JPH01231323A - Plasma etching device - Google Patents

Plasma etching device

Info

Publication number
JPH01231323A
JPH01231323A JP5859488A JP5859488A JPH01231323A JP H01231323 A JPH01231323 A JP H01231323A JP 5859488 A JP5859488 A JP 5859488A JP 5859488 A JP5859488 A JP 5859488A JP H01231323 A JPH01231323 A JP H01231323A
Authority
JP
Japan
Prior art keywords
etching
plasma
sample
chamber
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5859488A
Other languages
Japanese (ja)
Inventor
Tadashi Miyamura
宮村 忠志
Shigeo Sugawara
菅原 繁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5859488A priority Critical patent/JPH01231323A/en
Publication of JPH01231323A publication Critical patent/JPH01231323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To inhibit a chemical sidewall etching reaction by radicals, to reduce an undercut and to improve the accuracy of finishing by compressing and liquefying a refrigerant outside an etching chamber and vaporizing the refrigerant on a sample base. CONSTITUTION:The inside of an etching chamber 3 is set at the required degree of vacuum, a refrigerant under a gas-liquid mixed state is introduced into an evaporator 16 for a sample base 5, and a sample S is cooled at approximately -20 deg.C through the sample base 5. The inside of a plasma forming chamber 1 is supplied with an etching gas from a supply system 1g, and DC currents are made to flow through exciting coils 4 while microwaves are induced into the plasma forming chamber 1 through a waveguide 2 and a microwave introducing window 1c. Consequently, microwave are brought to the state of resonance in the plasma forming chamber 1 functioning as a plasma cavity resonator, decomposes the etching gas, and are resonated and excited, thus forming plasma. The surface of the sample S is not masked, only a section irradiated with ion beams is excited, and anisotropic etching progresses. Isotropic etching by radicals also progresses at that time, but the chemical reaction of the sample S is inhibited because the sample S is cooled, thus suppressing an undercut.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマイクロ波を用いた電子サイクロトロン共鳴(
Electron Cyclotron Re5ona
nce、 ECR)励起により発生させたプラズマを利
用するプラズマエッチング装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to electron cyclotron resonance (electron cyclotron resonance) using microwaves.
Electron Cyclotron Re5ona
The present invention relates to a plasma etching apparatus that utilizes plasma generated by excitation (CE, ECR).

〔従来技術〕[Prior art]

マイクロ波を用いた電子サイクロトロン共鳴励起により
プラズマを発生させる方法は低ガス圧で活性度の高いプ
ラズマを生成でき、イオンエネルギの広範囲な選択が可
能であり、また大きなイオン電流がとれ、イオン流の指
向性、均一性に優れるなどの利点があり、高集積半導体
素子等の製造に欠かせないものとしてその研究1開発が
進められている。
The method of generating plasma by electron cyclotron resonance excitation using microwaves can generate highly active plasma at low gas pressure, allows for a wide range of ion energies to be selected, and allows for large ion currents to be used to control ion flow. It has advantages such as excellent directivity and uniformity, and its research and development are progressing as it is indispensable for manufacturing highly integrated semiconductor devices.

第3図は従来におけるマイクロ波を用いた電子サイクロ
トロン共鳴を利用するプラズマエッチング装置の縦断面
図であり、31はプラズマ生成室を示している。プラズ
マ生成室31は一側壁中央に石英ガラス板31bにて封
止したマイクロ波導入窓31cを、また他側壁中央には
前記マイクロ波導入窓31cと対向する位置にプラズマ
引出窓31dを夫々備えている。前記マイクロ波導入窓
31cには他端を図示しない高周波発振器に接続した導
波管32の一端が接続され、またプラズマ引出窓31d
に望ませてエツチング室33を配設し、更にプラズマ生
成室31の周囲にはプラズマ生成室31及びこれに接続
した導波管32の一端部にわたってこれらを囲繞する態
様でこれらと同心状に励磁コイル34を配設しである。
FIG. 3 is a longitudinal sectional view of a conventional plasma etching apparatus that utilizes electron cyclotron resonance using microwaves, and 31 indicates a plasma generation chamber. The plasma generation chamber 31 has a microwave introduction window 31c sealed with a quartz glass plate 31b at the center of one side wall, and a plasma extraction window 31d at a position facing the microwave introduction window 31c at the center of the other side wall. There is. One end of a waveguide 32 whose other end is connected to a high frequency oscillator (not shown) is connected to the microwave introduction window 31c, and the plasma extraction window 31d
An etching chamber 33 is disposed around the plasma generation chamber 31, and a waveguide 32 is excited concentrically with the plasma generation chamber 31 and one end of a waveguide 32 connected to the plasma generation chamber 31 so as to surround them. A coil 34 is provided.

エツチング室33内にはウェーハ等の試料Sを装着する
試料台35が前記プラズマ引出窓31dと対向させて配
設され、その前面には試料Sが静電吸着等の手段にて着
脱可能に装着されるようにしである。試料台35内には
冷却水通流路が埋設され、前記冷却水通流路には冷却水
供給管35aが接続せしめられている。またエツチング
室33の後壁には図示しない排気装置に連なる排気口3
3aが開口されている。31gはエツチングガスの供給
系、31h、31iは冷却水の給水系、排水系である。
In the etching chamber 33, a sample stage 35 on which a sample S such as a wafer is mounted is disposed facing the plasma extraction window 31d, and the sample S is detachably mounted on the front surface of the stage 35 by means such as electrostatic adsorption. It is intended to be done. A cooling water passage is buried in the sample stage 35, and a cooling water supply pipe 35a is connected to the cooling water passage. In addition, an exhaust port 3 connected to an exhaust device (not shown) is provided on the rear wall of the etching chamber 33.
3a is open. 31g is an etching gas supply system, and 31h and 31i are cooling water supply systems and drainage systems.

而してこのようなエツチング装置にあってはプラズマ生
成室31.エツチング室33内を所要の真空度に設定し
た後、プラズマ生成室31内にガス供給系31gからエ
ツチング用の1又は複数種の工・ノチングガスを供給し
、励磁コイル34にて磁界を形成しつつ、プラズマ生成
室31内にマイクロ波を導入し、プラズマ生成室31を
空洞共振器としてエツチングガスを共鳴励起してプラズ
マを生成させ、生成させたプラズマを励磁コイル34に
て形成されるエツチング室33側に向かうに従い磁束密
度が低下する発散磁界に、よってエツチング室33へ引
出し、イオンを試料台35上の試料S周辺に投射せしめ
、エツチングを行うようになっている。
In such an etching apparatus, the plasma generation chamber 31. After setting the inside of the etching chamber 33 to the required degree of vacuum, one or more types of etching/notching gases are supplied from the gas supply system 31g into the plasma generation chamber 31, and a magnetic field is formed by the excitation coil 34. , microwaves are introduced into the plasma generation chamber 31, the etching gas is resonantly excited using the plasma generation chamber 31 as a cavity resonator to generate plasma, and the generated plasma is formed in the etching chamber 33 by the excitation coil 34. A diverging magnetic field whose magnetic flux density decreases toward the side is drawn into the etching chamber 33, and ions are projected around the sample S on the sample stage 35 to perform etching.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

通常、電子サイクロトロン共鳴励起により発生されたプ
ラズマは、上記した如く発散磁界の磁力線に即した方向
性を持って引き出され、イオンの流れによって生じるバ
イアスによる影響を受け、略20〜30eVの低いエネ
ルギーで試料表面に到達する。このため数百eVのエネ
ルギーのイオンを利用する従来の反応性イオンエツチン
グ、イオンミーリングに比べてイオン衝撃に起因する試
料へのダメージが低減され、しかも低エネルギーイオン
の照射によるエツチングであるため、エツチングの性能
指標の一つである選択比(エツチング対象物と他の対象
物とのエツチング速度比)が向上するとされている。
Normally, plasma generated by electron cyclotron resonance excitation is drawn out with a directionality that follows the lines of magnetic force of the divergent magnetic field as described above, and is influenced by the bias caused by the flow of ions, and has a low energy of about 20 to 30 eV. reaches the sample surface. Therefore, compared to conventional reactive ion etching and ion milling that use ions with an energy of several hundred eV, damage to the sample caused by ion bombardment is reduced, and since etching is performed by irradiation with low-energy ions, etching It is said that the selectivity (etching speed ratio between the etched object and other objects), which is one of the performance indicators of etching, is improved.

しかしながら、プラズマ生成室31からエツチング室3
3に引き出されたプラズマ中には、化学的に活性な励起
された状態の原子・ラジカルが発生しており、このラジ
カルとエツチング対象物との化学反応もエツチングに寄
与する。このようなラジカルによる化学的なエツチング
はイオンによる物理的なエツチングが方向性=異方性を
持つのと対照的に等方的であり、アンダーカット量と密
接に関係することが知られている。
However, from the plasma generation chamber 31 to the etching chamber 3
Chemically active excited atoms and radicals are generated in the plasma extracted in step 3, and the chemical reaction between these radicals and the object to be etched also contributes to etching. It is known that chemical etching using radicals is isotropic, in contrast to physical etching using ions, which has directionality (anisotropy), and is closely related to the amount of undercut. .

通常の電子サイクロトロン共鳴励起プラズマによるエツ
チングのガス圧は10〜4〜10−3Torrであり、
この範囲では電子サイクロトロン共鳴励起プラズマによ
るエツチングはイオン性異方エツチングとラジカル性等
方エツチングの混在したものとなるのが普通である。
The gas pressure for etching using ordinary electron cyclotron resonance excited plasma is 10-4-10-3 Torr,
In this range, etching by electron cyclotron resonance excited plasma usually involves a mixture of ionic anisotropic etching and radical isotropic etching.

その結果、エツチングによる加工形状は保護マスクの寸
法よりエツチング対象物が縮小する、所謂アンダーカッ
ト(0,3μm程度)を生ずることとなり、1μm以下
の微細加工を要する超LSI製造技術に対応するために
は加工精度の点で問題を残している。
As a result, the shape processed by etching results in a so-called undercut (approximately 0.3 μm), in which the etched object is smaller than the size of the protective mask. However, there remains a problem in terms of machining accuracy.

本発明は斯かる事情に鑑みなされたものであり、試料台
を冷却することにより、ラジカルによる化学的な側壁工
・ノチング反応を抑制し、アンダカソトを減少させ、加
工精度を向上させたプラズマエッチング装置を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and provides a plasma etching apparatus that suppresses chemical side wall etching and notching reactions caused by radicals by cooling the sample stage, reduces undercutting, and improves processing accuracy. The purpose is to provide

〔課題を解決するための手段〕[Means to solve the problem]

本発明に斯かるプラズマエッチング装置においては、電
子サイクロトロン共鳴励起によりプラズマを発生させる
プラズマ生成室と、発生したプラズマを導入して試料に
エツチングを施すエツチング室と、該エツチング室内に
設けられ、前記試料を載置する試料台とを備えたプラズ
マエッチング装置において、前記エツチング室外に設け
られ、冷媒を液化する凝縮器とを備えた冷凍手段と、前
記試料台に設けられ、前記冷凍手段からの冷媒を蒸発さ
せる蒸発器とを具備することを特徴とする特〔作用〕 本発明にあっては、試料台が冷媒の蒸発による気化熱で
強制的に冷却され、さらに試料台に!!置された試料が
冷却され、化学的側壁エツチング反応を抑制する。
The plasma etching apparatus of the present invention includes a plasma generation chamber for generating plasma by electron cyclotron resonance excitation, an etching chamber for etching the sample by introducing the generated plasma, and a plasma etching chamber provided within the etching chamber for etching the sample. In a plasma etching apparatus, a plasma etching apparatus is provided with a sample stage on which a refrigerant is placed, and a refrigerating means provided outside the etching chamber and equipped with a condenser for liquefying a refrigerant; In the present invention, the sample stage is forcibly cooled by the heat of vaporization caused by the evaporation of the refrigerant, and the sample stage is further provided with an evaporator for evaporating the fluid. ! The deposited sample is cooled to inhibit chemical sidewall etching reactions.

〔実施例〕〔Example〕

以下本発明をその実施例につき図面に基づき具体的に説
明する。第1図は本発明に係るプラズマエッチング装置
(以下本発明装置という)の縦断面図であり、図中1は
プラズマ生成室、2は導波管、3は試料Sに対しエツチ
ングを施すエツチング室、4は励磁コイルを示している
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. FIG. 1 is a longitudinal sectional view of a plasma etching apparatus according to the present invention (hereinafter referred to as the present invention apparatus), in which 1 is a plasma generation chamber, 2 is a waveguide, and 3 is an etching chamber in which a sample S is etched. , 4 indicates an excitation coil.

プラズマ生成室1はステンレス鋼製であって、マイクロ
波に対して空洞共振器を構成するよう形成されており、
−側壁中央には石英ガラス板1bで閉鎖されたマイクロ
波導入窓1cを備え、また他側壁中央には前記マイクロ
波導入窓ICと対向する位置にプラズマの引出窓1dを
備えている。前記マイクロ波導入窓1cには導波管2の
一端部が接続され、またプラズマ引出窓1dにはこれに
臨ませてエツチング室3が配設され、更に周囲にはプラ
ズマ生成室l及びこれに連結された導波管2の一端部に
わたってこれらと同心状に励磁コイル4が周設せしめら
れている。またプラズマ生成室1のマイクロ波導入窓1
cの周縁部にはC12ガス等のエツチングガスの供給系
1gが接続されている。
The plasma generation chamber 1 is made of stainless steel and is formed to form a cavity resonator for microwaves.
- A microwave introduction window 1c closed by a quartz glass plate 1b is provided at the center of the side wall, and a plasma extraction window 1d is provided at the center of the other side wall at a position facing the microwave introduction window IC. One end of a waveguide 2 is connected to the microwave introduction window 1c, and an etching chamber 3 is provided facing the plasma extraction window 1d, and a plasma generation chamber 1 and a plasma generation chamber 1 are arranged around it. An excitation coil 4 is disposed concentrically over one end of the connected waveguides 2 . Also, the microwave introduction window 1 of the plasma generation chamber 1
A supply system 1g for an etching gas such as C12 gas is connected to the peripheral portion of c.

導波管2はその他端部は図示しない高周波発振器に接続
され、高周波発振器で発せられたマイクロ波をマイクロ
波導入窓1cを経てプラズマ生成室1内に導入するよう
にしである。
The other end of the waveguide 2 is connected to a high frequency oscillator (not shown), and microwaves emitted by the high frequency oscillator are introduced into the plasma generation chamber 1 through the microwave introduction window 1c.

励磁コイル4は図示しない直流電源に接続されており、
直流電流の通流によって、プラズマ生成室1内にマイク
ロ波の導入によりプラズマを生成し得るよう磁界を形成
すると共に、エツチング室3側に向けて磁束密度が低く
なる発散磁界を形成し、プラズマ生成室1内に生成され
たプラズマをエツチング室3内に導入せしめるようにな
っている。
The excitation coil 4 is connected to a DC power source (not shown),
By passing a direct current, a magnetic field is formed in the plasma generation chamber 1 so that plasma can be generated by introducing microwaves, and a diverging magnetic field whose magnetic flux density becomes lower toward the etching chamber 3 side is formed, thereby generating plasma. The plasma generated in chamber 1 is introduced into etching chamber 3.

エツチング室3はプラズマ引出窓1dと対向しない側壁
に図示しない排気装置に連なる排気口3aを開口してあ
り、またエツチング室3の内部には前記プラズマ引出窓
1dと対向させて試料台5が配設され、この試料台5の
前面に前記プラズマ引出窓1dと対向させて試料Sが静
電吸着等の手段で着脱可能に装着されている。試料台5
内には冷却用の冷凍手段であるヒートポンプ式冷凍機の
蒸発器17が一体的に形成されており、該蒸発器17の
一端は前記試料台5の近傍に設けられ、液体の冷媒を絞
り、膨張させ気液混合状態となす膨張弁16の一端に接
続している。該膨張弁16の他端はエツチング室3の外
部に設けられ、液化した冷媒と気化した冷媒とを分離し
、液化した冷媒だけを前記膨張弁16に供給する受液器
15の一端に接続され、該受液器15の他端は気化した
冷媒を液化する凝縮器14の一端に接続されている。該
凝縮器14の他端は油分離器13を介して気化した冷媒
を圧縮する圧縮機12の一端に接続され、その他端はエ
ツチング室3の側壁を介して前記蒸発器17の他端に接
続されている。
The etching chamber 3 has an exhaust port 3a connected to an exhaust device (not shown) opened on a side wall that does not face the plasma extraction window 1d, and a sample stage 5 is disposed inside the etching chamber 3 facing the plasma extraction window 1d. A sample S is removably mounted on the front surface of the sample stage 5, facing the plasma extraction window 1d, by means such as electrostatic adsorption. Sample stand 5
An evaporator 17 of a heat pump type refrigerator, which is a freezing means for cooling, is integrally formed inside the interior, and one end of the evaporator 17 is provided near the sample stage 5 to squeeze out the liquid refrigerant. It is connected to one end of an expansion valve 16 that is expanded to create a gas-liquid mixed state. The other end of the expansion valve 16 is connected to one end of a liquid receiver 15 that is provided outside the etching chamber 3 and separates liquefied refrigerant and vaporized refrigerant and supplies only the liquefied refrigerant to the expansion valve 16. The other end of the liquid receiver 15 is connected to one end of a condenser 14 that liquefies the vaporized refrigerant. The other end of the condenser 14 is connected via an oil separator 13 to one end of a compressor 12 for compressing vaporized refrigerant, and the other end is connected to the other end of the evaporator 17 via a side wall of the etching chamber 3. has been done.

その他1h、li は夫々冷却水の給水系、排水系を示
している。
Others 1h and li indicate the cooling water supply system and drainage system, respectively.

而してこのような本発明装置にあってはエツチング室3
内の試料台5に試料Sを装着し、プラズマ生成室1.エ
ツチング室3内を所要の真空度に設定した後、試料台5
の蒸発器16に気液混合状態の冷媒(例えばフレオンガ
ス)を導入し、試料台5を介して試料Sを一20°C程
度冷却する。この冷却は圧縮機12にて気化した冷媒を
圧縮し、油分離器13にて混入した油を除去し、凝縮器
14にて熱交換により冷媒を液化し、受液器15にて液
化した冷媒を分離し、膨張弁16にて冷媒を絞り膨張さ
せ気液混合状態となし、蒸発器17にて冷媒を蒸発させ
気化熱により試料台5及び試料Sの熱を吸収することに
より行う。試料Sを冷却した後、供給系1gからエツチ
ングガスをプラズマ生成室1内に供給し、励磁コイル4
に直流電流を通流すると共に、導波管2.マイクロ波導
入窓ICを通じてマイクロ波をプラズマ生成室1に導入
する。プラズマ生成室1内に導入されたマイクロ波はプ
ラズマ空洞共振器として機能するプラズマ生成室1内で
共振状態となり、エツチングガスを分解し、共鳴励起し
て、プラズマを生成せしめる。生成されたプラズマ中の
イオンは励磁コイル4にて形成される発散磁界に沿った
方向性を持つイオンビームとして試料台5に照射される
。試料S表面はマスクされずイオンビームを照射された
部分のみが励起され、この励起された部分にエツチング
ガスが吸着し、化学反応によって異方性エツチングが進
行してゆくこととなる。このときラジカルによる等方性
エツチングも進行するが、試料Sが冷却されているため
、その化学反応が抑制され、ラジカルによる側壁エツチ
ング反応が抑制され、アンダカソトが抑制される。また
プラズマエッチング装置は通常クリーンルームに備えら
れており、本実施例では膨張弁16をエツチング室3内
に設けることにより、配管の結露を防止し、水分の結露
によりクリーンルームの環境が変化するのを防いでいる
Therefore, in such an apparatus of the present invention, the etching chamber 3
The sample S is mounted on the sample stage 5 in the plasma generation chamber 1. After setting the inside of the etching chamber 3 to the required degree of vacuum, the sample stage 5
A gas-liquid mixed refrigerant (for example, Freon gas) is introduced into the evaporator 16 of the sample S, and the sample S is cooled to about -20° C. via the sample stage 5. For this cooling, the compressor 12 compresses the vaporized refrigerant, the oil separator 13 removes the mixed oil, the condenser 14 liquefies the refrigerant through heat exchange, and the liquid receiver 15 liquefies the liquefied refrigerant. is separated, the refrigerant is throttled and expanded in the expansion valve 16 to form a gas-liquid mixed state, and the refrigerant is evaporated in the evaporator 17 to absorb the heat of the sample stage 5 and the sample S by the heat of vaporization. After cooling the sample S, the etching gas is supplied from the supply system 1g into the plasma generation chamber 1, and the excitation coil 4
A direct current is passed through the waveguide 2. Microwaves are introduced into the plasma generation chamber 1 through the microwave introduction window IC. The microwave introduced into the plasma generation chamber 1 resonates within the plasma generation chamber 1 which functions as a plasma cavity resonator, decomposes the etching gas, and excites it resonantly to generate plasma. Ions in the generated plasma are irradiated onto the sample stage 5 as an ion beam having directionality along the divergent magnetic field formed by the excitation coil 4. The surface of the sample S is not masked and only the portion irradiated with the ion beam is excited, and the etching gas is adsorbed to this excited portion, causing anisotropic etching to proceed due to a chemical reaction. At this time, isotropic etching by radicals also progresses, but since the sample S is cooled, the chemical reaction is suppressed, the sidewall etching reaction by radicals is suppressed, and undercutting is suppressed. Furthermore, plasma etching equipment is usually installed in a clean room, and in this embodiment, the expansion valve 16 is provided in the etching chamber 3 to prevent condensation on the piping and to prevent changes in the environment of the clean room due to condensation of water. I'm here.

〔効果〕〔effect〕

以上詳述した如く、本発明に係るプラズマエッチング装
置においては、試料を冷凍手段により強制冷却している
ので、ラジカルによる側壁エツチングを抑制することが
でき、アンダカットを減少することができる等価れた効
果を奏する。
As detailed above, in the plasma etching apparatus according to the present invention, since the sample is forcibly cooled by the freezing means, it is possible to suppress sidewall etching caused by radicals, and to reduce undercuts. be effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るプラズマエッチング装置の縦断面
図、第2図は従来のプラズマエッチング装置の縦断面図
である。
FIG. 1 is a longitudinal sectional view of a plasma etching apparatus according to the present invention, and FIG. 2 is a longitudinal sectional view of a conventional plasma etching apparatus.

Claims (1)

【特許請求の範囲】 1、電子サイクロトロン共鳴励起によりプラズマを発生
させるプラズマ生成室と、発生したプラズマを導入して
試料にエッチングを施すエッチング室と、該エッチング
室内に設けられ、前記試料を載置する試料台とを備えた
プラズマエッチング装置において、 前記エッチング室外に設けられ、冷媒を圧 縮する圧縮機と冷媒を液化する凝縮器とを備えた冷凍手
段と、 前記試料台に設けられ、前記冷凍手段から の冷媒を蒸発させる蒸発器と を具備することを特徴とするプラズマエッ チング装置。
[Claims] 1. A plasma generation chamber that generates plasma by electron cyclotron resonance excitation, an etching chamber that etches a sample by introducing the generated plasma, and a plasma generating chamber that is provided within the etching chamber and on which the sample is placed. A plasma etching apparatus comprising: a sample stage provided outside the etching chamber, and comprising a compressor for compressing a refrigerant and a condenser for liquefying the refrigerant; and a freezing means provided for the sample stage and provided for the freezing means. A plasma etching apparatus comprising: an evaporator for evaporating refrigerant from the plasma etching apparatus.
JP5859488A 1988-03-11 1988-03-11 Plasma etching device Pending JPH01231323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5859488A JPH01231323A (en) 1988-03-11 1988-03-11 Plasma etching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5859488A JPH01231323A (en) 1988-03-11 1988-03-11 Plasma etching device

Publications (1)

Publication Number Publication Date
JPH01231323A true JPH01231323A (en) 1989-09-14

Family

ID=13088817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5859488A Pending JPH01231323A (en) 1988-03-11 1988-03-11 Plasma etching device

Country Status (1)

Country Link
JP (1) JPH01231323A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394459A (en) * 1989-09-06 1991-04-19 Shinko Electric Ind Co Ltd Semiconductor chip module and manufacture thereof
US5449411A (en) * 1992-10-20 1995-09-12 Hitachi, Ltd. Microwave plasma processing apparatus
JP2013105915A (en) * 2011-11-14 2013-05-30 Tokyo Electron Ltd Temperature control device, plasma processing device, processing device, and temperature control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730674B2 (en) * 1976-04-05 1982-06-30
JPS6050923A (en) * 1983-08-31 1985-03-22 Hitachi Ltd Method of plasma surface treatment and device therefor
JPS60158627A (en) * 1984-01-27 1985-08-20 Hitachi Ltd Controlling method of surface reaction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730674B2 (en) * 1976-04-05 1982-06-30
JPS6050923A (en) * 1983-08-31 1985-03-22 Hitachi Ltd Method of plasma surface treatment and device therefor
JPS60158627A (en) * 1984-01-27 1985-08-20 Hitachi Ltd Controlling method of surface reaction

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394459A (en) * 1989-09-06 1991-04-19 Shinko Electric Ind Co Ltd Semiconductor chip module and manufacture thereof
JP2840316B2 (en) * 1989-09-06 1998-12-24 新光電気工業株式会社 Semiconductor device and manufacturing method thereof
US5449411A (en) * 1992-10-20 1995-09-12 Hitachi, Ltd. Microwave plasma processing apparatus
JP2013105915A (en) * 2011-11-14 2013-05-30 Tokyo Electron Ltd Temperature control device, plasma processing device, processing device, and temperature control method
TWI584339B (en) * 2011-11-14 2017-05-21 Tokyo Electron Ltd A temperature control device, a plasma processing device, a processing device, and a temperature control method
US9791191B2 (en) 2011-11-14 2017-10-17 Tokyo Electron Limited Temperature control apparatus, processing apparatus, and temperature control method
US10591194B2 (en) 2011-11-14 2020-03-17 Tokyo Electron Limited Temperature control method

Similar Documents

Publication Publication Date Title
JP2886978B2 (en) Electron cyclotron resonance plasma source and operation method
JP3920015B2 (en) Si substrate processing method
US5587039A (en) Plasma etch equipment
US4521286A (en) Hollow cathode sputter etcher
JP4073204B2 (en) Etching method
US20090095714A1 (en) Method and system for low pressure plasma processing
JPH0430177B2 (en)
JPH05214566A (en) Process and apparatus for ultrasonic molecular beam etching
US5223085A (en) Plasma etching method with enhanced anisotropic property and apparatus thereof
Chen et al. Very uniform and high aspect ratio anisotropy SiO 2 etching process in magnetic neutral loop discharge plasma
JPH01231323A (en) Plasma etching device
JPH04229940A (en) Device for ion plasma mechanically processing surface of work
Varhue et al. Electron cyclotron resonance plasma etching of photoresist at cryogenic temperatures
US6037267A (en) Method of etching metallic film for semiconductor devices
JPH0227719A (en) Plasma processing equipment
JPS60120525A (en) Method for reactive ion etching
JPH1154296A (en) Plasma generator and plasma device
JP2574899B2 (en) Plasma etching equipment
JP3380948B2 (en) Helicon wave plasma apparatus and plasma processing method using the same
JPH0770510B2 (en) Plasma processing device
KR910008976B1 (en) Flasma generating device using electron cyclotron resonance
JPH01315135A (en) Plasma etching apparatus
Lille et al. Parameter space map of an electron cyclotron resonance plasma in a compact chamber
JP2509389B2 (en) Dry etching equipment
JPH04116130U (en) plasma etching equipment