JPH01232322A - Turn-back mirror of laser beam scanning optical system - Google Patents

Turn-back mirror of laser beam scanning optical system

Info

Publication number
JPH01232322A
JPH01232322A JP63058664A JP5866488A JPH01232322A JP H01232322 A JPH01232322 A JP H01232322A JP 63058664 A JP63058664 A JP 63058664A JP 5866488 A JP5866488 A JP 5866488A JP H01232322 A JPH01232322 A JP H01232322A
Authority
JP
Japan
Prior art keywords
optical axis
laser beam
film
scanning
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63058664A
Other languages
Japanese (ja)
Inventor
Tetsuo Kyogoku
京極 哲男
Hiroshi Nakamura
弘 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP63058664A priority Critical patent/JPH01232322A/en
Publication of JPH01232322A publication Critical patent/JPH01232322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Fax Reproducing Arrangements (AREA)

Abstract

PURPOSE:To easily and inexpensively correct the nonuniformity in the exposure on a photosensitive surface by forming an increase reflecting film which is gradually increased in film thickness from off-the-optical axis to on-the-optical axis to the reflecting face of the turn-back mirror. CONSTITUTION:The increase reflecting films 7a, 8a are provided in common used as protective films to the turn-back mirrors 7, 8. The increase reflecting film 8a of said films is so formed that the film thickness thereof increases gradually from the off-the-optical axis to the on-the-optical axis. A laser beam is, therefore, changed in the reflectivity by the thickness of the film 8a so that the reflectivity is small on the optical axis and is large off the optical axis. As a result, the reflectivity is small and the exposure decreases on the optical axis where the scanning speed is low. The reflectivity is large and the exposure increases off the optical axis where the scanning speed is high. The nonuniformity in the exposure on the photosensitive surface is thereby easily and inexpensively corrected even if a costly ftheta lens is not used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレーザビーム走査光学系、殊にポリゴンミラー
等の回転スキャナで反射したレーザビームをfθレンズ
等による走査の等速性の光学的補正を行わないレーザビ
ーム走査光学系に用いられる折返しミラーに関するもの
である。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a laser beam scanning optical system, in particular optical correction of uniform velocity of scanning of a laser beam reflected by a rotating scanner such as a polygon mirror using an fθ lens or the like. This invention relates to a folding mirror used in a laser beam scanning optical system that does not perform

(従来の技術) L/−qビーム走査光学系でのポリゴンミラーは一定の
速度で回転される。したがって、その回転によって向き
を変えられていく反射面から反射されるレーザビームは
ポリゴンミラーの回転と等速でほぼ一点を中心として偏
向されることになる。ところで、この偏向されるレーザ
ビームで感光面上を走査させると、等速走査でなくなる
。このため、従来は、かがる不等速性を補正すべく歪曲
収差を積極的に利用したfθレンズと称するレンズを使
用して等速走査を行っていた。
(Prior Art) A polygon mirror in an L/-q beam scanning optical system is rotated at a constant speed. Therefore, the laser beam reflected from the reflecting surface whose direction is changed by the rotation thereof is deflected about one point at the same speed as the rotation of the polygon mirror. By the way, when the photosensitive surface is scanned with this deflected laser beam, it is no longer scanned at a constant speed. For this reason, conventionally, uniform velocity scanning has been performed using a lens called an fθ lens, which actively uses distortion aberration to correct the inconsistency.

(発明が解決しようとする課題) しかしながら、fθレンズは極めて高価なものであるた
め、レーザビーム走査光学系のコストに大きく影響し、
パーソナルコンピュータ用といった低価格が望まれるプ
リンタには不向きである。そこで、fθレンズを使用し
ないで、レーザビームの出力ピッチを走査速度が大きい
ところで小さく、走査速度が小さいところで大きくする
電気的な補正が考えられる。この電気的な補正によって
等速走査に等しい作像ピッチでの画像形成が可能である
(Problems to be Solved by the Invention) However, since the fθ lens is extremely expensive, it greatly affects the cost of the laser beam scanning optical system.
It is not suitable for printers for personal computers, which require a low price. Therefore, electrical correction can be considered in which the output pitch of the laser beam is made smaller where the scanning speed is high and increased where the scanning speed is low, without using an fθ lens. This electrical correction enables image formation at an image forming pitch equal to constant speed scanning.

しかし、レーザビームの実際の走査速度が等速になった
のではない。したがって、走査速度が大きくなる軸外側
で露光量が少なく、走査速度が小さくなる軸上側で露光
量が多くなる。このことは画像濃度の不均一をもたらす
However, the actual scanning speed of the laser beam is not constant. Therefore, the exposure amount is small on the outer side of the axis where the scanning speed is high, and the exposure amount is large on the upper side of the axis where the scanning speed is low. This results in non-uniform image density.

これを、更に電気的に補正するには特殊な制御回路でレ
ーザビームの出力を制御することが必要で高価につくし
、出力制御には■界があり万全ではない。
To further correct this electrically, it is necessary to control the output of the laser beam with a special control circuit, which is expensive, and there are limitations to output control, so it is not perfect.

そこで本発明はレーザビーム走査光学系の既設光学部品
である折返しミラーの増反射膜の設は方によって、走査
の不等速性による露光量の不均一を簡単かつ確実に補正
できるレーザビーム走査光学系の折返しミラーを提供す
ることを目的とするものである。
Therefore, the present invention proposes a laser beam scanning optical system that can easily and reliably correct the non-uniformity of the exposure amount due to the non-uniform speed of scanning by setting the reflection increasing film of the folding mirror, which is an existing optical component of the laser beam scanning optical system. The purpose is to provide a folding mirror for the system.

(課題を解決するための手段) 本発明は前記の目的を達成するために、回転スキャナで
反射され偏向されるレーザビームをfθレンズを用いず
折返しミラーを介して感光体上に向け、その表面を一方
から他方に走査するレーザビーム走査光学系において、
反射面に形成する増反射膜の膜厚を光軸外から光軸上に
徐々に厚くなるようにし、走査域内の反射光量が光軸上
から光軸外に徐々に増加するように補正するようにした
ことを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention directs a laser beam reflected and deflected by a rotating scanner onto a photoreceptor through a folding mirror without using an fθ lens, and In a laser beam scanning optical system that scans from one side to the other,
The thickness of the reflection-enhancing film formed on the reflective surface is gradually increased from off the optical axis to on the optical axis, and the amount of reflected light within the scanning area is corrected so that it gradually increases from on the optical axis to off the optical axis. It is characterized by the following.

(作 用) レーザビームは等速回転する回転スキャナで反射されて
偏向することにより感光面上を一方から他方に走査する
。このときのレーザビームの走査速度は不等速である。
(Function) The laser beam is reflected by a rotating scanner that rotates at a constant speed and is deflected to scan the photosensitive surface from one side to the other. The scanning speed of the laser beam at this time is inconstant.

つまり光軸上で遅く光軸外側に向は速くなる。In other words, it is slow on the optical axis and becomes faster toward the outside of the optical axis.

ところが、偏向の後感光体に達するレーザビームは途中
折返しミラーを経るとき、その折返しミラーに設けられ
ている増反射膜の影響を受ける。
However, when the laser beam that reaches the photoreceptor after deflection passes through a folding mirror on the way, it is affected by a reflection-enhancing film provided on the folding mirror.

増反射膜は折返しミラーの光軸外から光軸上に向は膜厚
が徐々に厚くなるようにされているので、折返しミラー
の各部に入射して反射されるレーザビームの反射角がほ
ぼ一定していることから、折返しミラーの各部で反射さ
れるレーザビームはその部分での増反射膜の厚みによっ
て反射率を変えられ、膜厚の大きい光軸上で反射率が小
さく、膜厚が小さくなる光軸外側で反射率が大きくなる
The thickness of the reflection-enhancing film gradually increases from outside the optical axis of the folding mirror to on the optical axis, so the reflection angle of the laser beam that is incident on each part of the folding mirror and reflected is almost constant. Therefore, the reflectance of the laser beam reflected at each part of the folding mirror changes depending on the thickness of the reflection-enhancing film at that part, and the reflectance is small on the optical axis where the film is thick, and the film is thin. The reflectance increases on the outside of the optical axis.

これによってレーザビームは光軸上よりも光軸外側でよ
り多く反射されるので、光軸上での走査光量よりも光軸
外側での走査光量を増大され、走査速度が光軸上で遅く
光軸外側に速くなることに起因した露光量の不均一を補
正することができる。
As a result, the laser beam is reflected more on the outside of the optical axis than on the optical axis, so the amount of scanning light on the outside of the optical axis is increased compared to the amount of scanning light on the optical axis, and the scanning speed is slower on the optical axis. It is possible to correct the non-uniformity of the exposure amount due to the speed increasing toward the outside of the axis.

(実施例) 第1図はレーザビームプリンタの基本構成を示す概略斜
視図で、この図において1は画像信号に応じて駆動され
る半導体レーザであり、この半導体レーザ1から発した
レーザビーム2はコリメータレンズ3、シリンドリカル
レンズ4を通過して回転軸のまわりに多数のミラーを形
成したポリゴンミラー5で反射される。この際、レーザ
ビーム2は、ポリゴンミラー5の各回毎にほぼ一点を中
心に一方向に等速で偏向される。ポリゴンミラー5によ
り偏向されるレーザビーム2は次いでトロ、イダルレン
ズ6を通過することにより、倒れ角補正された平行ビー
ムとなって折返しミラー7.8で反射されて、感光ドラ
ム9に達し、この感光ドラム9の表面上をそのドラム軸
線方向の二方から他方に走査(主走査)する。
(Example) FIG. 1 is a schematic perspective view showing the basic configuration of a laser beam printer. In this figure, 1 is a semiconductor laser driven according to an image signal, and the laser beam 2 emitted from this semiconductor laser 1 is The light passes through a collimator lens 3 and a cylindrical lens 4, and is reflected by a polygon mirror 5, which has a large number of mirrors formed around a rotation axis. At this time, the laser beam 2 is deflected at a constant speed in one direction about one point each time the polygon mirror 5 rotates. The laser beam 2 deflected by the polygon mirror 5 then passes through the toro and ideal lens 6, becomes a parallel beam whose inclination angle has been corrected, is reflected by the folding mirror 7.8, reaches the photosensitive drum 9, and the photosensitive drum 9. The surface of the drum 9 is scanned from one side to the other in the drum axis direction (main scan).

しかしながら、この等速で偏向されるレーザビーム2に
よる感光ドラム9上での走査が、電気的補正により画像
形成上の等速性を得たとしても、実際の走査速度は変わ
らず不等速のままであるので、感光ドラム9上での露光
量が不均一になる。このため、走査の遅い光軸上のとこ
ろでは走査の速いところよりも露光量を下げるように光
量補正する必要性が出てくる。
However, even if the scanning on the photosensitive drum 9 by the laser beam 2 deflected at a constant velocity achieves uniform velocity in image formation through electrical correction, the actual scanning velocity remains unchanged. As a result, the amount of exposure on the photosensitive drum 9 becomes non-uniform. For this reason, it becomes necessary to correct the amount of light so that the exposure amount is lower on the optical axis where scanning is slow than on the optical axis where scanning is fast.

電気的な等速性の補正が現実的に可能なレーザビーム走
査光学系の画角が30°以内であるのに対応して光量補
正量を計算すると、画角θは0°≦θ≦30’の範囲で
変化し、感光ドラム9の表面上でのビームの変位はy 
=ftan (wt)  (但し、W:ポリゴンミラー
の角速度)となり、走査速度はv =dy/dt =w
f/cos2(wt)で表せる。
When calculating the amount of light intensity correction based on the fact that the angle of view of the laser beam scanning optical system that can realistically correct electrical uniformity is within 30°, the angle of view θ is 0°≦θ≦30. ', and the displacement of the beam on the surface of the photosensitive drum 9 is y
=ftan (wt) (where W: angular velocity of the polygon mirror), and the scanning speed is v =dy/dt =w
It can be expressed as f/cos2 (wt).

ここで、wt=0のときの走査速度をV−VOとなる。Here, the scanning speed when wt=0 is V-VO.

したがって、走査域周辺での露光量は、中央部の374
になる。
Therefore, the exposure amount around the scan area is 374 in the center.
become.

よって、主走査方向で均一な濃度の画像を得るためには
、何らかの方法で露光量を走査域全域で一定となるよう
補正する必要がある。この補正は光軸上から光軸外へ透
過光量が徐々に変化するフィルタを挿入するといった方
法で行うこともできるが、特殊部品の点数が増すし、光
N損失が多くなる。
Therefore, in order to obtain an image with uniform density in the main scanning direction, it is necessary to correct the exposure amount by some method so that it becomes constant over the entire scanning area. This correction can be performed by inserting a filter in which the amount of transmitted light gradually changes from on the optical axis to off the optical axis, but this increases the number of special parts and increases the optical N loss.

ところで、折返しミラー7.8での反射率は高いほどよ
く、そのために折返しミラー7.8に増反射膜7a、8
aが保護膜をも兼ねて設けられる。本発明はこれに着目
し、少なくとも一方の増反射膜8aの膜厚を光軸上で厚
く、光軸外へ徐々に薄くなるように第3図の如く形成す
る。これにより折返しミラー8における反射率が光軸外
側から光軸上側に徐々に小さくなるようにし、光軸外側
ではレーザビーム3のほとんどが反射して高い走査光量
が得られ、光軸上側では反射率が少し落ちて少し低い走
査光量が得られ、走査速度の不等速による露光量の不均
一を補正することができる。
By the way, the higher the reflectance on the folding mirror 7.8, the better, and for this purpose, the folding mirror 7.8 is provided with reflective coatings 7a, 8.
A is also provided as a protective film. The present invention focuses on this, and forms at least one of the reflection increasing films 8a so that it is thick on the optical axis and gradually becomes thinner toward the outside of the optical axis, as shown in FIG. As a result, the reflectance on the folding mirror 8 gradually decreases from the outside of the optical axis to the upper side of the optical axis, and most of the laser beam 3 is reflected on the outside of the optical axis to obtain a high scanning light amount, while the reflectance on the upper side of the optical axis is slightly reduced, a slightly lower amount of scanning light is obtained, and it is possible to correct non-uniformity of exposure amount due to uneven scanning speed.

具体的には走査速度の光軸上と光軸外での最大比が前記
の場合3:4でそれにより生じる露光量の差は25%で
ある。これを半導体レーザの発振波長λ。−780nm
において補正するのに、第4図に示すように折返しミラ
ー8のガラス基板8b上に従来知られている6層の増反
射コート膜nLSno % nt % no 、、nt
 5nllをアルミニウム層へ!の上に施して増反射膜
8aとし、nL、n□の各層につき光軸外から光軸上に
膜厚が徐々に増大するようにしである。
Specifically, the maximum ratio of scanning speeds on the optical axis and off the optical axis is 3:4 in the above case, and the resulting difference in exposure amount is 25%. This is the oscillation wavelength λ of the semiconductor laser. -780nm
In order to correct this, as shown in FIG.
5nll to the aluminum layer! The reflection increasing film 8a is formed on top of the reflective film 8a, and the thickness of each layer of nL and n□ gradually increases from off the optical axis to on the optical axis.

ここでnLは低屈折率物質、例えば二酸化珪酸(S、0
□)、弗化マグネシウム(M、 F2 )、氷晶石(A
fF3.3NaF)等、またnHは高屈折率物質例えば
酸化チタン(T、0□)、酸化セリウム(C,O□)、
酸化ジルコニウム(Z、 0□)、酸化タンタル(Ta
z Os) 、酸化ハフニウム(HfOZ)等である。
Here, nL is a low refractive index substance, such as silicic acid (S, 0
□), magnesium fluoride (M, F2), cryolite (A
fF3.3NaF), etc., and nH is a high refractive index substance such as titanium oxide (T, 0□), cerium oxide (C, O□),
Zirconium oxide (Z, 0□), tantalum oxide (Ta
zOs), hafnium oxide (HfOZ), and the like.

またアルミニウム層A!は、金(Au) 、!I (A
g) 、銅(Cu)、ロジウム(Rh)と云った高輝金
属でもよい。
Also aluminum layer A! It's gold (Au)! I (A
g) High brightness metals such as copper (Cu) and rhodium (Rh) may be used.

なお金属が誘電体よりなる多層膜ミラーを用いることも
できるが、アルミニウムによる増反射方式の方が安価で
ある。また増反射膜8aを6層にすると前記露光量の差
25%の補正を行うのに好適であった。
Note that a multilayer mirror in which the metal is made of a dielectric material can also be used, but an enhanced reflection method using aluminum is cheaper. Moreover, six layers of the reflection increasing film 8a were suitable for correcting the difference in exposure amount of 25%.

なお折返しミラー8の入射角は第2図のように側方より
見た光軸上および光軸外での各入射角は例えば45°と
それぞれ同じであっても、光軸上での実際の入射角θ。
Note that even if the incident angle of the folding mirror 8 is the same on the optical axis and off the optical axis as seen from the side as shown in Fig. 2, for example, 45 degrees, the actual incident angle on the optical axis is Incident angle θ.

はそれに等しいのに対し、光軸外(半画角30°)での
実際の入射角θ1は光路の拡がりによって45°よりは
少し大きい49″ となる。
is equal to that, whereas the actual incident angle θ1 outside the optical axis (half angle of view 30°) is 49″, which is slightly larger than 45°, due to the expansion of the optical path.

これを考慮して折返しミラー8に形成する増反射膜8a
の膜厚分布を第5図のグラフに示すように設定し、第4
図の如く形成すると、第6図に示すように半導体レーザ
の発振波長λ。=780nmでの反射率が光軸上の特性
aに対し半画角30°の光軸外の特性すが25%高くな
る。
In consideration of this, the reflection increasing film 8a is formed on the folding mirror 8.
Set the film thickness distribution as shown in the graph of Figure 5, and
When formed as shown in the figure, the oscillation wavelength λ of the semiconductor laser is as shown in FIG. The reflectance at =780 nm is 25% higher for the off-axis characteristic with a half angle of view of 30° than the characteristic a on the optical axis.

これによって走査が不等速なことによる25%の露光量
の差を解消することができる。
This makes it possible to eliminate the 25% difference in exposure amount due to non-uniform scanning speed.

以上のような増反射膜8aを折返しミラー8の反射面に
形成するのに第7図に示すような真空蒸着装置を利用し
て簡単に行える。これについて説明すると、真空層lI
内の上部に中心軸線のまわりに一定回転するドーム型の
ミラーホルダー12が設けられ、このホルダー12に折
返しミラー8を保持し、下方に設置した蒸着物質14に
よって所望膜厚比の増反射膜8aを蒸着するようにして
いる。
The reflection enhancing film 8a as described above can be easily formed on the reflecting surface of the reflection mirror 8 by using a vacuum evaporation apparatus as shown in FIG. To explain this, the vacuum layer lI
A dome-shaped mirror holder 12 that rotates around a central axis at a constant rate is provided at the upper part of the interior, and a folding mirror 8 is held in this holder 12, and a reflection-enhancing film 8a having a desired film thickness ratio is formed by a vapor deposition material 14 placed below. I am trying to evaporate it.

このため、折返しミラー8をその反射面が下向きになる
ようにしてホルダー12に保持し、各ミラー8が円周方
向に等間隔な放射状に並ぶようにしである。蒸着物質1
4からは、その下方からの電子ビーム15による衝撃で
蒸着粒子14aが飛び出してミラーホルダー12に向は
直進し、ミラーホルダー12および折返しミラー8の下
面に蒸着膜を形成する。この蒸着膜が増反射膜8aの各
層の1つとなる。
For this reason, the folding mirrors 8 are held in the holder 12 with their reflective surfaces facing downward, and the mirrors 8 are arranged radially at equal intervals in the circumferential direction. Vapor deposition substance 1
4, the vapor deposition particles 14a fly out due to the impact of the electron beam 15 from below and travel straight toward the mirror holder 12, forming a vapor deposition film on the lower surfaces of the mirror holder 12 and the folding mirror 8. This vapor deposited film becomes one of each layer of the reflection increasing film 8a.

ここで、真空蒸着装置内はミラーホルダー12の下面全
域に蒸着膜が均一に形成されるよう調整されている。す
ると、折返しミラー8の反射面に対してはミラーホルダ
ー12の面から平面状態に突出している分だけ、蒸着の
膜厚形成条件がミラーホルダー12の下面の場合と異な
ることになる。
Here, the interior of the vacuum evaporation apparatus is adjusted so that the evaporated film is uniformly formed over the entire lower surface of the mirror holder 12. Then, the film thickness formation conditions for vapor deposition differ from those for the lower surface of the mirror holder 12 for the reflection surface of the folding mirror 8 by the extent that it protrudes from the surface of the mirror holder 12 in a planar state.

折返しミラー8の反射面ではそれが平面でかつホルダー
12の下面から光軸上で一番大きく突出していることに
よる各部での蒸着粒子14aの入射角と、蒸着物質14
からの距離との違いによって形成される蒸着膜の厚さが
異なる。つまり、入射角が小さくかつホルダー12から
大きく前に出て距離lが小さくなる光軸上側では厚く、
入射角が大きくかつホルダー12から前に小さくしか出
す距離!が大きくなる光軸外つまり両端部側はど薄(形
成される。このような蒸着膜の形成を各層について行い
所定の増反射膜8aを得る。
The reflection surface of the folding mirror 8 is flat and protrudes most from the bottom surface of the holder 12 on the optical axis, so that the incident angle of the vapor deposition particles 14a at each part and the vapor deposition substance 14 are different.
The thickness of the deposited film differs depending on the distance from the point. In other words, it is thicker on the upper side of the optical axis where the angle of incidence is small and the distance l is small as it moves forward from the holder 12.
The angle of incidence is large and the distance from the holder 12 is only small! A thin film is formed outside the optical axis, that is, on both end portions, where the value is larger.Such a vapor-deposited film is formed for each layer to obtain a predetermined reflection-enhancing film 8a.

なおそのような膜厚の分布を第5回に示す設定値通りに
正しく形成するには、膜厚補正板16の設置位置や形状
によって補正するとよい。
In order to correctly form such a film thickness distribution according to the set values shown in the fifth article, it is preferable to correct it by changing the installation position and shape of the film thickness correction plate 16.

(発明の効果) 本発明によれば前記構成および作用を有するので、光学
的な等速性の補正を行わないレーザビーム走査光学系に
おいて、走査の不等速性による露光量の差を折返しミラ
ーの反射面に形成する増反射膜によって補正することが
でき、増反射膜が設けられる系ではその厚さに所定の分
布をもたせるだけでよく簡単かつ安価に達成し得る。
(Effects of the Invention) According to the present invention, since it has the above-described structure and operation, in a laser beam scanning optical system that does not correct optical uniformity, the difference in exposure amount due to the inconsistency of scanning is reflected by a mirror. This can be corrected by a reflection-enhancing film formed on the reflective surface of the mirror, and in a system in which a reflection-enhancing film is provided, it can be easily and inexpensively achieved by simply providing a predetermined distribution in the thickness.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図は本発明
に係る折返しミラーを使用したレーザビームプリンタの
基本構成を示す概略斜視図、第2図は第1図の本発明に
係る折返しミラーの側面図、第3図は第2図折返しミラ
ーの側面図、第4図は第2図折返しミラーの増反射多層
膜構成の説明図、第5図は増反射膜の膜厚分布状態を示
すグラフ、第6図は第2図折返しミラーの光軸上と光軸
外との反射率特性を示すグラフ、第7図は第2図折返し
ミラーの増反射膜を形成する真空蒸着装置の断面図であ
る。 1 −−−−−−〜−−−−−−−−−半導体レーザ2
−−−−−一−−−−−−レーザビーム5−−−−−−
−−−− ポリゴンミラー8−−−−−−−−一−−−
−−−−折返しミラー8a−−−〜−−−−−−−・−
・−増反射膜9−=−−−−−−−−−−〜−−−・感
光ドラム第1図 第3ツ 概 5 図 第 6 図 ^ L 、 /”ビーLArB曵に 第7j図
The drawings show one embodiment of the present invention, and FIG. 1 is a schematic perspective view showing the basic configuration of a laser beam printer using a folding mirror according to the present invention, and FIG. Figure 3 is a side view of the folding mirror shown in Figure 2. Figure 4 is an explanatory diagram of the configuration of the reflective multilayer film of the folding mirror shown in Figure 2. Figure 5 is the film thickness distribution state of the reflective mirror. Figure 6 is a graph showing the reflectance characteristics of the folding mirror shown in Figure 2 on the optical axis and off the optical axis, and Figure 7 is a graph showing the vacuum evaporation equipment used to form the reflective mirror of the folding mirror shown in Figure 2. FIG. 1 −−−−−−−−−−−−−−−−−Semiconductor laser 2
-------1-----Laser beam 5--------
−−−− Polygon mirror 8−−−−−−−−1−−−
-----Folding mirror 8a--------------・-
・-Reflection-enhancing film 9-=------

Claims (2)

【特許請求の範囲】[Claims] (1)回転スキャナで反射され偏向されるレーザビーム
をfθレンズを用いず折返しミラーを介して感光体上に
向け、その表面を一方から他方に走査するレーザビーム
走査光学系において、反射面に形成する増反射膜の膜厚
を光軸外から光軸上に徐々に厚くなるようにし、走査域
内の反射光量が光軸上から光軸外に徐々に増加するよう
に補正するようにしたことを特徴とするレーザビーム走
査光学系の折返しミラー。
(1) In a laser beam scanning optical system that directs a laser beam reflected and deflected by a rotating scanner onto a photoconductor via a folding mirror without using an fθ lens, and scans the surface from one side to the other, a laser beam is formed on a reflective surface. The thickness of the reflection-enhancing film gradually increases from off the optical axis to on the optical axis, and the amount of reflected light within the scanning area is corrected so that it gradually increases from on the optical axis to off the optical axis. Features a folding mirror in the laser beam scanning optical system.
(2)増反射膜は高輝金属層と6層の増反射コート膜と
からなるものである請求項1記載のレーザビーム走査光
学系の折返しミラー。
(2) A folding mirror for a laser beam scanning optical system according to claim 1, wherein the reflection-enhancing film comprises a high-brightness metal layer and six layers of reflection-enhancing coating films.
JP63058664A 1988-03-12 1988-03-12 Turn-back mirror of laser beam scanning optical system Pending JPH01232322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63058664A JPH01232322A (en) 1988-03-12 1988-03-12 Turn-back mirror of laser beam scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058664A JPH01232322A (en) 1988-03-12 1988-03-12 Turn-back mirror of laser beam scanning optical system

Publications (1)

Publication Number Publication Date
JPH01232322A true JPH01232322A (en) 1989-09-18

Family

ID=13090854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058664A Pending JPH01232322A (en) 1988-03-12 1988-03-12 Turn-back mirror of laser beam scanning optical system

Country Status (1)

Country Link
JP (1) JPH01232322A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005266775A (en) * 2004-02-18 2005-09-29 Canon Inc Optical scanner
US7777774B2 (en) 2002-01-23 2010-08-17 Ricoh Company, Ltd. Image forming system employing effective optical scan-line control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777774B2 (en) 2002-01-23 2010-08-17 Ricoh Company, Ltd. Image forming system employing effective optical scan-line control device
USRE42865E1 (en) 2002-01-23 2011-10-25 Ricoh Company, Ltd. Image forming system employing effective optical scan-line control device
JP2005266775A (en) * 2004-02-18 2005-09-29 Canon Inc Optical scanner

Similar Documents

Publication Publication Date Title
US6760138B2 (en) Optical scanning apparatus and image forming apparatus using the same
JP3072061B2 (en) Optical scanning device
JPH0223313A (en) Laser scanning device and aspherical scanning lens
KR20080007841A (en) Polygon mirror and laser scanning unit having the same and image forming apparatus having the same
US5680242A (en) Scanning optical apparatus
JPH01232322A (en) Turn-back mirror of laser beam scanning optical system
US5757535A (en) Optical scanner
JPH05303049A (en) Optical scanner for reducing shading
JP2005338730A (en) Rotary polygon mirror and optical scanner
JP2979754B2 (en) Optical scanning device
JP2618889B2 (en) Optical scanning device
JP2004029830A (en) Optical scanner and image forming apparatus using the same
JPH01232321A (en) Toroidal lens of laser beam scanning optical system
JPH05224002A (en) Illuminance correcting film
JP2001183597A (en) Optical scanner
JPH10197823A (en) Scanning lens
JPS62118302A (en) Ftheta lens for scanning optical system
JPH01232354A (en) Photosensitive body to be used in image forming system using laser beam
JP3492358B1 (en) Optical scanning device and image forming apparatus using the same
JP2004145352A (en) Optical scanner and image forming apparatus using the same
JPS61122621A (en) Optical scan polygon mirror
CN115728937A (en) Optical scanning device and image forming apparatus
JP2000241732A (en) Optical scanner and image forming device using the same
JPH04110816A (en) Optical scanning device
JP2001215427A (en) Laser optical device