JPH0123137B2 - - Google Patents

Info

Publication number
JPH0123137B2
JPH0123137B2 JP62253663A JP25366387A JPH0123137B2 JP H0123137 B2 JPH0123137 B2 JP H0123137B2 JP 62253663 A JP62253663 A JP 62253663A JP 25366387 A JP25366387 A JP 25366387A JP H0123137 B2 JPH0123137 B2 JP H0123137B2
Authority
JP
Japan
Prior art keywords
probe
point
focusing
focal point
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP62253663A
Other languages
Japanese (ja)
Other versions
JPS63246142A (en
Inventor
Toshiro Kondo
Masao Kuroda
Hiroshi Kanda
Toshio Ogawa
Sekijuro Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP62253663A priority Critical patent/JPS63246142A/en
Publication of JPS63246142A publication Critical patent/JPS63246142A/en
Publication of JPH0123137B2 publication Critical patent/JPH0123137B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超音波診断装置に係り、特に超音波の
集束点を深度方向に移動させることができる超音
波診断装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic diagnostic apparatus, and particularly relates to an improvement in an ultrasonic diagnostic apparatus that can move the focal point of ultrasonic waves in the depth direction.

〔従来の技術〕[Conventional technology]

医用診断などに用いる超音波撮像装置の方位分
解能は、超音波ビームを発射し、受波する探触子
の特性により決まる。第4図は、機械走査方式の
超音波撮像装置に、従来より用いられている円形
平板形探触子の振動子の断面とその超音波ビーム
の模式図を示したものである。この探触子では、
円板の直径をD、超音波の波長をλとすると、
D2/λで決まる近距離音場限界(XN)まで、超
音波ビームの巾はほぼ振動子と同じ巾となり、こ
れより遠距離ではλ/Dの開き角で超音波ビーム
は広がる。このような特性の円形平板形探触子に
対し、凹面状の振動子を用いて近距離の超音波ビ
ームを細くすることを計つた凹面集束形探触子が
提案されている。第5図は、凹面集束形探触子の
振動子の断面と超音波ビームを模式的に示したも
のである。このように、凹面状の振動子を用いる
ことにより特定領域で超音波ビームを細くするこ
とができる。また、この領域の反射エコーを受波
する場合においても、超音波を発射する場合と同
様の特性となる。したがつて凹面集束形探触子を
用い、超音波撮像装置の方位分解能を上げること
はよく行なわれている。上記の形式の探触子を用
いた装置では、特定の領域では分解能が向上する
が、その領域からはずれると分解能が急激に低下
する欠点がある。したがつて、測定領域が広い場
合都合が悪い。このような欠点を改善するため、
平面円板振動子をリング状に分割し、これら分割
した振動子からの受波信号に遅延を与えた後加算
することにより、凹面振動子と同様に集束作用を
持たせ、なおかつ上記の遅延量を時間の経過に従
つて変化させて、集束点を移動させて測定領域全
域にわたり高分解能を得る試みがなされている。
(上田、佐藤、前田、山本;電子通信学会論文誌、
vol58−A(1975)p729参照)これと同じことが矩
形振動子についてもなされている。
The azimuth resolution of an ultrasound imaging device used for medical diagnosis and the like is determined by the characteristics of a probe that emits and receives ultrasound beams. FIG. 4 shows a cross section of a transducer of a circular flat probe conventionally used in a mechanical scanning type ultrasonic imaging device and a schematic diagram of its ultrasonic beam. With this probe,
If the diameter of the disk is D and the wavelength of the ultrasonic wave is λ, then
Up to the near-field sound field limit (X N ) determined by D 2 /λ, the width of the ultrasonic beam is approximately the same width as the transducer, and at longer distances the ultrasonic beam spreads with an opening angle of λ/D. In contrast to circular plate probes with such characteristics, a concave focusing probe has been proposed that uses a concave transducer to narrow the ultrasonic beam at a short distance. FIG. 5 schematically shows the cross section of the transducer of the concave focusing probe and the ultrasonic beam. In this way, by using a concave transducer, the ultrasonic beam can be narrowed in a specific region. Also, when receiving reflected echoes in this region, the same characteristics as when emitting ultrasonic waves are obtained. Therefore, it is common practice to use a concave focusing probe to increase the lateral resolution of an ultrasonic imaging device. An apparatus using the above-mentioned type of probe has the disadvantage that, although the resolution improves in a specific region, the resolution rapidly decreases when the device deviates from that region. Therefore, it is not convenient when the measurement area is wide. In order to improve these shortcomings,
By dividing the planar disk vibrator into ring shapes and adding a delay to the received signals from these divided vibrators, it is possible to have a focusing effect similar to that of a concave vibrator, and still achieve the above delay amount. Attempts have been made to change the focal point over time and move the focal point to obtain high resolution over the entire measurement area.
(Ueda, Sato, Maeda, Yamamoto; Transactions of the Institute of Electronics and Communication Engineers,
vol58-A (1975) p729) The same thing is done for rectangular oscillators.

これら集束点を移動できる振動子の駆動法の原
理について、以下矩形振動子を用いた例により説
明する。等間隔で同一平面上に配列された巾がせ
まく長いn個の矩形振動子1,2,…,n、を考
える。第6図はその配列状態と集束点P1,P2
P3の関係を示したものである。振動子列の中心
を通り振動子列に直角な直線上に収束点P1,P2
P3をおく。これらの点を中心として振動子列の
両端に位置する振動子の中心を通る円弧を描く。
各振動子の中心と点P1とを結ぶ直線がこの円弧
と交わる点からの各振動子1,2,…,nの中心
までの距離l11,l21…lo1に相当する時間τ11,τ21
τo1の遅延時間を各振動子からの受波信号に与え
た後加算すれば反射エコーは点P1に対し集束す
ることになる。ここにτo1=lo1/c、cは媒質中
の音速である。反射エコーを点P2に集束させる
ためには、各振動子1,2,…,nに上記と同様
τ12=l12/c,τ22=l22/c、…τo2=lo2/cなる
遅延を与えた後加算すればよい。点P2がP3にな
つたときも同様である。ここにl12,l22,…,lo2
はP1におけるl11,l21,…,lo1を求めたのと同様
の作図法により与えられる。
The principle of a method of driving a vibrator that can move these focal points will be explained below using an example using a rectangular vibrator. Consider n rectangular oscillators 1, 2, . . . , n, each narrow and long in width, arranged on the same plane at equal intervals. Figure 6 shows the arrangement state and the focal points P 1 , P 2 ,
This shows the relationship of P3 . Convergence points P 1 , P 2 ,
Place P 3 . An arc is drawn around these points and passing through the centers of the vibrators located at both ends of the vibrator array.
Time τ 11 corresponding to the distance l 11 , l 21 ...l o1 from the point where the straight line connecting the center of each oscillator and point P 1 intersects with this circular arc to the center of each oscillator 1, 2, ..., n ,τ 21
If a delay time of τ o1 is given to the received signal from each vibrator and then added, the reflected echo will be focused on the point P1 . Here, τ o1 =l o1 /c, where c is the speed of sound in the medium. In order to focus the reflected echo on point P 2 , for each oscillator 1, 2, ..., n, τ 12 = l 12 /c, τ 22 = l 22 /c, ... τ o2 = l o2 / as above. It is sufficient to perform the addition after giving a delay of c. The same applies when point P 2 becomes P 3 . Here l 12 , l 22 ,…, l o2
is given by the same construction method as that used to find l 11 , l 21 , ..., l o1 in P 1 .

振動子列に集束作用を持たせた受波回路例を第
7図に示す。ここで、1はさきに説明した細長い
振動子からなる振動子列、2は振動子からの超音
波の受波信号に遅延を与える回路、3は加算器で
ある。ここで遅延回路にそれぞれ、τ11,τ21,…
τo1なる遅延を与えると、この振動子列は点P1
らの反射エコーに集束されるのは先の説明より自
明である。振動子1,2,…,nにつながる遅延
回路の遅延時間を時間の経過に従い、それぞれ
τ11→τ12→τ13,τ21→τ22→τ23,…τo1→τo2
τoo
変わるように構成すると、受波の集束点はP1
P2→P3と時間と共に移動する。振動子列1から
超音波を測定対象内に発射し、この超音波を反射
する領域が時間の経過と共に深くなるのに対応さ
せて、振動子列の集束点を上記の原理に従い電子
的に移動させて、測定領域全体にわたり分解能を
向上させることができる。このような考え方は上
記の文献よりも古くからあつた。(沼、橋口;第
23回日本超音波医学会講演論文集、P61、昭48−
5および特公昭50−12742号)実際、上記の原理
の装置も試作され、その結果も報告されているよ
うに当然のことであるが、最大の欠点は振動子の
数が少なく、振動子列の巾(口径)のせまい場
合、深い領域における集束効果は少なくなり、近
距離音場限界XNにおいてのみ集束点を移動させ
る効果が大きいことである。
FIG. 7 shows an example of a wave receiving circuit in which a transducer array has a focusing effect. Here, 1 is a transducer row consisting of the elongated transducers described earlier, 2 is a circuit that delays the received ultrasonic signal from the transducer, and 3 is an adder. Here, the delay circuits have τ 11 , τ 21 ,...
It is obvious from the previous explanation that when a delay of τ o1 is given, this transducer array is focused on the reflected echo from point P 1 . The delay times of the delay circuits connected to the oscillators 1 , 2 , ... , n are calculated as time passes , respectively .
If configured so that τ oo changes, the focal point of the received wave will be P 1
It moves with time as P 2 →P 3 . Ultrasonic waves are emitted from the transducer array 1 into the measurement target, and the focal point of the transducer array is electronically moved according to the above principle as the area where the ultrasound is reflected becomes deeper over time. In this way, resolution can be improved over the entire measurement region. This kind of thinking has been around for a longer time than the above-mentioned literature. (Numa, Hashiguchi; No.
Proceedings of the 23rd Japanese Society of Ultrasound in Medicine, P61, 1972-
5 and Japanese Patent Publication No. 50-12742) In fact, a device based on the above principle has been prototyped, and the results have been reported.The biggest drawback is that the number of transducers is small, and the transducer array is When the width (aperture) is small, the focusing effect in deep regions is reduced, and the effect of moving the focusing point only in the near field limit XN is large.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

それを説明することのできる例を第8図に示
す。これは、巾0.4mmの細長い振動子を0.5mmピツ
チで40本隣接配置した巾が約20mmの探触子におい
て、2MHzの超音波を発射したときの反射エコー
を受波する際、さきに説明した原理により、集束
点を時間と共に移動させて、分解能を向上させた
場合の分解能と探触子からの距離の関係の計算結
果を示したものである。集束点は5.0、7.5、10.0、
12.5、15.0、17.5、20.0cmと順次移動させた。こ
こで分解能は感度が最高点より−3dB低下する方
位方向の巾をもつて表わしている。
An example that can explain this is shown in FIG. This is explained earlier when receiving the reflected echo when a 2MHz ultrasonic wave is emitted using a probe with a width of approximately 20mm, which has 40 elongated transducers each having a width of 0.4mm arranged adjacently at a pitch of 0.5mm. Based on this principle, the results of calculating the relationship between resolution and distance from the probe are shown when the focal point is moved over time to improve resolution. Focus points are 5.0, 7.5, 10.0,
It was moved sequentially to 12.5, 15.0, 17.5, and 20.0 cm. Here, the resolution is expressed as the width in the azimuth direction in which the sensitivity decreases by -3 dB from the highest point.

第9図は、上記と同じ巾の0.4mmの振動子を0.5
mmピツチで120個隣接配置し、約60mm巾の振動子
列を構成し、集束点を5.0、7.5、10.0、12.5、
15.0、17.5cmと順次移動させた場合の分解能と探
触子からの距離の関係を数値計算により求めたも
のである。ここで超音波の周波数は2.0MHzで、
分解能の定義は第8図の場合と同じである。この
計算結果からわかるように、振動子の数を増加さ
せて探触子の巾を広くすることにより、探触子よ
り遠距離における分解能を改善できるが、探触子
の近くにおいては、集点深度が浅くなるため集束
点近傍のみ分解能が向上するのみで、この点より
はずれると急激に分解能が低下し、巾のせまい場
合に比べ実用上かえつて悪くなつている。これを
改善するために集束点の数を増加させればよい
が、遅延回路が複雑になることにより問題とな
り、装置が大型となり高価となる等ばかりでな
く、実現が困難なことにもなる。また探触子の巾
が広くなるに従い受波信号に与えるべき遅延時間
も長くなり、実際の遅延回路の構成で性能的にも
不利となつてくる。具体的な数値をあげると、さ
きの振動子が40本の探触子において、探触子より
7.5cmの点に集束するため、探触子の中央部の振
動子の受波信号に与えるべき遅延時間が約420n
secでよいのに比べ、これが振動子が120本の巾6
cmの探触子においては3800n secの長い遅延時間
を必要とする。これを実際の回路でよく用いられ
るLC遅延線で与えようとすれば、受波信号の周
波数が2MHz程度であることを考えると、性能上
においても信号の減衰が大きくなり問題と考えら
れ、両方解決することは困難である。
Figure 9 shows a 0.4mm vibrator with the same width as above.
120 transducers are arranged adjacently at a pitch of 60 mm, forming a row of transducers approximately 60 mm wide, with focusing points of 5.0, 7.5, 10.0, 12.5,
The relationship between the resolution and the distance from the probe was determined by numerical calculation when the probe was moved sequentially to 15.0 cm and 17.5 cm. Here, the frequency of ultrasound is 2.0MHz,
The definition of resolution is the same as in the case of FIG. As can be seen from this calculation result, by increasing the number of transducers and widening the width of the probe, it is possible to improve the resolution at distances farther than the probe, but near the probe, the focal point As the depth becomes shallower, the resolution improves only near the focal point; beyond this point, the resolution drops sharply, making it even worse in practice than when the width is narrow. In order to improve this problem, the number of focusing points can be increased, but this becomes a problem due to the complexity of the delay circuit, which not only makes the device large and expensive, but also makes it difficult to implement. Furthermore, as the width of the probe increases, the delay time to be given to the received signal also increases, which is disadvantageous in terms of performance in the actual configuration of the delay circuit. To give specific numbers, the previous transducer is more powerful than the transducer among 40 probes.
In order to focus on a point of 7.5cm, the delay time that should be given to the received signal of the transducer in the center of the probe is approximately 420n.
The width of 120 transducers is 6 compared to sec.
cm probe requires a long delay time of 3800n sec. If we try to provide this with an LC delay line, which is often used in actual circuits, considering that the frequency of the received signal is about 2MHz, the signal attenuation will be large, which is considered to be a problem in terms of performance, and both It is difficult to solve.

そこで、本発明は、超音波の集束点移動可能な
超音波診断装置において、集束点と集束点との間
の分解能を向上させるとともに、その回路構成が
簡単にできる技術を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a technique for improving the resolution between focal points in an ultrasonic diagnostic apparatus in which the focal point of ultrasonic waves can be moved, and to simplify the circuit configuration thereof. do.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、巾のせまい棒状振動子を複数配列
して成る探触子と、前記探触子を用いて超音波ビ
ームを被検体内へ送波しその反射波を受波する手
段と、前記超音波ビームを電子的に集束する手段
と、前記超音波ビームの集束点を深度方向に移動
する集束点移動手段とを有する超音波診断装置に
おいて、前記移動する集束点の深度に対応して受
波に携わる振動子の数を実質的に変更することに
より探触子の口径を変更する探触子口径変更手段
と、前記集束点移動手段と探触子口径変更手段の
前記動作を制御するデータを記憶する手段と、前
記データを読み出し前記集束点移動手段と探触子
口径変更手段へ供給する手段とを具備したことを
特徴とした超音波診断装置によつて達成される。
The above object is to provide a probe comprising a plurality of narrow rod-shaped transducers arranged, a means for transmitting an ultrasonic beam into a subject using the probe and receiving the reflected wave, and In an ultrasonic diagnostic apparatus having means for electronically focusing an ultrasound beam, and a focusing point moving means for moving a focusing point of the ultrasound beam in a depth direction, a receiver is provided in accordance with the depth of the moving focusing point. probe aperture changing means for changing the aperture of the probe by substantially changing the number of transducers involved in the wave; and data for controlling the operations of the focal point moving means and the probe aperture changing means. This is achieved by an ultrasonic diagnostic apparatus characterized by comprising means for storing the data, and means for reading out the data and supplying it to the focal point moving means and the probe diameter changing means.

上記各手段の作用は、以下の実施例とともに説
明する。
The operation of each of the above means will be explained in conjunction with the following examples.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面とともに説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明の原理を説明する図である。こ
こで、1は従来の移動集束点の探触子と同様に、
巾のせまい棒状振動子を隣接配置して構成した探
触子である。ここで集束点を時間の経過と共に点
P1からP2,P3へ移動させる場合を考える。点P1
に集束させる場合、必要な分解能が得られるよう
振動子の数を定める。すなわち、探触子の実効巾
(口径)を定め、その巾をWとする。また、探触
子の中心OよりP1までの距離をRとすると、点
P1を中心とし探触子の口径を定めるその両端の
振動子の中心Q1,Q1′を通る円弧が、直線P1Oの
遅延線と交わる点を求める。この点と探触子の中
心Oとの距離をL1とする。このL1は次式で与え
られる。
FIG. 2 is a diagram explaining the principle of the present invention. Here, 1 is similar to the conventional moving focal point probe,
This probe consists of narrow rod-shaped transducers arranged adjacent to each other. Here, the focal point is set as a point over time.
Consider the case of moving from P 1 to P 2 and P 3 . Point P 1
When focusing, the number of oscillators is determined to obtain the required resolution. That is, the effective width (aperture) of the probe is determined, and the width is defined as W. Also, if the distance from the center O of the probe to P 1 is R, then the point
Find the point where the circular arc centered on P 1 and passing through the centers Q 1 and Q 1 ' of the transducers at both ends, which define the aperture of the probe, intersects the delay line of the straight line P 1 O. Let the distance between this point and the center O of the probe be L1 . This L 1 is given by the following formula.

L1=√2+(2)2−R …(1) 探触子の中心Oより集束点P1までの距離OP1
よび探触子の口径Q1,Q1′をそれぞれk倍したと
きの探触子の口径を定める両端の振動子の中心
Qk,Qk′を通り、集束点Pkを中心とする円弧と直
線OP1の延長線と交わる点を同様に求める。この
点と探触子の中心との距離をLkとするとLkは次
式で与えられる。
L 1 = √ 2 + (2) 2 −R …(1) When the distance OP 1 from the center O of the probe to the focal point P 1 and the apertures of the probe Q 1 and Q 1 ′ are each multiplied by k. The center of the transducer at both ends determines the aperture of the transducer.
Similarly, find the point where the arc passing through Q k and Q k ′ and having the focal point P k as its center intersects with the extension of the straight line OP 1 . Letting the distance between this point and the center of the probe be Lk, Lk is given by the following equation.

Lk=√()2+(2)2−kR =k{√2+(2)−R}=kL1 …(2) このように探触子の中心より集束点までの距離
を長くするのに応じ、探触子の口径もそれに比例
して広くすれば、上記の距離L1も比例的に増加
することになる。したがつて、探触子より発射し
た超音波の反射点が時間の経過と共に移動するの
にあわせて、探触子の受波の集束点を移動させ、
この移動距離に比例して探触子の口径を広くした
時の凹面振動子と等価な集束作用を持たせるた
め、探触子の各エレメントからの受波信号に与え
るべき遅延量は、第6図で求めたのと同じ方法を
第2図に適用して求めることができる。ここでは
凹振動子と等価な集束性を持つよう探触子の各エ
レメントに遅延を与えたが、アクシコン形振動子
(C.B.Burckhard et al:ULTRASONICS
vol.54、No.6、1628参照)と等価な集束性を持つ
ようにしてもよいが、以下は第6図に示した場合
についてのみ説明する。
Lk=√() 2 +(2) 2 −kR =k{√ 2 +(2)−R}=kL 1 …(2) In this way, increasing the distance from the center of the probe to the focal point If the aperture of the probe is made proportionally wider, the above-mentioned distance L1 will also increase proportionally. Therefore, as the reflection point of the ultrasonic waves emitted from the probe moves over time, the focal point of the received waves of the probe moves,
In order to have a focusing effect equivalent to that of a concave transducer when the aperture of the probe is widened in proportion to the moving distance, the amount of delay that should be given to the received signal from each element of the probe is It can be found by applying the same method to FIG. 2 as found in the figure. Here, a delay was given to each element of the probe to have a focusing property equivalent to that of a concave transducer, but an axicon-type transducer (CB Burckhard et al: ULTRASONICS
54, No. 6, 1628), but only the case shown in FIG. 6 will be described below.

上述の原理により受波の集束点を移動させた場
合の分解能(−3dB巾)を探触子からの距離の関
数として数値計算した結果を第3図に示す。ここ
で探触子のエレメント巾は0.4mmとし、ピツチを
0.5mmとしている。超音波の周波数を2.0MHzと
し、集束点を5.0、7.5、10.0、12.5、15.0、20.0cm
と順次移動させる際、探触子の口径を2.0、3.0、
4.0、5.0、6.0、7.0、8.0cmと広げている。集束点
を遠距離に移動させるに従い、探触子の口径を広
くしているため集点深度が常に一定となり、広い
範囲にわたり一定の分解能が得られている。ま
た、ここで集束点を探触子より17.5cm離れた点に
おくと、必要となる最大遅延時間は2280n secで、
これは第9図の場合に比べ約半分強の値であるか
ら容易に実現可能な数値である。本発明による
と、全域にわたり焦点深度、分解能が一様となる
ため均一な画質が得られ、集束点を一定間隔で移
動させればよいことは大きな特長といえる。ま
た、生体では超音波は減衰するため探触子から遠
距離になる程反射エコーは弱くなる。そのため生
体診断用の実用装置では、受波信号の増幅器の利
得を時間経過と共に変るようにしているが十分で
はない。本発明では時間経過と共に探触子におい
て受波に携わる振動子の数が増加し、受波信号も
強くなる大きな利点がある。
Figure 3 shows the results of numerical calculation of the resolution (-3 dB width) as a function of the distance from the probe when the focal point of the received wave is moved according to the above-mentioned principle. Here, the element width of the probe is 0.4 mm, and the pitch is
It is set to 0.5mm. The ultrasonic frequency is 2.0MHz, and the focal point is 5.0, 7.5, 10.0, 12.5, 15.0, 20.0cm.
When moving the probe sequentially, change the aperture of the probe to 2.0, 3.0,
It is expanded to 4.0, 5.0, 6.0, 7.0, and 8.0cm. As the focal point is moved farther away, the aperture of the probe is widened, so the depth of the focal point is always constant, and constant resolution is obtained over a wide range. Also, if the focusing point is placed 17.5 cm away from the probe, the maximum delay time required is 2280 n sec,
This value is about half the value of the case shown in FIG. 9, so it is an easily achievable value. According to the present invention, since the depth of focus and resolution are uniform over the entire area, uniform image quality can be obtained, and the great feature is that it is only necessary to move the focal point at regular intervals. Furthermore, since ultrasonic waves are attenuated in a living body, the reflected echoes become weaker as the distance from the probe increases. Therefore, in practical devices for biological diagnosis, the gain of the amplifier for the received signal is changed over time, but this is not sufficient. The present invention has the great advantage that the number of transducers involved in wave reception in the probe increases over time, and the received signal also becomes stronger.

第1図は本発明の要部の回路構成図である。図
において、1は巾のせまい振動子を多数隣接配置
して成る探触子、2はタツプ付遅延線、3は加算
器、4はアナログスイツチ、5はシフトレジス
タ、6は増幅器、7はシフトレジスタ、8は
ROM(Read−Only−Memory)である。この構
成において、探触子1で受信された生体内よりの
反射波は、各振動子1-1,1-2,…1-oに接続さ
れた増幅器6,6-1,6-2,…6-oにより増幅さ
れた後、遅延線2に導かれる。遅延線2,2-1
-2,…2-oには、各振動子に与える第2図に示
す線分Lに相当する遅延時間を設定するタツプが
設けられている。これらのタツプの選択はアナロ
グスイツチ4,4-1,4-2,…4-oの開閉により
行われる。この図ではシフトレジスタ7の出力が
1のときアナログスイツチが4が閉じ、0のとき
開くようになつており、受波信号は、例えば図示
の最上段のチヤンネルでは、シフトレジスタ7が
左へ3回送られて初めて振動子1-1からの信号が
遅延線2-1を介して加算器3へ送られる。そし
て、集束点が探触子1に近く口径がせまくてよい
ため、受波信号を必要としない場合が生ずる振動
子においては、アナログスイツチ4により受波信
号が加算器3に印加されないよう、アナログスイ
ツチ4は遅延線2のタツプの他に接地することも
できるようになつている。
FIG. 1 is a circuit diagram of the main part of the present invention. In the figure, 1 is a probe consisting of a number of narrow transducers arranged adjacent to each other, 2 is a delay line with taps, 3 is an adder, 4 is an analog switch, 5 is a shift register, 6 is an amplifier, and 7 is a shifter. register, 8
It is ROM (Read-Only-Memory). In this configuration, the reflected waves from inside the living body received by the probe 1 are transmitted through the amplifiers 6, 6 -1 , 6 -2 , which are connected to the respective transducers 1 -1 , 1 -2 , ...1 -o . …6 After being amplified by -o , it is guided to delay line 2. Delay line 2, 2 -1 ,
2 -2 , . . . 2 -o are provided with taps for setting the delay time corresponding to the line segment L shown in FIG. 2 given to each vibrator. Selection of these taps is performed by opening and closing analog switches 4, 4-1 , 4-2 , . . . 4 -o . In this figure, when the output of the shift register 7 is 1, the analog switch 4 is closed, and when it is 0, it is opened. The signal from the vibrator 1 -1 is sent to the adder 3 via the delay line 2 -1 for the first time. In the case of a transducer in which the convergence point is close to the probe 1 and the aperture may be small, and therefore the received signal is not required, the analog switch 4 is used to prevent the received signal from being applied to the adder 3. The switch 4 can be connected not only to the tap of the delay line 2 but also to ground.

遅延線2のタツプ切り換え、探触子1の口径の
制御は、アナログスイツチ4とシフトレジスタ
5,7とROM8により行われる。シフトレジス
タ5はシリアル入力、パラレル出力となつてい
て、一方シフトレジスタ7はパラレル入力、パラ
レル出力となつている。シフトレジスタ7の内容
は制御信号により一斉に書換えが可能であり、新
たに書き込まれるデータは、図示のようにシフト
レジスタ7に接続されているシフトレジスタ5の
データが転送されるようになつている。シフトレ
ジスタ5の内容がシフトレジスタ7へ移つた後
は、ROM8からの新たな内容が、シフトレジス
タ5へ逐次書き込まれるようになつている。この
動作はクロツクパルスにより、アナログスイツチ
4の切換えを行う間隙においてなされる。ROM
8には、当然のことながら読み出す順序に、集束
点及び探触子の口径(動作させる振動子の数と位
置)が、さきに説明した本発明の原理に従つた数
値となるよう予め計算しデータとして入れてあ
る。
Tap switching of the delay line 2 and control of the aperture of the probe 1 are performed by an analog switch 4, shift registers 5, 7, and ROM 8. Shift register 5 has serial input and parallel output, while shift register 7 has parallel input and parallel output. The contents of the shift register 7 can be rewritten all at once by a control signal, and newly written data is transferred from the shift register 5 connected to the shift register 7 as shown in the figure. . After the contents of the shift register 5 are transferred to the shift register 7, new contents from the ROM 8 are sequentially written to the shift register 5. This operation is performed in the interval during which the analog switch 4 is switched by a clock pulse. ROM
8. Of course, in the reading order, the focusing point and probe aperture (the number and position of the transducers to be operated) must be calculated in advance so that they follow the principle of the present invention explained earlier. It is included as data.

以上は受波の場合について説明したが、送波に
ついても、集束点の移動に伴い探触子の口径を変
えて、受波の場合と同様に集束点の移動にかかわ
らず超音波ビーム巾を一定にすることができる。
なお、本実施例では、振動子の出力を加算器へ印
加させない方法として、増幅器の出力を接地する
ように構成したが、これに限らず、前述の増幅器
の利得を変える方法を用いても良い。
The above explained the case of wave reception, but for wave transmission, the diameter of the probe is changed as the focal point moves, and the ultrasonic beam width can be controlled regardless of the movement of the focal point, as in the case of wave reception. It can be kept constant.
In this embodiment, the output of the amplifier is grounded as a method of not applying the output of the vibrator to the adder, but the present invention is not limited to this, and the method of changing the gain of the amplifier described above may also be used. .

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく本発明によれば、観察領域
全域にわたり一様な分解能を得ることができ、そ
の実施に際し、収束点の焦点深度が一様であるた
め、焦点の設定数が少なくてよく、必要な遅延回
路の遅延量も従来より少なくすることができるた
め具体的に実現が可能である。また生体における
超音波の減衰による探触子より遠距離での感度低
下が補なわれ、この領域でのSNが改善されるこ
となど実用上の効果は大きい。
As explained above, according to the present invention, it is possible to obtain uniform resolution over the entire observation area, and when implementing this, the depth of focus of the convergence point is uniform, so the number of focal points to be set is small, and the number of focal points required is small. Since the delay amount of the delay circuit can also be made smaller than that of the conventional method, it is possible to concretely realize the present invention. It also compensates for the loss of sensitivity at long distances from the probe due to attenuation of ultrasound in the living body, and has great practical effects, such as improving SN in this region.

さらに、集束のための遅延線の制御および動作
に携わる振動子数の制御は予め計算したデータを
記憶手段に記憶させておいて、動作順に読み出し
て使用するということも可能となり、回路構成を
著しく簡単にすることができる。
Furthermore, to control the delay line for focusing and the number of oscillators involved in operation, it is possible to store pre-calculated data in a storage means and read it out in the order of operation and use it, significantly reducing the circuit configuration. It can be done easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による集束点移動お
よび振動子数変更を行う部分の回路構成図、第2
図は本発明の探触子の口径と集束点との変更に対
し与える遅延時間を求める原理説明図、第3図は
本発明による探触子からの距離と分解能の関係を
計算により求めた一例の図、第4図は平板振動子
を用いた場合の超音波ビームの模式図、第5図は
凹面振動子を用いた場合の超音波ビームの模式
図、第6図は従来の超音波集束方法の原理図、第
7図は第6図の超音波の集束を行う回路の原理
図、第8図は巾のせまい探触子を用いて集束点を
移動させた場合の探触子からの距離と分解能の関
係の一例を計算により求めた図、第9図は巾の広
い探触子を用いて集束点を移動させた場合の探触
子からの距離と分解能の関係の一例を計算により
求めた図である。 1……探触子、2……遅延線、3……加算器、
4……アナログスイツチ、5……シフトレジス
タ、6……増幅器、7……シフトレジスタ、8…
…ROM。
FIG. 1 is a circuit configuration diagram of a portion that moves the focal point and changes the number of oscillators according to an embodiment of the present invention, and FIG.
The figure is an explanatory diagram of the principle of determining the delay time given to changes in the aperture and focal point of the probe according to the present invention. Figure 3 is an example of calculating the relationship between the distance from the probe and the resolution according to the present invention. Figure 4 is a schematic diagram of an ultrasound beam when using a flat plate transducer, Figure 5 is a schematic diagram of an ultrasound beam when a concave transducer is used, and Figure 6 is a diagram of conventional ultrasound focusing. Figure 7 is a diagram of the principle of the method, Figure 7 is a diagram of the circuit that focuses the ultrasonic waves in Figure 6, and Figure 8 is the diagram of the principle of the ultrasonic wave focusing circuit shown in Figure 6. Figure 9 shows an example of the relationship between distance and resolution obtained by calculation. Figure 9 shows an example of the relationship between distance from the probe and resolution when a wide probe is used and the focal point is moved. This is the diagram I found. 1... Probe, 2... Delay line, 3... Adder,
4...analog switch, 5...shift register, 6...amplifier, 7...shift register, 8...
…ROM.

Claims (1)

【特許請求の範囲】 1 巾のせまい棒状振動子を多数隣接配置して成
る探触子と、該探触子を用いて超音波ビームを被
検体内へ送波しその反射波を受波する手段と、前
記超音波ビームを電子的に集束する手段と、前記
超音波ビームの集束点を深度方向に移動する集束
点移動手段とを有した超音波診断装置において、
前記移動する集束点の深度に対応して速波又は受
波に携わる振動子の数を実質的に変更することに
より探触子の口径を変更する探触子口径変更手段
と、前記集束点移動手段と探触子口径変更手段の
前記動作を制御するデータを記憶する手段と、前
記データを読み出し前記集束点移動手段と探触子
口径変更手段へ供給する手段とを具備したことを
特徴とする超音波診断装置。 2 前記データ記憶手段はROM(Read−Only−
Memory)であることを特徴とする特許請求の範
囲第1項記載の超音波診断装置。
[Scope of Claims] 1. A probe consisting of a large number of narrow rod-shaped transducers arranged adjacent to each other, and the probe is used to transmit an ultrasonic beam into a subject and receive the reflected waves. an ultrasonic diagnostic apparatus comprising: a means for electronically focusing the ultrasonic beam; and a focusing point moving means for moving the focusing point of the ultrasonic beam in a depth direction,
a probe diameter changing means for changing the diameter of the probe by substantially changing the number of transducers involved in fast waves or wave reception in accordance with the depth of the moving focal point; and moving the focal point. The method is characterized by comprising means for storing data for controlling the operations of the means and the probe diameter changing means, and means for reading out the data and supplying it to the focusing point moving means and the probe diameter changing means. Ultrasound diagnostic equipment. 2 The data storage means is a ROM (Read-Only-
2. The ultrasonic diagnostic apparatus according to claim 1, wherein the ultrasonic diagnostic apparatus is a memory.
JP62253663A 1987-10-09 1987-10-09 Ultrasonic diagnostic apparatus Granted JPS63246142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62253663A JPS63246142A (en) 1987-10-09 1987-10-09 Ultrasonic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62253663A JPS63246142A (en) 1987-10-09 1987-10-09 Ultrasonic diagnostic apparatus

Publications (2)

Publication Number Publication Date
JPS63246142A JPS63246142A (en) 1988-10-13
JPH0123137B2 true JPH0123137B2 (en) 1989-05-01

Family

ID=17254450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62253663A Granted JPS63246142A (en) 1987-10-09 1987-10-09 Ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPS63246142A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6390981B1 (en) * 2000-05-23 2002-05-21 Koninklijke Philips Electronics N.V. Ultrasonic spatial compounding with curved array scanheads

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157012A (en) * 1984-08-28 1986-03-22 Sony Corp Magnetoresistance effect type magnetic head device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157012A (en) * 1984-08-28 1986-03-22 Sony Corp Magnetoresistance effect type magnetic head device

Also Published As

Publication number Publication date
JPS63246142A (en) 1988-10-13

Similar Documents

Publication Publication Date Title
JP4551524B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
US4180790A (en) Dynamic array aperture and focus control for ultrasonic imaging systems
US5329930A (en) Phased array sector scanner with multiplexed acoustic transducer elements
US7361145B2 (en) Block-switching in ultrasound imaging
US4224829A (en) Two-dimensional linear B-scan ultrasound diagnostic apparatus with phase and amplitude tapering
US4058003A (en) Ultrasonic electronic lens with reduced delay range
JP4242472B2 (en) Ultrasonic transducer array and ultrasonic imaging system
JP2807113B2 (en) Acoustic scanning method and device
US5235982A (en) Dynamic transmit focusing of a steered ultrasonic beam
EP0642036B1 (en) Ultrasonic diagnostic equipment
US5355888A (en) High resolution phased array echo imager
US5817023A (en) Ultrasound imaging system with dynamic window function generator
WO2006057092A1 (en) Ultrasonographic device
JPS6157012B2 (en)
JPH0123137B2 (en)
JP3482361B2 (en) Ultrasound diagnostic equipment
JPS6260664B2 (en)
JPS63246143A (en) Ultrasonic diagnostic apparatus
JPS6252572B2 (en)
JP2760558B2 (en) Ultrasound diagnostic equipment
CA1134491A (en) Dynamic array aperture and focus control for ultrasonic imaging systems
JPS5980235A (en) Ultrasonic diagnostic apparatus
JP2000229079A (en) Ultrasonography and ultrasonograph
JP2763140B2 (en) Ultrasound diagnostic equipment
JPS59101140A (en) Ultrasonic diagnostic apparatus