなことのないように変調速度には限界
を設けなければならなかった。すなわち、変調帯域が狭
く限定でれるという問題点があった。
If there is such a speed difference, especially in a device with the above-mentioned progression e and electrode, there is a possibility that the light wave will overtake the modulation No. 16 under the long electrode. A limit had to be placed on the modulation speed to avoid this. That is, there is a problem in that the modulation band is narrow and limited.

なお、マイクロ波に対するLiNb0m導仮路の屈折率
を小さくする目的で、基板全体の厚さを数10μm程度
に薄くしようとする提案もなされている。
Note that, in order to reduce the refractive index of the LiNb0m guide path for microwaves, a proposal has been made to reduce the thickness of the entire substrate to about several tens of micrometers.

しかし、基板全体をこのように薄く形成することは製造
上極めて困雌であり、しかも機械的強度が非常に弱くな
るため通常の使用に耐えうるものでなくなってしまう。
However, forming the entire substrate so thinly is extremely difficult to manufacture, and furthermore, the mechanical strength becomes extremely weak, making it impossible to withstand normal use.

本発明は、上記問題点に鑑み、簡単な製造プロセスを用
いて、変調帯域の広帯域化を実現できる導波路型光変調
器を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a waveguide type optical modulator that can achieve a wide modulation band using a simple manufacturing process.

〔昧vAを解決するための手段〕[Means for solving ambiguity vA]

第1因は本発明を説明する原理的な図であって光導阪路
2が形成されたりテウムナイiベート基板11上にバッ
ファ層4を介してその一部にアース用を極3b、信号用
寛極3aが形成され、信号用電極2aの外側近傍にその
侵手力向に沿って基板が欠除する空間部11aが設けら
れている。
The first reason is the principle diagram for explaining the present invention, in which the light guiding slope 2 is formed, the grounding pole 3b is connected to a part of the substrate 11 via the buffer layer 4, and the signal wiring A pole 3a is formed, and a space 11a where the substrate is removed is provided near the outside of the signal electrode 2a along the direction of the attack force.

〔作用〕[Effect]

基板に対し、上記のように空間部を形成した場合、電極
下を取りまく媒体は溝の部分が誘電率の大きいリチウム
ナイオベートに代わり誘電率の小さい空気層となる。す
ると、マイクロ波の災効屈折率が、空間部(空気層)の
ある分だけ小さくなり、光波の屈折率に近づく。よって
、i[とマイクロ波の間に生じる速度差は極めて小さく
なるため、変調速度を上げることができ、すなわち変調
帯域の広帯域化がi’f能になる。上記の空間部に代わ
り、この空間部の位置で基板を切断すれば、この効果は
一層大塾くなる。
When a space is formed in the substrate as described above, the groove portion of the medium surrounding the bottom of the electrode becomes an air layer with a low dielectric constant instead of lithium niobate, which has a high dielectric constant. Then, the effective refractive index of the microwave becomes smaller by the amount of space (air layer) and approaches the refractive index of light waves. Therefore, since the speed difference between i[ and the microwave becomes extremely small, the modulation speed can be increased, that is, the modulation band can be widened. If the substrate is cut at the position of this space instead of the above-mentioned space, this effect will be even greater.

しかも、上記のような空間部は、カッティングソーを用
いれば簡単に形成できるので、製造プロセスも非常に単
純で済む。
Furthermore, since the above-mentioned space can be easily formed using a cutting saw, the manufacturing process is also very simple.

〔実施例〕〔Example〕

以下、本発明の実施例について、図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)及び(b)は、本発明の導波路型光変調器
の一実施例の斜視図及びそのB−B拡大断面図で6る。
FIGS. 1(a) and 1(b) are a perspective view and an enlarged BB--B sectional view of one embodiment of the waveguide type optical modulator of the present invention.

同図には、マツハツエンダ積の党変肌器を示した。The figure shows a Tohenhadeki made by Matsuha Tsuenda.

同図において、基板11はZ板LiNb01からな9、
その所定領域には、第3図に示したのと同様な導波路2
がTi拡散により形成されている。ま層二酸化シリコン
(SiOz)4を介して、やはり第3図に示したのと同
様な一対の非対称な電極3a。
In the figure, the substrate 11 is a Z plate LiNb019,
In the predetermined area, a waveguide 2 similar to that shown in FIG.
is formed by Ti diffusion. Through a layer of silicon dioxide (SiOz) 4, a pair of asymmetrical electrodes 3a, also similar to that shown in FIG.

3bからなる進行波電極が配設されている。この電極の
寸法は、後述するマイクロ波の夾効屈折率が小ぢくなる
ように設定されており、例えば、長さlが約20程度、
幅Wが数10μm1ギヤツプ長dが約15μm1高さh
が数μmから10μm程度である。
A traveling wave electrode consisting of 3b is arranged. The dimensions of this electrode are set so that the effective refractive index of microwaves, which will be described later, is small. For example, the length l is about 20,
Width W is several tens of μm, gap length d is approximately 15 μm, height h
is about several μm to 10 μm.

更に、基板11は、電極3aに対し例えば1〜30μm
程度1で近接した位置に空間部11aを有している。こ
の空間部11aは、例えば第3図に示した基板1の端部
(4面1a側)を、同因(b)の−点鎖線りに沿ってカ
ッティングソーで切削することにより得られる。また、
カッティングソーの代わりにリアクティブイオンエツチ
ング法、イオンミリング法などによるドライエツチング
法を用いても艮い。ここで、空間部11aの深さfは、
例えば数μm〜数10cyim程度であり、空間部11
aの幅gは例えば10μm〜数100μm程度である。
Furthermore, the substrate 11 has a thickness of, for example, 1 to 30 μm with respect to the electrode 3a.
It has a space 11a at a position close to each other to a degree of 1. This space 11a can be obtained, for example, by cutting the end portion (fourth surface 1a side) of the substrate 1 shown in FIG. 3 along the dashed-dotted line in (b) with a cutting saw. Also,
Dry etching methods such as reactive ion etching or ion milling may also be used instead of a cutting saw. Here, the depth f of the space 11a is
For example, it is about several μm to several tens of cyim, and the space 11
The width g of a is, for example, about 10 μm to several 100 μm.

また電極3aがら空間部11aまでの距離Qは例えば数
μmから数十μm程度である0さらに・導波路2aがら
空間部11aまでの間隔は、導敵路2aを伝播する尤に
影響がない程度にはなして設定されている。このような
空間部11aは、カッティングソーを用いることにより
簡単に形成できる。
Further, the distance Q from the electrode 3a to the space 11a is, for example, from several μm to several tens of μm. Furthermore, the distance from the waveguide 2a to the space 11a is such that it has no effect on propagation through the waveguide 2a. It is set to None. Such a space 11a can be easily formed by using a cutting saw.

上記構成からなる本実施例の導狭路型光fv4器では、
電極3aを伝播されるマイクロiが、従来と同様に基板
11に対して比較的深くまで染み出すことになる。その
場合、上記のように空間部11aが形成されていること
から、電極3a近傍の基板が欠除し、しかもその分だけ
空気層が生じている。
In the narrow path type optical FV4 device of this embodiment having the above configuration,
The micro-i propagated through the electrode 3a will seep into the substrate 11 relatively deeply, as in the conventional case. In this case, since the space 11a is formed as described above, the substrate near the electrode 3a is removed, and an air layer is created correspondingly.

すると、LiNb0.の基板11の誘電率が30〜40
楊度と大きいのに比べ、空間部11a(空気層)の誘電
率が1と小さいので、この空間部口」のある分だけマイ
クaffjiの実効屈折率が小さくなる。よって、マイ
クogの速度が光速に近づき、すなわちマイクロ波と光
波の速度差が極めて小さくなる。
Then, LiNb0. The dielectric constant of the substrate 11 is 30 to 40
Since the dielectric constant of the space 11a (air layer) is as small as 1, compared to the high degree of radiance, the effective refractive index of the microphone affji is reduced by the amount of the space 11a (air layer). Therefore, the speed of the microphone og approaches the speed of light, that is, the difference in speed between the microwave and the light wave becomes extremely small.

このことから、変調速度を従来の限界を越えて同上させ
ることができ、従って変調帯域の広帯域化が可能になる
From this, the modulation speed can be increased beyond the conventional limit, and the modulation band can therefore be widened.

しかも、空間部11aは、上述したようにカッティング
ソーを用いることにより簡単に形成できるので、製造プ
ロセスが非常に単純なものとなる。
Moreover, since the space 11a can be easily formed using a cutting saw as described above, the manufacturing process becomes extremely simple.

また、従来のように基板全体を薄くしたものと比べ、本
実施例は電極近傍に空間部を形成するだけであるため、
機械的強度が強く、通常の使用に十分に耐えうろことが
できる。
Furthermore, compared to the conventional method in which the entire substrate is made thinner, this embodiment only forms a space near the electrode.
It has strong mechanical strength and can withstand normal use.

次に、本発明の導波路型光変調器の他の実施例を第2図
(a)及び(b)に示す。
Next, another embodiment of the waveguide type optical modulator of the present invention is shown in FIGS. 2(a) and 2(b).

ここに示し九実施例は、第1図の構成において、第3の
電極3cがある場合の本発明の構成例である。この場合
には空間部11aが導返路2が存在しない電極3C側と
中央の電極3aとの隙間に形成されている。導波路2の
存在する電極同志の隙間に空間部を形成した場合には空
気層の電気抵抗がリチウムナイオベートに比較して非常
に大きいため、この部分に電界が集中し、導仮路部に有
効な電界がかからない事となる。
The nine embodiments shown here are configuration examples of the present invention in which the third electrode 3c is provided in the configuration shown in FIG. In this case, the space 11a is formed in the gap between the electrode 3C side where the return path 2 does not exist and the center electrode 3a. If a space is formed in the gap between the electrodes where the waveguide 2 exists, the electrical resistance of the air layer is much larger than that of lithium niobate, so the electric field is concentrated in this part and the temporary guide path is No effective electric field is applied.

なお、第1図に示したl + w* d + h + 
’ + g rQ等の各寸法は、前述した数値に限定さ
れるものではなく、光変調器の各特性等を考慮して適宜
設定されるものである。
Note that l + w* d + h + shown in Figure 1
' + g rQ and other dimensions are not limited to the above-mentioned numerical values, but are appropriately set in consideration of the characteristics of the optical modulator.

また、基板11と電極3a、3bの間には、S io、
等からなるバック7層4を数100OA程度形成しであ
るが、このような3177層はLiNbQ。
Moreover, between the substrate 11 and the electrodes 3a and 3b, Sio,
The back 7 layers 4 made of 3177 layers are made of LiNbQ, and are made of LiNbQ.

基板と比べ屈折率が非常に小さいので、上述した空間部
11aとの相乗作用により、マイクロ波の実効屈折率を
一段と低減させることができる。なお、実験結果によれ
ば、マイクロ波の実効屈折率を低減させるためには、上
記のようにバッファl−を設けると共に、!極を4くし
、かつ電憧幅を狭くすればよいことが確認された。
Since the refractive index is very small compared to the substrate, the effective refractive index of microwaves can be further reduced due to the synergistic effect with the space portion 11a described above. According to experimental results, in order to reduce the effective refractive index of microwaves, in addition to providing the buffer l- as described above,! It was confirmed that it is sufficient to increase the number of poles to 4 and narrow the wire width.

更に、上述した各実施例ではマツノ・ツエンダ型を採用
したが、本発明はこれに限らず各種の4IN。
Furthermore, although the Matsuno-Zenda type was adopted in each of the above-mentioned embodiments, the present invention is not limited to this, but various types of 4IN.

路型光変調器に適用でき、特には進行及電極を用いたも
ので大きな効果が期待できる。
It can be applied to path-type optical modulators, and particularly those using traveling electrodes can be expected to have great effects.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、屈折率の小さな
空気層を1!他近愕に設けることができるので、その分
だけマイクロ波の失効屈折$全低減でき、従って変調速
度の同上が可能になり、すなわち変調帯域の広帯域化が
実現される。しかも、基板の一部にのみ溝を形成するだ
けで済むことから、製造プロセスは極めて聞手であり、
機械的箇度も十分である。
As explained above, according to the present invention, the air layer with a small refractive index can be reduced to 1! Since it can be provided at a distance near the other end of the spectrum, the amount of lost refraction of the microwave can be reduced by that amount, thereby making it possible to increase the modulation speed, that is, to widen the modulation band. Moreover, the manufacturing process is extremely flexible, as the grooves only need to be formed on a portion of the substrate.
Mechanical performance is also sufficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の導波路型光変調器の一実施例の
斜視図、 第1図(b)は第1図(a)におけるB−BT、大鵬面
図、第2幽(a)は本発明の導波路型光変調器の他の実
施例の、pP+視図1 第2図(b)は第2図(a)におけるC−C拡大断面向
、第3図(a)は従来の導波路型光f?A器の斜視内、
第3図(b)は第3図(a)における八−人払大断面1
である。
FIG. 1(a) is a perspective view of an embodiment of the waveguide type optical modulator of the present invention, and FIG. 1(b) is a perspective view of the B-BT in FIG. a) is a pP+ view of another embodiment of the waveguide type optical modulator of the present invention; FIG. 2(b) is an enlarged cross-sectional view along CC in FIG. 2(a); FIG. 3(a) is the conventional waveguide type light f? Inside the strabismus of organ A,
Figure 3(b) is the 8-person large section 1 in Figure 3(a).
It is.

Claims (1)

【特許請求の範囲】[Claims] 光導波路(2)が形成されたリチウムナイオベート基板
(11)上の全域にバッファ層(4)が設けられ、該バ
ッファ層(4)上の一部に光制御用進行波電極が形成さ
れた光変調器において、前記進行波電極は少なくとも幅
広のアース電極(3b)と該アース電極(3b)に対向
して位置する幅狭の信号用電極(3a)とから成り、該
信号用電極(3a)の外側近傍に該電極の長手方向に沿
って前記バッファ層(4)および基板(11)が欠除し
た空間部(11a)が形成されていることを特徴とする
光導波路型変調器。
A buffer layer (4) was provided over the entire area of the lithium niobate substrate (11) on which the optical waveguide (2) was formed, and a traveling wave electrode for light control was formed on a part of the buffer layer (4). In the optical modulator, the traveling wave electrode includes at least a wide ground electrode (3b) and a narrow signal electrode (3a) located opposite to the ground electrode (3b). ), a space (11a) in which the buffer layer (4) and the substrate (11) are removed is formed along the longitudinal direction of the electrode.
JP63058850A 1988-03-11 1988-03-11 Optical waveguide modulator Expired - Fee Related JP2663486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63058850A JP2663486B2 (en) 1988-03-11 1988-03-11 Optical waveguide modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058850A JP2663486B2 (en) 1988-03-11 1988-03-11 Optical waveguide modulator

Publications (2)

Publication Number Publication Date
JPH01232323A true JPH01232323A (en) 1989-09-18
JP2663486B2 JP2663486B2 (en) 1997-10-15

Family

ID=13096153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058850A Expired - Fee Related JP2663486B2 (en) 1988-03-11 1988-03-11 Optical waveguide modulator

Country Status (1)

Country Link
JP (1) JP2663486B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202810A (en) * 1989-12-29 1991-09-04 Fujitsu Ltd Optical waveguide device and production thereof
JPH04288518A (en) * 1991-03-18 1992-10-13 Nippon Telegr & Teleph Corp <Ntt> Optical modulating element
US5886807A (en) * 1997-01-24 1999-03-23 California Institute Of Technology Traveling-wave reflective electro-optic modulator
EP1193536A2 (en) * 2000-09-22 2002-04-03 Ngk Insulators, Ltd. A travelling wave-type optical modulator
US6556727B2 (en) 2000-09-22 2003-04-29 Ngk Insulators, Ltd. Travelling wave-type optical modulator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3851825B2 (en) 2002-02-07 2006-11-29 富士通株式会社 Optical modulator module and optical modulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234219A (en) * 1987-03-20 1988-09-29 Nippon Telegr & Teleph Corp <Ntt> Optical modulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234219A (en) * 1987-03-20 1988-09-29 Nippon Telegr & Teleph Corp <Ntt> Optical modulator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202810A (en) * 1989-12-29 1991-09-04 Fujitsu Ltd Optical waveguide device and production thereof
JPH04288518A (en) * 1991-03-18 1992-10-13 Nippon Telegr & Teleph Corp <Ntt> Optical modulating element
US5886807A (en) * 1997-01-24 1999-03-23 California Institute Of Technology Traveling-wave reflective electro-optic modulator
EP1193536A2 (en) * 2000-09-22 2002-04-03 Ngk Insulators, Ltd. A travelling wave-type optical modulator
EP1193536A3 (en) * 2000-09-22 2003-02-05 Ngk Insulators, Ltd. A travelling wave-type optical modulator
US6556727B2 (en) 2000-09-22 2003-04-29 Ngk Insulators, Ltd. Travelling wave-type optical modulator

Also Published As

Publication number Publication date
JP2663486B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US7088875B2 (en) Optical modulator
JP4936313B2 (en) Light modulation element
US6646776B1 (en) Suppression of high frequency resonance in an electro-optical modulator
JP3923244B2 (en) Optical element
US20050196092A1 (en) Optical modulator and communications system
JPH01232323A (en) Light guide type modulator
JP2014191097A (en) Optical control device
JP4991596B2 (en) Optical waveguide circuit and multi-core central processing unit using the same
US20030016896A1 (en) Electro-optic waveguide devices
JPH06242477A (en) Speed matching device of optical signal and electric signal
JPS6218506A (en) Light wave propagation mode separate structural body
JP2017072808A (en) Semiconductor optical waveguide, semiconductor optical modulator, and semiconductor optical modulation system
US6885780B2 (en) Suppression of high frequency resonance in an electro-optical modulator
JP3199735B2 (en) Optical integrated circuit
US20020131745A1 (en) Electro-optic waveguide devices
KR20060075645A (en) Chirp-free optical modulator with low driving voltage
JP4671993B2 (en) Light modulator
JP2982835B2 (en) Semiconductor optical modulator
JP5467414B2 (en) Optical functional waveguide
JP2651183B2 (en) Manufacturing method of waveguide type optical modulator
JP2007171452A (en) Optical waveguide, light modulator and optical communication system
JPS63261219A (en) Optical modulator element
WO2020115852A1 (en) Mach-zehnder-type optical modulator
CN113552735B (en) Silicon-based electro-optic modulator traveling wave electrode based on double-layer transmission line structure and preparation method thereof
JP2734708B2 (en) Light modulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees