JPH01232248A - Method and apparatus for electrochemical analysis - Google Patents

Method and apparatus for electrochemical analysis

Info

Publication number
JPH01232248A
JPH01232248A JP5631588A JP5631588A JPH01232248A JP H01232248 A JPH01232248 A JP H01232248A JP 5631588 A JP5631588 A JP 5631588A JP 5631588 A JP5631588 A JP 5631588A JP H01232248 A JPH01232248 A JP H01232248A
Authority
JP
Japan
Prior art keywords
solution
electrode
measured
soln
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5631588A
Other languages
Japanese (ja)
Other versions
JP2692682B2 (en
Inventor
Fumio Takei
文雄 武井
Hiroaki Suzuki
博章 鈴木
Akio Sugama
明夫 菅間
Naomi Kojima
小嶋 尚美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63056315A priority Critical patent/JP2692682B2/en
Publication of JPH01232248A publication Critical patent/JPH01232248A/en
Application granted granted Critical
Publication of JP2692682B2 publication Critical patent/JP2692682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the amt. of the sample required for an analysis by applying oscillation to a soln. to be measured to uniformize the soln. at the time of the analysis. CONSTITUTION:A sample vessel 12 contains the soln. 13 to be measured and the front end of an oxygen electrode 11 is immersed therein. The electrode 11 and a movable arm 14 are vertically oscillated by the fluctuation of the magnetic force of an excitation coil 17 around the position where the attraction from below by the coil 17 and the attraction from above by a spring 16 balance with each other in accordance with the frequency and power of the AC applied by an AC power supply 18 for excitation. The output current value of the oxygen satd. aq. soln. at 20 deg.C is maximized as shown in the figure (a) when the bias voltage Vb of a DC power supply 18 for biasing to be passed to the coil 17 is 10V and the frequency of an AC power supply 19 for excitation is 40Hz. This max. value is nearly the same as the value obtd. when the soln. is stirred by using a magnetic stirrer. The equal output level is, therefore, attained without using a stirrer.

Description

【発明の詳細な説明】 〔4既  要〕 溶液中の基質を電気化学的に分析する方法及び装置に関
し、 分析の際に溶液を機械的に攪拌するために被測定試料が
一定量以上必要であったが、この必要量を減少させるこ
とを目的とし、 電極手段、試料溶液容器などに振動を加えて溶液を振動
によって均一化するように構成する。
[Detailed Description of the Invention] [4 Required] Regarding a method and apparatus for electrochemically analyzing a substrate in a solution, a certain amount or more of a sample to be measured is required to mechanically stir the solution during analysis. However, with the aim of reducing this required amount, the structure is such that vibration is applied to the electrode means, sample solution container, etc. to homogenize the solution by vibration.

〔産業上の利用分野〕[Industrial application field]

本発明は微少量溶液の電気化学的分析方法及び装置に係
る。溶液中の特定の物質を測定することは、化学工業、
食品工業、醸造業、臨床検査等の基礎研究から現場まで
の広い分野にわたって利用される。例えば、化学工業の
反応プロセス中の物質濃度の管理や制御、臨床検査にお
ける検体中の各種基質の分析などのため、例えば、水溶
液中の酸素濃度やグルコース(ブドウ糖)の濃度などが
測定される。
The present invention relates to a method and apparatus for electrochemical analysis of minute amounts of solutions. Measuring specific substances in solutions is used in the chemical industry,
It is used in a wide range of fields, from basic research to the field, such as the food industry, brewing industry, and clinical testing. For example, oxygen concentration and glucose concentration in an aqueous solution are measured to manage and control substance concentrations during reaction processes in the chemical industry, and to analyze various substrates in specimens in clinical tests.

〔従来の技術〕[Conventional technology]

従来、上記のような溶液中の基質の測定を行う際は、通
常、測定用の電極装置を適当量の希釈液中に挿入し、希
釈液を攪拌しつつ、希釈液中に試料を添加し、電極の出
力変化より元の試料の濃度を算出している。
Conventionally, when measuring a substrate in a solution as described above, the measurement electrode device is usually inserted into an appropriate amount of diluted solution, and the sample is added to the diluted solution while stirring the diluted solution. , the concentration of the original sample is calculated from the change in the output of the electrode.

このような測定では、希釈液の攪拌は必須である。すな
わち、例えば、酸素電極と固定化酵素を組み合せたいわ
ゆる酵素電極においては、下記式:により、減少する酸
素量を測定し、これを溶液中の基質(例えばグルコース
)濃度に対応させる。
In such measurements, stirring of the diluted solution is essential. That is, for example, in a so-called enzyme electrode that combines an oxygen electrode and an immobilized enzyme, the decreasing amount of oxygen is measured using the following formula: and this is made to correspond to the substrate (eg, glucose) concentration in the solution.

このとき、酸素濃度の減少量を知るためには、先ず試料
添加前の酸素濃度値を知らねばならない。
At this time, in order to know the amount of decrease in oxygen concentration, it is first necessary to know the oxygen concentration value before sample addition.

酸素電極においては酸素が電極表面において還元され、
その還元電流が出力されるが、ここで仮に酸素電極を用
いた酵素電極の挿入された希釈液が静止しているとすれ
ば、電極の出力は電極近傍の水の酸素拡散速度に支配さ
れ、出力電流は液を攪拌する場合に比べ非常に小さい値
になってしまう。
In an oxygen electrode, oxygen is reduced on the electrode surface,
The reduction current is output, but if the diluted solution using an oxygen electrode and the enzyme electrode inserted is stationary, the output of the electrode is controlled by the oxygen diffusion rate of the water near the electrode. The output current becomes a much smaller value than when stirring the liquid.

また、特定の基質の測定の際には、固定化酵素により基
質が消費されるため、酸素の場合と同様に出力の低下が
招かれると共に、出力が非常に不安定になる。すなわち
、電極近傍における液の不規則でわずかなゆらぎにより
、固定化酵素に供給される基質の量の時間変動が生じ、
これが出力に影響を及ぼす。このような理由のために、
測定に際しては必らず希釈液を攪拌することが必須であ
った。
Furthermore, when measuring a specific substrate, the substrate is consumed by the immobilized enzyme, resulting in a decrease in output as in the case of oxygen, and the output becomes extremely unstable. In other words, irregular and slight fluctuations in the liquid near the electrode cause temporal fluctuations in the amount of substrate supplied to the immobilized enzyme.
This affects the output. For this reason,
It was essential to stir the diluted solution during measurements.

そして、希釈液の攪拌のためには、一般的には、希釈液
中にスターラーを挿入し、これを磁気的に回転させて攪
拌を行なっている。
In order to stir the diluted liquid, generally a stirrer is inserted into the diluted liquid and stirred by magnetically rotating the stirrer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、液の攪拌のためには少くとも1−以上の希釈液
量を必要とし、希釈倍率を考慮すると、試料量の減少に
は限界がある。そこで、特定の試料の分析では攪拌器を
用いることなく試料を測定することが望まれる。
However, in order to stir the liquid, a diluent volume of at least 1- or more is required, and when the dilution ratio is considered, there is a limit to how much the sample volume can be reduced. Therefore, when analyzing a specific sample, it is desirable to measure the sample without using a stirrer.

そこで、本発明は上記の如き問題点を解決して、分析の
ために必要な試料の量を低減した微少量溶液の電気化学
的分析方法及び装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems and provide a method and apparatus for electrochemical analysis of a minute amount of solution, which reduces the amount of sample required for analysis.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、被測定溶液を磁気攪拌器を用いずに正確な
測定を行うための解決手段として、被測定溶液を何らか
の方法で振動させる。すなわち、液体に周波数f (H
z)の周波振動を液体の容量容器の形状その他の条件で
決まる共振周波数となるように設定し、液体を振動させ
て、液体中では強制攪拌状態となり、溶液中の成分は均
一化させる。
In the present invention, the solution to be measured is vibrated by some method as a means for accurately measuring the solution to be measured without using a magnetic stirrer. That is, the liquid has a frequency f (H
The frequency vibration of z) is set to a resonance frequency determined by the shape of the liquid capacity container and other conditions, and the liquid is vibrated, resulting in a forced stirring state in the liquid, and the components in the solution are made uniform.

すなわち、本発明の要旨は、溶液中の特定基質を電極手
段を用いて電気化学的に分析する方法において、分析す
る際に被測定溶液に振動を加えて該溶液を均一化するこ
とを特徴とする電気化学的分析方法にある。
That is, the gist of the present invention is a method for electrochemically analyzing a specific substrate in a solution using an electrode means, which is characterized in that the solution to be measured is homogenized by applying vibrations during the analysis. It is an electrochemical analysis method.

同様にして、本発明のもう1つの要旨は、被測定溶液を
収容する容器と、被測定溶液中に浸漬し該被測定溶液中
の特定基質を電気化学的に分析するための電極手段と、
該容器中の被測定溶液に振動を加える手段とを具備して
なることを特徴とする電気化学的分析装置にある。
Similarly, another gist of the present invention is a container containing a solution to be measured, an electrode means for electrochemically analyzing a specific substrate in the solution to be measured by being immersed in the solution to be measured;
An electrochemical analysis apparatus characterized by comprising means for applying vibration to a solution to be measured in the container.

溶液に加える振動数は、上記の如く液体の容量、容器の
形状等で決まる溶液系の共振周波数に一致することが好
ましい。このとき溶液を均一化する作用(攪拌力)も最
大になるからである。また、特定の溶液系においてその
ような共振周波数の振動を任意に加えることができるよ
うに、系に加える振動の振動数をパワーと共に調整でき
る装置であることが好ましい。
The frequency of vibration applied to the solution preferably matches the resonant frequency of the solution system, which is determined by the volume of the liquid, the shape of the container, etc., as described above. This is because at this time, the effect of homogenizing the solution (stirring force) is also maximized. In addition, it is preferable that the device is capable of adjusting the frequency of the vibration applied to the system together with the power so that vibration of such a resonant frequency can be applied arbitrarily to a specific solution system.

溶液に振動を加えるには、溶液を収容する容器を振動さ
せるか、分析のために溶液中に浸漬する電極手段のいず
れかを振動させることが試料の量を最小限化する目的と
の関係から好ましいが、溶液中に特別の振動印加手段を
挿入することを排除するわけではない。
Vibrations can be applied to the solution by either vibrating the container containing the solution or by vibrating the electrode means immersed in the solution for analysis, with the aim of minimizing the sample volume. Although preferred, it is not excluded to insert special vibration applying means into the solution.

〔作 用〕[For production]

本発明では溶液に振動を加えて溶液の均一化が図られる
。その結果、従来の攪拌器を用いる必要がなくなり、試
料溶液の必要量を低減することができる。
In the present invention, the solution is homogenized by applying vibration to the solution. As a result, there is no need to use a conventional stirrer, and the required amount of sample solution can be reduced.

〔実施例〕〔Example〕

第1図(ア)は電極手段側を、第1図(b)は試料容器
側を振動させる場合の、本発明の原理を示す図である。
FIG. 1(a) is a diagram showing the principle of the present invention when the electrode means side is vibrated, and FIG. 1(b) is the case where the sample container side is vibrated.

これらの図において、1,4は電極手段、2.5は励振
機構、3.6は試料容器である。
In these figures, 1 and 4 are electrode means, 2.5 is an excitation mechanism, and 3.6 is a sample container.

この場合、同一濃度における電極手段からの出力は周波
数の関数となり、溶液系の共振点において出力は極大と
なる。この様子を示す模式図を第2図に示す。第2図に
おいて、曲線Aは小さい振幅で、曲線Bは大きい振幅で
、それぞれ励振周波数を変えた場合の電極手段からの出
力値を表わしている。これらの曲線から、溶液系は特定
の振動数で共振して溶液の攪拌状態(均一化)が極大に
なること、また系に加える振動の振幅に応じて共振周波
数及び出力の極大値が変わることが認められる。なお、
共振周波数は、前記の如く、そのほか、溶液の量、容器
などによっても変化する。
In this case, the output from the electrode means at the same concentration is a function of frequency, with the output reaching a maximum at the resonance point of the solution system. A schematic diagram showing this situation is shown in FIG. In FIG. 2, curve A represents the output value from the electrode means at a small amplitude and curve B at a large amplitude when the excitation frequency is varied. These curves show that the solution system resonates at a specific frequency and the agitation state (uniformity) of the solution reaches its maximum, and that the resonance frequency and maximum output value change depending on the amplitude of the vibration applied to the system. is recognized. In addition,
As mentioned above, the resonance frequency also changes depending on the amount of solution, container, etc.

第3図に本発明の実施例の装置を示す。同図中、11は
直径10玉、長さ50mの酸素電極、12は試料容器で
被測定溶液13を収容し、この溶液13中に酸素電極1
1の先端部が浸漬される。酸素電極11は上部において
可動アーム14が取付けられ、この可動アーム14は他
端が固定枠15に軸着されて上下に揺動可能である。ま
た、可動アーム14は上方から固定枠に他端が固定され
たスプリング16で引っ張り状態にされると共に、下方
から直流抵抗50Ω、インダクタンス100m)Iの励
振コイル17で磁気的に引っ張られるようになっている
。励振コイル17はバイアス用直流電源18でバイアス
した上で励振用交流電源19で励振される。従って、酸
素電極11及び可動アーム14はバイアス用直流電源1
8による励振コイル17による下方からの引力とスプリ
ング16による上方からの引力がつり合った位置を中心
として、励振用交流電源19で加えられる交流の周波数
とパワーにもとづいて励振コイルからの磁力の変動によ
って上下に振動する。第2図で見られる共振状態での出
力最大値の大きさは上記直流電源18のバイアス電圧の
調整によって選択でき、共振周波数は交流電源19の周
波数を調節して実現することができる。なお、酸素電極
で検出された出力は電力増幅器20を介して記録装置2
1で記録される。
FIG. 3 shows an apparatus according to an embodiment of the present invention. In the figure, 11 is an oxygen electrode with a diameter of 10 beads and a length of 50 m, and 12 is a sample container that contains a solution to be measured 13.
The tip of 1 is immersed. A movable arm 14 is attached to the upper part of the oxygen electrode 11, and the other end of the movable arm 14 is pivotally attached to a fixed frame 15 so that it can swing up and down. The movable arm 14 is pulled from above by a spring 16 whose other end is fixed to a fixed frame, and magnetically pulled from below by an excitation coil 17 with a DC resistance of 50 Ω and an inductance of 100 m). ing. The excitation coil 17 is biased with a bias DC power supply 18 and then excited with an excitation AC power supply 19 . Therefore, the oxygen electrode 11 and the movable arm 14 are connected to the bias DC power supply 1.
The magnetic force from the excitation coil changes based on the frequency and power of the alternating current applied by the excitation AC power source 19, centered on the position where the downward force of the excitation coil 17 and the upward force of the spring 16 are balanced. It vibrates up and down. The magnitude of the maximum output value in the resonant state shown in FIG. 2 can be selected by adjusting the bias voltage of the DC power supply 18, and the resonant frequency can be achieved by adjusting the frequency of the AC power supply 19. Note that the output detected by the oxygen electrode is sent to the recording device 2 via the power amplifier 20.
It is recorded as 1.

第3図において、直流電源18のバイアス電圧と交流電
源19の周波数及びパワーとを制御するための回路の例
を第4図に示す。第4図において、31は低周波発振器
で、これによって発生した低周波電力は電力増幅器32
で増幅されるとともに、直流定電圧電源33でバイアス
電圧を印加されて、励振コイル34に供給される。
In FIG. 3, an example of a circuit for controlling the bias voltage of the DC power source 18 and the frequency and power of the AC power source 19 is shown in FIG. In FIG. 4, 31 is a low frequency oscillator, and the low frequency power generated by this is sent to the power amplifier 32.
At the same time, a bias voltage is applied by a DC constant voltage power supply 33 and the signal is supplied to an excitation coil 34 .

実施例1 第3図及び第4図に示した装置を用いて、励振用コイル
に流す直流成分と交流成分を変えて、20℃における酸
素飽和水溶液の出力電流値を測定した。励振波形は正弦
波、励振電圧はIOV(rms) 、試料容量は50−
である。
Example 1 Using the apparatus shown in FIGS. 3 and 4, the output current value of an oxygen-saturated aqueous solution at 20° C. was measured by changing the DC component and AC component flowing through the excitation coil. The excitation waveform is a sine wave, the excitation voltage is IOV (rms), and the sample volume is 50-
It is.

結果を第5図に示す。なお、第5図には、比較のため従
来の磁気攪拌器による攪拌下での測定レベルも示した。
The results are shown in Figure 5. For comparison, FIG. 5 also shows the measurement level under stirring using a conventional magnetic stirrer.

同図から、バイアス電圧vbを4V、6V、8V、IO
Vと高めてゆくと出カッ極大値が次第に高くなってゆく
のが見られる。そして、出力は直流電圧10V、周波数
40七で極大となり、この極大値は、従来法に従って溶
液を磁気攪拌器を用いて攪拌した場合とほぼ同一である
From the same figure, bias voltage vb is 4V, 6V, 8V, IO
It can be seen that as the value of V is increased, the maximum output value gradually becomes higher. The output reaches a maximum at a DC voltage of 10 V and a frequency of 407, and this maximum value is almost the same as when the solution is stirred using a magnetic stirrer according to the conventional method.

従って、本発明によれば、攪拌器を用いることなく、従
来と同等の出力レベルを達成することができることが確
認された。
Therefore, it was confirmed that according to the present invention, it is possible to achieve an output level equivalent to the conventional one without using a stirrer.

実施例2 第3図の酸素電極の感応部にグルコース(ブドウ糖)酸
化酵素(05D)を固定化してグルコースセンサとして
動作させた。まずC0D(東洋紡製、 Aspergi
ns Niger由来)50mg、ウシ血清アルブミン
10■を1 mgの水に溶かした。これに50%グルク
ルアルデヒド水溶液20111を添加しよく混合した。
Example 2 Glucose (glucose) oxidase (05D) was immobilized on the sensitive part of the oxygen electrode shown in FIG. 3 to operate as a glucose sensor. First, C0D (manufactured by Toyobo, Aspergi
ns Niger origin) and 10 μg of bovine serum albumin were dissolved in 1 mg of water. A 50% aqueous solution of gluculaldehyde 20111 was added to this and mixed well.

この溶液LOdを透析膜上1.:滴下し、4℃で1昼夜
乾燥させた。すると、これは不溶性の固定化酵素膜とな
り、繰り返し使用可能のセンサに利用できるものであっ
た。この膜を第3図と同様の酸素電極の先端に取り付け
、濃度既知のグルコース溶液に対する出力を測定した。
This solution LOd was placed on the dialysis membrane 1. : Dropped dropwise and dried at 4°C for 1 day and night. This resulted in an insoluble, immobilized enzyme membrane that could be used as a reusable sensor. This membrane was attached to the tip of an oxygen electrode similar to that shown in FIG. 3, and the output to a glucose solution of known concentration was measured.

得られた特性を第6図に示す。この特性は、従来の磁気
強制攪拌によるセンサとほぼ同一の特性であり、グルコ
ースセンサにおいても本発明の方法及び装置を用いて攪
拌器を用いずに測定が可能であることが確認された。ま
た、必要とする溶液の量は、本方法によれば0.5−程
度でも良く、従来1−以上必要であった溶液の量を大幅
に減らすことが可能であった。
The obtained characteristics are shown in FIG. This characteristic is almost the same as that of a conventional sensor using magnetically forced stirring, and it was confirmed that measurement of a glucose sensor can also be performed using the method and apparatus of the present invention without using a stirrer. Further, according to the present method, the amount of solution required may be as low as about 0.5, making it possible to significantly reduce the amount of solution that was conventionally required to be 1 or more.

なお、この実施例では溶液の必要量が従来の1/2にな
ったが、装置の形状等を工夫すればさらに少なくするこ
とも可能である。
In this example, the required amount of solution was reduced to 1/2 of the conventional amount, but it can be further reduced by modifying the shape of the device.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、微少溶液試料の電気化学的分析におい
て、測定に必要な試料溶液の最低量を従来の磁気攪拌方
式と比べて1/2以下に低減することが可能であり、こ
れは試料の調製あるいは採取を容易化し、また従来測定
が困難であった試料についても安定して測定することを
可能にする効果がある。
According to the present invention, in electrochemical analysis of a minute solution sample, it is possible to reduce the minimum amount of sample solution required for measurement to 1/2 or less compared to the conventional magnetic stirring method. This method has the effect of making it easier to prepare or collect samples, and also making it possible to stably measure samples that have been difficult to measure in the past.

さらに、試料容器以外に試料に接する部分が無いため、
洗浄操作等の軽減に大きな効果がある。
Furthermore, since there is no part other than the sample container that comes into contact with the sample,
This has a great effect on reducing cleaning operations, etc.

また、電極を振動させる方法においては、電極表面の吸
着物質(汚染物質)が落ち易いため洗浄効果もあり、電
極の長寿命化に効果がある。
In addition, in the method of vibrating the electrode, adsorbed substances (contaminants) on the electrode surface are easily removed, which has a cleaning effect and is effective in extending the life of the electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(ア)(イ)は本発明の代表的な実施例の原理図
、 第2図は実施例の特性を説明する模式図、第3図は実施
例の分析装置の模式図、 第4図は実施例の電源部の模式図、 第5図は第3図の装置で酸素濃度を測定した実施例の結
果を示す励振周波数に関する出力電流のグラフ図、 第6図は他の実施例のグルコースセンサによる測定結果
を示すグラフ図である。 1.4・・・電極手段、 2,5・・・励振機構、3.
6・・・試料容器、  11・・・酸素電極、12・・
・試料容器、   13・・・測定溶液、14・・・可
動アーム、  15・・・固定枠、16・・・スプリン
グ、  17・・・励振コイル、18・・・バイアス用
直流電源、 19・・・励振用交流電源、 20・・・電力増幅器、 21・・・記録装置、31・
・・低周波発振器、32・・・電力増幅器、33・・・
直流定電圧電源、 34・・・励振コイル。
Figures 1 (A) and (B) are principle diagrams of typical embodiments of the present invention; Figure 2 is a schematic diagram explaining the characteristics of the embodiment; Figure 3 is a schematic diagram of the analytical device of the embodiment; Figure 4 is a schematic diagram of the power supply section of the example, Figure 5 is a graph of the output current with respect to excitation frequency showing the results of the example in which oxygen concentration was measured using the device in Figure 3, and Figure 6 is another example. FIG. 2 is a graph diagram showing measurement results by the glucose sensor of FIG. 1.4... Electrode means, 2,5... Excitation mechanism, 3.
6... Sample container, 11... Oxygen electrode, 12...
- Sample container, 13... Measurement solution, 14... Movable arm, 15... Fixed frame, 16... Spring, 17... Excitation coil, 18... DC power supply for bias, 19... - Excitation AC power supply, 20... Power amplifier, 21... Recording device, 31.
...Low frequency oscillator, 32...Power amplifier, 33...
DC constant voltage power supply, 34...excitation coil.

Claims (1)

【特許請求の範囲】 1、溶液中の特定基質を電極手段を用いて電気化学的に
分析する方法において、分析する際に被測定溶液に振動
を加えて該溶液を均一化することを特徴とする電気化学
的分析方法。 2、被測定溶液を収容する容器と、被測定溶液中に浸漬
し該被測定溶液中の特定基質を電気化学的に分析するた
めの電極手段と、該容器中の被測定溶液に振動を加える
手段とを具備してなることを特徴とする電気化学的分析
装置。
[Claims] 1. A method for electrochemically analyzing a specific substrate in a solution using an electrode means, characterized by applying vibration to the solution to be measured to homogenize the solution during analysis. electrochemical analysis method. 2. A container containing a solution to be measured, an electrode means for electrochemically analyzing a specific substrate in the solution by immersing it in the solution to be measured, and applying vibration to the solution to be measured in the container. An electrochemical analysis device characterized by comprising: means.
JP63056315A 1988-03-11 1988-03-11 Electrochemical analysis method and device Expired - Lifetime JP2692682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63056315A JP2692682B2 (en) 1988-03-11 1988-03-11 Electrochemical analysis method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63056315A JP2692682B2 (en) 1988-03-11 1988-03-11 Electrochemical analysis method and device

Publications (2)

Publication Number Publication Date
JPH01232248A true JPH01232248A (en) 1989-09-18
JP2692682B2 JP2692682B2 (en) 1997-12-17

Family

ID=13023722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63056315A Expired - Lifetime JP2692682B2 (en) 1988-03-11 1988-03-11 Electrochemical analysis method and device

Country Status (1)

Country Link
JP (1) JP2692682B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368053U (en) * 1989-11-03 1991-07-03
US8277618B2 (en) 2006-05-19 2012-10-02 The University Of Liverpool Electrochemical cell
CN104081211A (en) * 2012-01-30 2014-10-01 株式会社东芝 Stirring device and automatic analysis apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117161A (en) * 1980-02-20 1981-09-14 Oriental Yeast Co Ltd Electrode coated with diaphragm

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117161A (en) * 1980-02-20 1981-09-14 Oriental Yeast Co Ltd Electrode coated with diaphragm

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368053U (en) * 1989-11-03 1991-07-03
US8277618B2 (en) 2006-05-19 2012-10-02 The University Of Liverpool Electrochemical cell
CN104081211A (en) * 2012-01-30 2014-10-01 株式会社东芝 Stirring device and automatic analysis apparatus

Also Published As

Publication number Publication date
JP2692682B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
Hagan et al. Comparison of hydrodynamic voltammetry implemented by sonication to a rotating disk electrode
RU2528102C2 (en) Rotating magnetic field for improved detection in cluster analysis
Tefashe et al. Quantitative characterization of shear force regulation for scanning electrochemical microscopy
CA1241104A (en) Voltammetric method of measuring and an apparatus for realizing the method
US20060219575A1 (en) Method of Checking the Function of a Sensor
Mikkelsen et al. An oscillating and renewing silver electrode for cadmium and lead detection in differential pulse stripping voltammetry
JPH01232248A (en) Method and apparatus for electrochemical analysis
JP2007198920A (en) Stirring unit
JP2002148295A (en) Method and instrument for frequency measurement and analytical equipment
Muramatsu et al. Quartz-crystal sensors for biosensing and chemical analysis
US7331232B2 (en) Measurement method and biosensor apparatus using resonator
Hackley et al. Analysis of the isoelectric point in moderately concentrated alumina suspensions using electroacoustic and streaming potential methods
JPH06501312A (en) Method and apparatus for measuring the ratio of paramagnetic gases in a gas mixture
RU92539U1 (en) ANALYZER FOR DETERMINING THE TOTAL ANTIOXIDANT ACTIVITY OF BIOLOGICAL OBJECTS
JP3466587B2 (en) Concentration measuring device and concentration measuring method
JPS63138246A (en) Method for testing stirring state of plating liquid
Wang Evaluation of pulsed-stirring voltammetry
EP2083256B1 (en) Method for agitating liquid material by using crystal oscillator
JP2005514593A (en) System and method for determining dissolved oxygen in a fluid
Wang et al. Stripping potentiometric measurements of copper in blood using gold microelectrodes
Mikkelsen et al. Sensitivity enhancements in stripping voltammetry from exposure to low frequency sound
US6251245B1 (en) Detecting and analyzing apparatus for positive ions and negative ions in a liquid
JP3064487B2 (en) Liquid level detector
Simjee et al. Hydrodynamic Modulation Voltammetry with a Dual Disk Chopped Flow‐Microjet Electrode (CF‐MJE)
JP3251103B2 (en) Osmotic pressure measuring device