JPH01231217A - Superconducting cable for alternate current - Google Patents

Superconducting cable for alternate current

Info

Publication number
JPH01231217A
JPH01231217A JP63053750A JP5375088A JPH01231217A JP H01231217 A JPH01231217 A JP H01231217A JP 63053750 A JP63053750 A JP 63053750A JP 5375088 A JP5375088 A JP 5375088A JP H01231217 A JPH01231217 A JP H01231217A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting cable
current
material layer
cables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63053750A
Other languages
Japanese (ja)
Inventor
Masaki Matsuki
松木 正基
Naotaka Ichiyanagi
一柳 直隆
Yoshio Furuto
古戸 義雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63053750A priority Critical patent/JPH01231217A/en
Publication of JPH01231217A publication Critical patent/JPH01231217A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To reduce an alternate current loss by using the number of cables equal to the integer multiple of a current phase number and so arranging each current phase thereof to be different from adjacent superconducting cables proper. CONSTITUTION:A superconducting cable for alternate current has an inner conductor 4 formed to be tubular with a complex superconducting tape 3 comprising a superconducting material layer 1 and a metal stabilization layer 2 as bonded, and an outer conductor 8 formed with a metal wire 15 stranded coaxially with the outer surface of an insulation layer 10 provided coaxially around the external surface of the inner conductor 4. The aforesaid superconductor cables proper 16 are arranged in a triangular form in section as three cables as one unit for u, v and w phases. Also, the superconducting cables proper 16 of different phases are so arranged as to be adjacent to each other even among the units. According to the aforesaid construction, it is possible to reduce the surface current density of the superconducting material layer 1 and lower an alternate current loss.

Description

【発明の詳細な説明】 [産業上の利用分む1 本発明は、交流損失を低減Jる交流用超1脣ケーフルに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Applications 1] The present invention relates to a super single-length cable for AC use that reduces AC loss.

[従来技術1 第3図91従来の超電導ケーブルの例を示した乙のであ
る。1図承のように従来の超電導ケーブルは、超電導物
v1居1と銅等のσ属からなる安定化層2とが接合され
た複合超Xt4チー13をその超電導物質層1を外向さ
にして半径r゛の管状に形成した内導体4と、超電導物
質層5と銅等の金属からなる安定化層6とが接合された
摺合超電導テープ7をその超電導物質層5を内向きにし
て半径R(>r)の管状に形成して内導体4を同軸状に
包囲してなる外導体8と、内導体4の内側に形成された
冷媒通路9と、内導体4と外導体8との間に介在された
絶縁層10と、外導体8の外周に冷媒通路11を形成す
るようにして同軸状に配置されたバイブ12と、バイブ
12の外周に同軸状に配置された断熱層13と、断熱層
13を包囲して同軸状に配置されたバイブ14とで構成
されていた。この場合、安定化層2,6は、何かの原因
により一時的に超電導状態が破れた時、電流を逃1バイ
パスの役割をちっている。
[Prior Art 1] Figure 3 shows an example of a conventional superconducting cable. As shown in Fig. 1, a conventional superconducting cable consists of a composite superconducting material 13 in which a superconducting material 1 and a stabilizing layer 2 made of σ material such as copper are bonded, with the superconducting material layer 1 facing outward. A sliding superconducting tape 7 in which an inner conductor 4 formed in a tubular shape with a radius r', a superconducting material layer 5, and a stabilizing layer 6 made of a metal such as copper are bonded is arranged with a radius R with the superconducting material layer 5 facing inward. An outer conductor 8 formed into a tubular shape (>r) and coaxially surrounding the inner conductor 4, a refrigerant passage 9 formed inside the inner conductor 4, and a space between the inner conductor 4 and the outer conductor 8. an insulating layer 10 interposed between the outer conductor 8, a vibrator 12 coaxially arranged to form a refrigerant passage 11 on the outer periphery of the outer conductor 8, and a heat insulating layer 13 coaxially arranged around the outer periphery of the vibrator 12; A vibrator 14 was arranged coaxially surrounding a heat insulating layer 13. In this case, the stabilizing layers 2 and 6 play the role of a bypass, allowing current to escape when the superconducting state is temporarily broken for some reason.

[発明が解決しようとりる課題] しかしながら、このような超電導ケーブルて゛は、交流
用として使用した場合、交流損失が発生する。
[Problems to be Solved by the Invention] However, when such a superconducting cable is used for alternating current, alternating current loss occurs.

交流1t1失により発生する熱量は、超電4物質にとっ
てりYましくなく、冷L1の規模を大きくし、設廂コス
1〜を大きくしてしまう問題点がある。
The amount of heat generated by the loss of AC 1t1 is not good for the four superelectric materials, and there is a problem in that it increases the scale of the cold L1 and increases the installation cost 1~.

木fl明の[1的は、交流損失を0(減できる交流用超
電導ケーブルを提供1Jることにある。
The first objective of Thu fl Ming is to provide an AC superconducting cable that can reduce AC loss to 0.

[課題を解決するための手段] 上記の目的を達成するための本発明の詳細な説明すると
、本光明は超電導物質層を有する内導体と金属或いは一
部が超電導物質図よりなる外導体とが同軸状に配置され
てなる超電導ケーブル本体が、その電流相数の整数倍の
本数で・まとめて(を成され、前記各超電導ケーブル本
体はその電流位相が隣り合う前記超電導ケーブル本体と
異なるように配置されていることを特徴とする。
[Means for Solving the Problems] To explain in detail the present invention for achieving the above object, the present invention provides a method in which an inner conductor having a superconducting material layer and an outer conductor made of a metal or a part of a superconducting material layer are provided. The superconducting cable bodies arranged in a coaxial manner are assembled together in a number that is an integral multiple of the number of current phases, and each superconducting cable body has a current phase different from that of the adjacent superconducting cable bodies. It is characterized by being located.

[作用] このようにすると、超電4物′t′i層の表面電流密度
が低下し、交流u1失を小さくツることがぐきる。
[Function] In this way, the surface current density of the superelectric 4 material 't'i layer is reduced, and the loss of AC u1 can be reduced.

また、hいの超電導ケーブル本体の間の…Wの漏れにつ
いてはnいに打ら消寸ため、外導体の安定化層に発生す
る渦電流損失を低下させることができる。
In addition, since the leakage of W between the superconducting cable bodies can be minimized, the eddy current loss generated in the stabilizing layer of the outer conductor can be reduced.

[実施例] 以下、本発明を3相交流送電用の超電導ケーブルに適用
した第1図乃至第2図に示寸実施例にもとづいて詳細に
説明する。なJ5、tfff iボした第3図と対応す
る部分には同一?J号をっけて示している。
[Example] Hereinafter, the present invention will be described in detail based on an example shown in FIGS. 1 and 2 in which the present invention is applied to a superconducting cable for three-phase AC power transmission. J5, tfff Is the part corresponding to the part shown in Figure 3 the same? It is indicated by the number J.

本実施例の交流用超電導ケーブルは、超電導物質層1と
金属からなる安定化層2とが接合された複合超電導7−
73で管状に形成された内導体4と、該内導体4の内部
に形成されている冷媒通路つと、該内導体4の外周に同
軸状に設けられCいる絶縁層10と、該絶縁層10の外
周に同軸状に金属ワイ\7−15を撚り合せて形成され
た外導体8とからなる超電導ケーブル本体16を複数状
有する。
The AC superconducting cable of this embodiment has a composite superconducting 7-
An inner conductor 4 formed in a tubular shape at 73, a refrigerant passage formed inside the inner conductor 4, an insulating layer 10 provided coaxially around the outer periphery of the inner conductor 4, and the insulating layer 10. It has a plurality of superconducting cable bodies 16 each including an outer conductor 8 formed by coaxially twisting metal wires 7-15 around the outer periphery of the cable.

これら超電導ケーブル本体16は、U相、■相。These superconducting cable bodies 16 are U phase and ■ phase.

W相加としてご3条を1ユニツトとして断面3角形状に
配置されている。これら1ユニツ(・の超電導ケーブル
本体16は、撚り合わされる場合と、撚り合わされない
場合とがある。また、各超電導ケーブル本体16の表面
は絶縁層で絶縁することが好ましい。また、これら超電
導ケーブル本体16は、U相、■相、W相の順に反部も
1方向に配′IJ11されている。他のユニツ]〜も同
様に構成されている。
The W addition is arranged in a triangular cross section with three strips as one unit. The superconducting cable bodies 16 of these units may or may not be twisted together. Also, the surface of each superconducting cable body 16 is preferably insulated with an insulating layer. The main body 16 has opposite portions arranged in one direction in the order of U-phase, ■-phase, and W-phase.Other units]~ are constructed in the same manner.

ユニット相互間でも異なる相の超電導ケーブル本体16
が隣り合うように配置がなされている。このような各ユ
ニット各ま図示のように断面円形状に配列され、その中
心及び隣接するJfl Xf導ケーブル本体16の間に
冷媒通路17が形成され、且つ断面円形配置の各ユニツ
l−の外周には一括してバイブ12.断熱層13.バイ
ブ14が同軸状に設置ノられている。円形に配置された
これら各ユニツ]・は、撚り合わされる場合と、撚り合
わされない場合とがある。
Superconducting cable body 16 with different phases even between units
are arranged so that they are next to each other. Each of these units is arranged in a circular cross-section as shown in the figure, and a refrigerant passage 17 is formed between the center and the adjacent Jfl Vibrator 12. Heat insulation layer 13. A vibrator 14 is installed coaxially. These units arranged in a circle may or may not be twisted together.

この場合、超電導物質層1は、例えばビスマス、ストロ
ンチウム、カルシウム、銅の酸化物、或いはイツトリウ
ム、バリウム、銅の酸化物等で形成される。外導体8の
金属1ツイヤ−15は例えば銅で形成される。安定化層
2に対する超電導物質層1の形成は、例えばスパッタリ
ングで行・)ことができる。
In this case, the superconducting material layer 1 is formed of, for example, oxides of bismuth, strontium, calcium, or copper, or oxides of yttrium, barium, or copper. The metal wire 15 of the outer conductor 8 is made of copper, for example. The superconducting material layer 1 can be formed on the stabilizing layer 2 by, for example, sputtering.

このような交流用超電導ケーブルにおける1 7n当り
の交流損失は、以下の式で表ねりことができる。
The AC loss per 17n in such an AC superconducting cable can be expressed by the following formula.

P=(2J2/3)  ・ μo ・ (lo /P2
)3 ・Pβ(t’/Jo)         ・・・
(1)ただし、 p  :im当りの交流損失(W/m)μ0 :透…率
(l−1/ m ) 1o 二通電電流(A> P(;ペリメータ (この場合は、周の高さ)(m) 1o/Pj2:表面電2I!を密度(A/m)J :超
ff129導体層の臨界電流(A/Tl1)「 :交流
周波数(H7) さて、交流用超電導ケーブルとして使用する場合、μo
 、f 、Jcは一定と考えてよく、これらを一定とす
ると、 P=k ’ (Io 3/P  2)     =12
)ρ ただし、k:定数 となる。
P=(2J2/3) ・ μo ・ (lo /P2
)3 ・Pβ(t'/Jo)...
(1) However, p: AC loss per im (W/m) μ0: Transmittance (l-1/m) 1o Two currents (A>P(; Perimeter (in this case, circumferential height)) (m) 1o/Pj2: Surface electric charge 2I! Density (A/m) J: Critical current of super ff129 conductor layer (A/Tl1): AC frequency (H7) Now, when used as an AC superconducting cable, μo
, f, and Jc can be considered constant, and if these are constant, then P=k' (Io 3/P 2) = 12
)ρ where k: is a constant.

第3図のような従来構造の超電導ケーブルの場合、3相
通電では3条のケーブルが必要であるから、各相に](
A)の電流が流れる時の交流10失をP+(W/m)と
すると、下記のようになる。
In the case of a superconducting cable with a conventional structure as shown in Figure 3, three cables are required for three-phase energization, so for each phase]
If the AC 10 loss when the current A) flows is P+ (W/m), then it is as follows.

P+ =3 ([k−13/ (2πR’) 2] +
[k−13,/(2πr)’]) =3([kM/(2π)2]・ [(1/R’ )+ (1/r″>11・・・(3) ただし、 r:内導体40半径(Il) 1(:外導体8の半径(m) 一方、第1図に示寸ような本発明の交流用超電導ケーブ
ルにおいて、同一の容量を得ようとした場合、各相に1
/n(△)の電流を流せば良い。
P+ =3 ([k-13/ (2πR') 2] +
[k-13,/(2πr)']) = 3([kM/(2π)2]・[(1/R')+ (1/r''>11...(3) However, within r: Radius of conductor 40 (Il) 1 (: radius of outer conductor 8 (m)) On the other hand, in the AC superconducting cable of the present invention as shown in FIG.
It is sufficient to flow a current of /n(△).

ここで、nはユニット数である。各ユニットでは内導体
4は全部で3 r1個ある。
Here, n is the number of units. In each unit, there are a total of 3 r1 inner conductors 4.

P2−[3nk (1/n) 3] /(4π2r 2
)       ・・・(4)となる。ここで、roは
内導体4の半径(m)である。
P2-[3nk (1/n) 3] /(4π2r 2
) ...(4). Here, ro is the radius (m) of the inner conductor 4.

従って、f3)、 (41式より、下式を得ることがで
きる。
Therefore, f3), (From equation 41, the following equation can be obtained.

P2 /PI −((r2R2)/ [(r2+R2)
・ r゛2])  ・ (1/n2 )・・・(5) ここで、同じ電流容量を得るために本発明で使用する超
電導内導体4の使用帛を、従来の第3図に示す超?[ケ
ーブルと同じにする。これは超電導物質層1に流れる電
流密麿を同じにするためである。つまり、超電導物質層
1の厚さをtとし、従来と本発明の超電導内導体4を同
等とすると、3×2πrt=3nx2πrt となり、 r/ro=n               ・・・(
6)を1りる。(6)式を(5)式に代入すると、P2
 /PI =R2/ (r2+R2)−1/ (1+ 
(r/R))  ・・・(7)となる。ここで、従来構
造のr、Rは大きく、r−11と仮定できるから、(7
)式よりP 2 / P + = 1 / 2    
      ・・・(8)となる。つまり、本発明によ
り、同一の電流容量を得る交流用超電導グープルの発生
交流損失は従来の約1/2となることがわかる。
P2 /PI −((r2R2)/ [(r2+R2)
・r゛2]) ・(1/n2)...(5) Here, in order to obtain the same current capacity, the method of using the superconducting inner conductor 4 used in the present invention is compared to the conventional superconducting inner conductor 4 shown in FIG. ? [Make it the same as the cable. This is to make the current density flowing through the superconducting material layer 1 the same. In other words, if the thickness of the superconducting material layer 1 is t, and the conventional and present superconducting inner conductors 4 are equivalent, then 3×2πrt=3nx2πrt, and r/ro=n...(
6). Substituting equation (6) into equation (5), we get P2
/PI =R2/ (r2+R2)-1/ (1+
(r/R)) ...(7). Here, r and R in the conventional structure are large and can be assumed to be r-11, so (7
) From the formula, P 2 / P + = 1 / 2
...(8). In other words, it can be seen that according to the present invention, the AC loss generated in the AC superconducting group that obtains the same current capacity is about 1/2 that of the conventional one.

また、本発明は電流の相変化を利用し、nいに磁束を打
ち消す配置としたため、あえて外導体8に超電導材を使
用する必要はへいが、第2図のような構造で超電導材を
使用すると、外導体8で磁気遮蔽が図られて、より一層
交流損失を低減できる。この場合、超電導外導体8を形
成する複合超電導テープ3のターン間の隙間から磁束が
ちれるようなことがあっても。各相の磁界の打ち消し合
い作用により、もれを打ち消すことができる。
In addition, since the present invention utilizes the phase change of the current and is arranged to cancel the magnetic flux, there is no need to intentionally use a superconducting material for the outer conductor 8, but it is possible to use a superconducting material with the structure shown in Then, magnetic shielding is achieved by the outer conductor 8, and AC loss can be further reduced. In this case, even if the magnetic flux drifts from the gaps between the turns of the composite superconducting tape 3 forming the superconducting outer conductor 8. Leakage can be canceled by the canceling effect of the magnetic fields of each phase.

第3図に示す従来構造と第1図に示ず本発明構造のもの
について、下記のような具体例について比較したところ
、下記のような結果が得られた。
When the conventional structure shown in FIG. 3 and the structure of the present invention not shown in FIG. 1 were compared in the following specific examples, the following results were obtained.

従来構造 内導体の直tl :  320調(r−160m+ )
外導体の直径:  3!10−390+s (R=  
175〜190M) 最外径   :約5001111 とし、0.I Te5raにつきJ c −10’ (
A/ cm )の超電導材を使用すると、発生交流損失
は1.07 (W/m)・相となる。ただし、このとき
の超電導物質層1の厚さは0.1#lff1、安定化層
2は銅でその厚さは1#とじた。
Direct TL of conductor in conventional structure: 320 tone (r-160m+)
Diameter of outer conductor: 3!10-390+s (R=
175~190M) Outermost diameter: approximately 5001111 mm, 0. J c -10' per I Te5ra (
When using a superconducting material with A/cm ), the generated AC loss will be 1.07 (W/m) phase. However, the thickness of the superconducting material layer 1 at this time was 0.1#lff1, and the stabilizing layer 2 was made of copper and had a thickness of 1#.

本発明構造 内導体の直径:  5.3mts (r c−2,65
tnm )外導体(銅線撚り合せ)の直径:93間最外
直径  :約500M ユニット数 二〇 とすると、従来構造とほぼ同等の電流容量がとれる。こ
のとき、0.I Te5raにつきJc=104 (A
/cd)の超電導材を使用すると、発生交流損失は0.
6(W/II) ・相となる。従って、従来構造と本発
明構造とを比較すると、 (0,6x3)/(1,07x3)−0,56すなわら
、発生交流に%失を本発明ににれば従来に比べて56%
と小さくすることができた。
Diameter of the conductor in the structure of the present invention: 5.3 mts (r c-2,65
tnm) Diameter of outer conductor (copper wire strands): 93mm Outermost diameter: approx. 500M If the number of units is 20, the current capacity is almost the same as that of the conventional structure. At this time, 0. I Jc=104 per Te5ra (A
/cd), the generated AC loss is 0.
6 (W/II) - Phase. Therefore, when comparing the conventional structure and the structure of the present invention, (0,6x3)/(1,07x3)-0,56, that is, if the present invention has a % loss in generated AC, it is 56% compared to the conventional structure.
I was able to make it smaller.

なお、上記実施例では、酸化物系の超゛市導材を使用し
た場合について説明したが、本発明は上記実施例に限定
されるものではなく、金属系の超電13Hの場合にも同
様に適用できることは勿論である。
In addition, although the above embodiment describes the case where an oxide-based superconducting material is used, the present invention is not limited to the above embodiment, and the same applies to the case of metal-based superconductor 13H. Of course, it can be applied to

[発明の効果1 以上説明したJ、うに本発明に係る交流用超電導ケーブ
ルは、超電導物質層を有する内導体と金属或いは一部が
超電導物質層よりなる外導体とが同軸状に配置されてな
る超電導つ゛−プル本体が、その電流相数の整数倍の本
数でまとめて構成されているので、超電導物質層の表面
電流密度を小さくでき、従って、交流損失を低減するこ
とができる。
[Effect of the invention 1] The AC superconducting cable according to the present invention described above has an inner conductor having a superconducting material layer and an outer conductor made of metal or a portion of which is made of a superconducting material layer, which are arranged coaxially. Since the superconducting twin-pull main body is configured with a number that is an integral multiple of the number of current phases, the surface current density of the superconducting material layer can be reduced, and therefore, AC loss can be reduced.

また、各超電導クープル本体はその電流位相が隣り合う
前記超電導クープル本体と異なるように配置されている
ので、Uいの超電導ケーブル本体の間に生じる磁界の漏
れを打ら消すことができ、外導体の交流損失を低減する
ことができる。
In addition, since each superconducting couple main body is arranged so that its current phase is different from that of the adjacent superconducting couple main bodies, leakage of the magnetic field generated between the U-shaped superconducting cable bodies can be canceled out, and the outer conductor AC loss can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る交流用超電導ケーブルの一実流例
の横断面図、第2図は本実施例で使用している複合超電
導テープの横断面図、第3図は従来の超電導ケーブルの
横断面図である。 1・・・超電導物質層、2・・・安定化層、3・・・複
合超電導テープ、4・・・内導体、8・・・外導体、1
6・・・超電導ケーブル本体。 “−代と) 第1 図 第3図 手続ネ市正書 (自発) 1、事件の表示  特願昭63−53750号2、発明
の名称 交流用超電導ケーブル 3、補正をする者 事件との関係  特許出願人 (529)古河電気工業株式会社 4、代理人 東京都港区新橋4−31−6  文山ビル6階松本特許
事務所(電話437−5781番)明細書の発明の詳細
な説明の欄 6、補正の内容 明細1の第9頁第1行の「わかる。」の後に改行して下
記の文を挿入1−る。 第3図に承り従来の超電導ケーブルで使用した超7ti
 n l、(を、内−り体4の分だりてなく、外導体8
の分乙、第1図に承り本発明の交流用超電導ケーブルの
内々体4用に全部使用覆る方法がある。これにJ、れば
、以下に示す如く、同一電流容量を1!7るのに同一の
超電導材の使用品で、その発生交流10失は従来の1/
8以下どなり、効ψ的である。本発明は、外導体8とし
て必ずしも超電導材を使用しQ < ’(bよいため、
このようなことが可能となる。 この例の場合、構造は第1図と同様であるが、超電導ケ
ーブル本体1Gの径及び全体の最外径は約218近く人
きくなるが、二[夫すれば径を小さく・Jることし可能
ぐある。 この揚台の発生交流に1失の4算は、(5)式までは前
述した例と同じである。(6)式の代りに3X(2πr
 t +−2πRt)−3日×2πr”ctとなる。た
だし、しは超電導物質層の厚さである。 従って、 r t−R= n r      ・・・(9)に こで、 r−R・ ・ ・ (10) とJると、(5)式、(9)式、 (10)式よりP 
2 / P 1* 1 / 8  ・・・(11)どな
る。つまり、同−電流容部を(!するのに51生交流1
0失は1/8以Fとなり、非出に効・I的(・ある。 」 以  [
Fig. 1 is a cross-sectional view of an actual flow example of an AC superconducting cable according to the present invention, Fig. 2 is a cross-sectional view of a composite superconducting tape used in this embodiment, and Fig. 3 is a cross-sectional view of a conventional superconducting cable. FIG. DESCRIPTION OF SYMBOLS 1... Superconducting material layer, 2... Stabilizing layer, 3... Composite superconducting tape, 4... Inner conductor, 8... Outer conductor, 1
6...Superconducting cable body. 1. Figure 3. Procedural official document (spontaneous) 1. Indication of the case Japanese Patent Application No. 63-53750 2. Name of the invention AC superconducting cable 3. Person making the amendment Relationship with the case Patent applicant (529) Furukawa Electric Co., Ltd. 4, agent 6th floor, Bunzan Building, 4-31-6 Shinbashi, Minato-ku, Tokyo Matsumoto Patent Office (telephone number 437-5781) Detailed description of the invention in the specification 6. Insert the following sentence on a new line after "I understand." in the first line of page 9 of Specification of Amendment 1. Super 7ti used in conventional superconducting cable as shown in Figure 3
n l, (not for the inner conductor 4, but for the outer conductor 8
According to FIG. 1, there is a method of completely covering the internal body 4 of the AC superconducting cable of the present invention. If this is J, as shown below, if the same current capacity is 1!7 but the same superconducting material is used, the generated AC 10 loss is 1/1/2 of the conventional one.
8 or less, it is effective. In the present invention, a superconducting material is not necessarily used as the outer conductor 8, and since Q <'(b is good,
This becomes possible. In the case of this example, the structure is the same as that shown in Fig. 1, but the diameter of the superconducting cable body 1G and the overall outermost diameter are approximately 218 cm. It's possible. The four calculations of 1 loss in the AC generated by the platform are the same as in the example described above up to equation (5). Instead of equation (6), 3X(2πr
t + -2πRt) - 3 days x 2πr"ct. However, is the thickness of the superconducting material layer. Therefore, r t-R = n r ... (9) Here, r-R・ ・ ・ (10) and J, then from equations (5), (9), and (10), P
2 / P 1 * 1 / 8 ... (11) Howl. In other words, to make the same current capacity (!), 51 raw AC 1
0 loss becomes 1/8 or more F, and it is effective for non-appearance.

Claims (1)

【特許請求の範囲】[Claims] 超電導物質層を有する内導体と金属或いは一部が超電導
物質層よりなる外導体とが同軸状に配置されてなる超電
導ケーブル本体が、その電流相数の整数倍の本数でまと
めて構成され、前記各超電導ケーブル本体はその電流位
相が隣り合う前記超電導ケーブル本体と異なるように配
置されていることを特徴とする交流用超電導ケーブル。
A superconducting cable main body is formed by coaxially disposing an inner conductor having a superconducting material layer and an outer conductor made of a metal or a part of the superconducting material layer, the number of which is an integral multiple of the number of current phases, and the above-mentioned An AC superconducting cable characterized in that each superconducting cable body is arranged so that its current phase is different from that of the adjacent superconducting cable bodies.
JP63053750A 1988-03-09 1988-03-09 Superconducting cable for alternate current Pending JPH01231217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053750A JPH01231217A (en) 1988-03-09 1988-03-09 Superconducting cable for alternate current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053750A JPH01231217A (en) 1988-03-09 1988-03-09 Superconducting cable for alternate current

Publications (1)

Publication Number Publication Date
JPH01231217A true JPH01231217A (en) 1989-09-14

Family

ID=12951485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053750A Pending JPH01231217A (en) 1988-03-09 1988-03-09 Superconducting cable for alternate current

Country Status (1)

Country Link
JP (1) JPH01231217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031754A2 (en) * 1998-11-20 2000-06-02 Nkt Research Center A/S A method for constructing a superconducting multiphase cable comprising n phases
JP2015216735A (en) * 2014-05-08 2015-12-03 住友電気工業株式会社 Superconducting cable and superconducting cable line

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311077B2 (en) * 1973-03-20 1978-04-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311077B2 (en) * 1973-03-20 1978-04-19

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031754A2 (en) * 1998-11-20 2000-06-02 Nkt Research Center A/S A method for constructing a superconducting multiphase cable comprising n phases
WO2000031754A3 (en) * 1998-11-20 2000-10-05 Nkt Res Center As A method for constructing a superconducting multiphase cable comprising n phases
US6684486B1 (en) 1998-11-20 2004-02-03 Nkt Research Center A/S Method for constructing a superconducting multiphase cable comprising N phases
US7735212B1 (en) 1998-11-20 2010-06-15 Nkt Cables Ultera A/S Superconducting multiphase cable comprising N phases and method of constructing the cable
JP2015216735A (en) * 2014-05-08 2015-12-03 住友電気工業株式会社 Superconducting cable and superconducting cable line

Similar Documents

Publication Publication Date Title
US5952614A (en) A.C. cable with stranded electrical conductors
US3529071A (en) Superconducting cable for transmitting high electrical currents
CA1195369A (en) Spiral pancake armature winding for a dynamoelectric machine
JPH09231841A (en) Superconducting cable for large electric power
EP1163685A1 (en) A cable, a method of constructing a cable, and use of a cable
US3639672A (en) Electrical conductor
JPS62103913A (en) Complex compound superconductor
JPH11506261A (en) AC cable with two concentric conductor arrangements of twisted individual conductors
JPH02123619A (en) Insulated electric wire
FR2418529A1 (en) Cooled AC polyphase cable - has axial magnetic field, counteracting assembly contg. surrounding stabilising superconducting layers, connected together
US3550050A (en) Superconducting coil with cooling means
JP2001035272A (en) Laminated superconducting cable
JPH01231217A (en) Superconducting cable for alternate current
US3414662A (en) Superconductive electric cable
JP2002530829A (en) How to assemble a superconducting polyphase cable
JP3678465B2 (en) Superconducting power cable
JPH10188690A (en) Structure for superconductor
JP4135184B2 (en) Superconducting conductor
JPH01134811A (en) Extremely low temperature cable
JPH0955128A (en) Ac superconducting cable
JP3549296B2 (en) Multilayer superconducting conductor
JP3568745B2 (en) Oxide superconducting cable
JPH09288917A (en) Plastic power cable
JPH1166979A (en) Superconducting cable line
JPH08124434A (en) Superconductor