JPH01230689A - Persistent coolant - Google Patents

Persistent coolant

Info

Publication number
JPH01230689A
JPH01230689A JP5782788A JP5782788A JPH01230689A JP H01230689 A JPH01230689 A JP H01230689A JP 5782788 A JP5782788 A JP 5782788A JP 5782788 A JP5782788 A JP 5782788A JP H01230689 A JPH01230689 A JP H01230689A
Authority
JP
Japan
Prior art keywords
water
substance
coolant
dissolved
endothermic reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5782788A
Other languages
Japanese (ja)
Inventor
Shinichi Jiyosui
如水 慎一
Yasumasa Kosuge
小管 庸正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP5782788A priority Critical patent/JPH01230689A/en
Publication of JPH01230689A publication Critical patent/JPH01230689A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the cooling effect and to enable a low-temp. state to be maintained over a prolonged period of time by coating a substance which brings about an endothermic reaction upon being dissolved in water with a dissolution- controlling film. CONSTITUTION:A grain having a size of pref. 2-5mm of a substance which brings about an endothermic reaction upon being dissolved in water, such as urea or ammonium nitrate, is coated with a dissolution-controlling film composed of a polyolefin (most pref., low-density polyethylene) and, according to necessity, a water-soluble polymer, such as a copolymer of ethylene with vinyl acetate or polyethylene oxide, and a water-insoluble fine mineral particle (most pref., talc in an amt. of 50-95wt.%), thereby obtaining a persistent coolant. The above coating makes it possible to freely change the water dissolution rate of the endothermic substance by changing the compsn. proportions and the thickness of the film. Thus, it is possible to freely change the duration of the cooling effect.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、持続型冷却剤に関する。更に詳しくは本発明
は、冷却装置、氷を使用することなく、アイスクリーム
類、魚類、飲料、食品等を戸外での消費や一時的冷却や
、保存のための冷却する手段としての持続型冷却剤に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a persistent refrigerant. More specifically, the present invention provides continuous cooling as a means for cooling ice creams, fish, beverages, foods, etc. for outdoor consumption, temporary cooling, or preservation without using a cooling device or ice. This is related to drugs.

[従来技術及びその問題点] 硝酸アンモニウムと水、或いは尿素と水を混合させると
、これらの間に吸熱反応が生じる。この冷却作用を利用
する冷却剤が使用されている。
[Prior art and its problems] When ammonium nitrate and water or urea and water are mixed, an endothermic reaction occurs between them. Coolants are used that utilize this cooling effect.

しかしながら、この種のいわゆる寒剤では、該剤と水と
の混合後2〜3分で最大温度降下を示して冷却作用を示
すが、その低温持続時間が短い。
However, although this type of so-called cryogen exhibits a cooling effect by exhibiting a maximum temperature drop within 2 to 3 minutes after mixing the agent with water, the duration of the low temperature is short.

この理由は、冷却剤成分である硝酸アンモニウム、尿素
などが水との混合により全部が直ちに溶解し一度に吸熱
反応が進行するためである。
The reason for this is that all of the coolant components, such as ammonium nitrate and urea, are immediately dissolved when mixed with water, and an endothermic reaction proceeds at once.

[発明が解決しようとする問題点] 本発明は、上記従来の問題点を解決するものであり、そ
の目的とする所は木に対する溶解速度を自在に制御する
こによって、吸熱速度を制御し、低温状態を長時間に亙
り保持しようとするものである。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned conventional problems, and its purpose is to freely control the rate of dissolution into wood, thereby controlling the rate of endothermic absorption, The purpose is to maintain a low temperature state for a long period of time.

[問題点を解決するための手段] 本発明は、下記(1)〜(5)の構成を有する。[Means for solving problems] The present invention has the following configurations (1) to (5).

(1)水に溶解することにより吸熱反応を生じる物質と
、前記物質の表面に設けられた溶出制御膜とからなる持
続型冷却剤。
(1) A continuous cooling agent comprising a substance that causes an endothermic reaction when dissolved in water and an elution control film provided on the surface of the substance.

(2)溶出制御膜がポリオレフィンおよび水不溶性鉱物
質微粒子からなり、必要に応じてこれにエチレン酢酸ビ
ニル共重合体又は水溶性ポリマーを添加した組成物から
なる前記第(1)項記載の冷却剤。
(2) The coolant according to the above item (1), wherein the elution control film is composed of a polyolefin and water-insoluble mineral fine particles, and optionally an ethylene-vinyl acetate copolymer or a water-soluble polymer is added thereto. .

(3゛)ポリオレフィンがポリエチレンからなり、水溶
性ポリマーがポリエチレンオキサイドからなり水不溶性
鉱物質微粒子がタルクからなる前記第(2)項記載の冷
却剤。
(3) The coolant according to item (2) above, wherein the polyolefin is made of polyethylene, the water-soluble polymer is made of polyethylene oxide, and the water-insoluble mineral fine particles are made of talc.

(4)水不溶性鉱物質微粒子の配合量か組成物重量の5
0〜95%である前記第(2)項記載の冷却剤。
(4) Amount of water-insoluble mineral fine particles or 5% of the composition weight
The coolant according to item (2) above, which has a content of 0 to 95%.

(5)水に溶解するこにより、吸熱反応を生じる物質が
尿素、硝酸アンモニウム、塩化アンモニウム、硫酸アン
モニウム、炭酸ナトリウム、硝酸ナトリウム、硫酸ナト
リウム、硝酸カリウム、塩化カリウム、炭酸カリウム、
硫酸カリウム、スルファミン酸グアニジンから選ばれた
一以上の物質である前記第(1)項記載の冷却剤。
(5) Substances that cause an endothermic reaction when dissolved in water include urea, ammonium nitrate, ammonium chloride, ammonium sulfate, sodium carbonate, sodium nitrate, sodium sulfate, potassium nitrate, potassium chloride, potassium carbonate,
The coolant according to item (1) above, which is one or more substances selected from potassium sulfate and guanidine sulfamate.

本発明は、水との混合によって吸熱反応を示す化学物質
の表面を被覆し、この被覆材によって水透過性の制御を
行い被覆された物質が水に溶解する速度を制御し、これ
によって持続型冷却剤を得るものである。被覆される化
学物質は水に溶解して吸熱反応を生じるもので、被覆操
作を行う上で2〜5mmの粒状物が好ましい、か−る物
質すなわち化合物として、尿素、硝酸アンモニウム、塩
化アンモニウム、硫酸アンモニウム、炭酸ナトリウム、
硝酸ナトリウム、硫酸ナトリウム、硝酸カリウム、塩化
カリウム、炭酸カリウム、硫酸カリウム、スルファミン
酸グアニジン等が使用できる。
The present invention coats the surface of a chemical substance that exhibits an endothermic reaction when mixed with water, controls water permeability with this coating material, controls the rate at which the coated substance dissolves in water, and thereby provides a sustainable This is where you get the coolant. The chemical substance to be coated is one that causes an endothermic reaction when dissolved in water, and particles of 2 to 5 mm are preferable for carrying out the coating operation. Examples of such substances or compounds include urea, ammonium nitrate, ammonium chloride, ammonium sulfate, sodium carbonate,
Sodium nitrate, sodium sulfate, potassium nitrate, potassium chloride, potassium carbonate, potassium sulfate, guanidine sulfamate, etc. can be used.

被覆材としては、a、ポリオレフィン系樹脂、b、エチ
レン−酢酸ビニル共重合体、C1水溶性高分子、および
d、水不溶性の鉱物質粒子が使用できる。中でaおよび
dは、必須被膜成分である。低、中および高密度ポリエ
チレン、ポリプロピレン、エチレン−プロピレン共重合
体等が好ましい樹脂としてあげられる。最も好ましいも
のは低密度ポリエチレンである。
As the coating material, a, polyolefin resin, b, ethylene-vinyl acetate copolymer, C1 water-soluble polymer, and d, water-insoluble mineral particles can be used. Among them, a and d are essential coating components. Preferred resins include low, medium and high density polyethylene, polypropylene, ethylene-propylene copolymers and the like. Most preferred is low density polyethylene.

エチレン−酢酸ビニル共重合体とはエチレンと酢酸ビニ
ールの共重合体であり重合法、重合度に制約はなく、市
販のものを適宜使用することができる。好ましいものは
高圧重合法によって得られたものである。
The ethylene-vinyl acetate copolymer is a copolymer of ethylene and vinyl acetate, and there are no restrictions on the polymerization method or degree of polymerization, and commercially available products can be used as appropriate. Preferred are those obtained by high pressure polymerization.

水不溶性の鉱物質微粒子はタルク、金属酸化物、珪酸質
粉体ガラス、アルカリ土類金属の炭酸塩、硫酸塩等が例
示され、本発明ではこれら一種もしくは二種以上を併用
して用いるものである。
Examples of water-insoluble mineral fine particles include talc, metal oxides, silicate powder glass, carbonates and sulfates of alkaline earth metals, and in the present invention, one or more of these may be used in combination. be.

最も好ましいものはタルクである。該粉体の粒度は10
0 JL以以下室しくは20終以下である。
Most preferred is talc. The particle size of the powder is 10
0 JL or below, or 20 or below.

本発明に使用する水溶性ポリマーとしてはポリエチレン
オキサイド、ポリアクリルアマイド、ポリエチレンオキ
サイド−ポリアクリルアマイド共重合体、セルロース、
及びその誘導体を挙げることができる。好ましいものは
ポリエチレンオキサイドである。
Water-soluble polymers used in the present invention include polyethylene oxide, polyacrylamide, polyethylene oxide-polyacrylamide copolymer, cellulose,
and derivatives thereof. Preferred is polyethylene oxide.

上述の樹脂成分と水不溶性鉱物質微粒子を溶媒に溶解分
散させた後この溶解分散液を、水に溶解して吸熱を生じ
る物質の表面にスプレーしただちに乾燥させ溶出制御膜
をその表面に形成させる。
After dissolving and dispersing the above-mentioned resin component and water-insoluble mineral fine particles in a solvent, this dissolved dispersion liquid is sprayed onto the surface of a substance that dissolves in water and generates heat absorption, and is immediately dried to form an elution control film on the surface. .

以下その冷却剤を得る方法について説明する。The method for obtaining the coolant will be explained below.

第1図は本試験で用いた被覆するための噴流層被覆装置
である0図中1は噴流層ケーシング、2は粒状冷却剤投
入口、3は排気口、4はスプレーノズル、6は溶液ポン
プ、7は排出口、8はガス加熱器、9はオリフィス部、
lOはブロワ−111は溶解分散液タン、12は粒状冷
却剤である。予じめ加熱した一定量の熱風を噴流層ケー
シング内に吹き込み、被覆されるべき物質を2より投入
し、噴流層を形成させた後、6のポンプにて、被覆され
るべき溶解分散液を4のスプレーノズルにてスプレーし
、被覆されるべき物質の表面にコーティングを行い、噴
流用熱風によって、溶剤を瞬間的に乾燥させ、溶出制御
膜を形成する。
Figure 1 shows the spouted bed coating equipment used in this test. In the figure, 1 is the spouted bed casing, 2 is the granular coolant inlet, 3 is the exhaust port, 4 is the spray nozzle, and 6 is the solution pump. , 7 is a discharge port, 8 is a gas heater, 9 is an orifice part,
1O is a blower, 111 is a dissolved dispersion tank, and 12 is a granular coolant. A certain amount of preheated hot air is blown into the spouted bed casing, the material to be coated is introduced from 2 to form a spouted bed, and then the dissolved dispersion to be coated is pumped through the pump at 6. The solvent is sprayed using the spray nozzle No. 4 to coat the surface of the substance to be coated, and the solvent is instantaneously dried by a jet of hot air to form an elution control film.

[本発明による作用] 本発明に係る溶出制御膜は、被覆するポリオレフィン、
ポリエチレン−酢酸ビニル共重合体、水溶液ポリマー、
水不溶性鉱物質の組成比を変える賽によって、同一被膜
量であっても、制御膜の水通過特性が変り、吸熱性物質
の水溶解速度を自由に変える事ができ、この事によって
冷却持続時間を自由に変えることができる。
[Action according to the present invention] The elution control membrane according to the present invention includes a coating polyolefin,
polyethylene-vinyl acetate copolymer, aqueous solution polymer,
By changing the composition ratio of water-insoluble minerals, the water passing characteristics of the control membrane can be changed even with the same amount of coating, and the water dissolution rate of endothermic substances can be freely changed, thereby increasing the cooling duration. can be changed freely.

又、勿論、制御膜の厚さを変える事によっても冷却持続
時間を変えることができる。
Of course, the cooling duration can also be varied by varying the thickness of the control membrane.

長時間冷却剤を得るときは、制御膜を構成する樹脂対水
不溶性鉱物質の比を大きくするか又は樹脂部の内ポリオ
レフィンの量をポリエチレン−酢酸ビニル共重合体、水
溶性ポリマーに対し多くする。
When obtaining a long-term coolant, increase the ratio of resin to water-insoluble minerals constituting the control membrane, or increase the amount of polyolefin in the resin part relative to polyethylene-vinyl acetate copolymer or water-soluble polymer. .

反対に短時間形持続冷却剤を得るときは、前述の逆を行
う。
Conversely, to obtain a short-acting sustained coolant, the above procedure is reversed.

実施例1〜7 タルク(平均粒子径6JL 最大粒径50p富士タルク
■製)700部 ポリエチレン(メルトインデックス?−Og/10分低
密度ポリエチレン旭化成■製)150部ポリエチレンオ
キサイド(アルコックスSP。
Examples 1 to 7 Talc (average particle size 6JL, maximum particle size 50p manufactured by Fuji Talc) 700 parts polyethylene (melt index?-Og/10 minutes low density polyethylene manufactured by Asahi Kasei ■) 150 parts polyethylene oxide (Alcox SP).

明成化学■製)150部 を溶媒テトラクロルエチレン9000部と混合し攪拌昇
温しく115℃)樹脂を溶解させ、タルクが沈降しない
様に分散被覆液を調製する。
(manufactured by Meisei Kagaku ■) is mixed with 9000 parts of tetrachloroethylene as a solvent, and the mixture is stirred and heated to 115° C.) to dissolve the resin, and a dispersion coating solution is prepared so that the talc does not precipitate.

第1図の装置に於いて1に粒状尿素(粒径2〜4 ■)
 9000部を2より投入し、8でガス加熱器によって
あらかじめ、昇温された(約120℃)のガスを送入す
ることによって噴流層を形成する。ポンプ6を運転し、
スプレーノズル4より被覆液を噴霧し、該噴流層中の尿
素粒子表面のコーティングを行う、前記被覆液中の溶媒
テトラクロルエチレンは噴流中に蒸発し、尿素表面に制
御被膜を形成する。同様の手法を用いて被覆材組成の異
ったものについて、被覆率を変えて、被覆処理を行った
In the apparatus shown in Figure 1, granular urea (particle size 2 to 4 ■) is added to 1.
9,000 parts were added at step 2, and at step 8, a spouted bed was formed by feeding gas whose temperature had been raised in advance (approximately 120° C.) using a gas heater. operate pump 6,
The coating liquid is sprayed from the spray nozzle 4 to coat the surfaces of the urea particles in the spouted layer. The solvent tetrachlorethylene in the coating liquid is evaporated in the jet to form a control film on the urea surface. Using the same method, coatings with different coating material compositions were coated with different coverage rates.

第1表 註、エチレン−酢酸ビニル共重合体仁井デュポン EV
A 360 )第1表にて作成した冷却剤について25
℃水中での尿素溶出速度を測定した(第2図、第3図)
Note to Table 1: Ethylene-vinyl acetate copolymer Nii DuPont EV
A 360) Regarding the coolant prepared in Table 1 25
The urea dissolution rate in ℃ water was measured (Figures 2 and 3).
.

第1表に作成した冷却剤についてその冷却効果を測定し
た(第4図) 、 111定法は25°Cの恒温空気中
に樹脂袋(10cmX 10cm)をつるし、これに試
料(200g)及び25℃の水(120mJ1 )を入
れ、樹脂袋内部の水温を測定した。第4図からも判る様
に表面を被覆していないものは初期冷却効果はあるが、
持続性がない事が判る。
The cooling effect of the coolants prepared in Table 1 was measured (Figure 4). In the 111 standard method, a resin bag (10 cm x 10 cm) was suspended in air at a constant temperature of 25°C, and a sample (200 g) and a sample (200 g) were placed in the air at 25°C. of water (120 mJ1) was poured into the bag, and the water temperature inside the resin bag was measured. As can be seen from Figure 4, those with uncoated surfaces have an initial cooling effect, but
It turns out that it is not sustainable.

実施例8 実施例1〜3で作成したNot 、 No2 、 No
3各50gと被覆していない硝安各50gを加え、冷却
効果を測定した。(第5図)第5図から判る様に被覆し
、ていない冷却剤と被覆冷却材を混合することによって
、長時間に亙って冷却効果を維持することができる。
Example 8 Not, No2, No created in Examples 1 to 3
3 and 50 g each of uncoated ammonium nitrate were added to measure the cooling effect. (FIG. 5) As can be seen from FIG. 5, by mixing the coated and uncoated coolant with the coated coolant, the cooling effect can be maintained for a long time.

測定法は実施例1〜7の場合に同じである。The measurement method is the same for Examples 1-7.

(効果) 本発明によるときは、水に溶解して吸熱を生じる物質と
前記物質表面に設けられた溶出制御膜の作用によって冷
却効果を自在にコントロールすることができる。
(Effects) According to the present invention, the cooling effect can be freely controlled by the action of a substance that absorbs heat when dissolved in water and an elution control film provided on the surface of the substance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例で使用した装置の説明図であ
る。 第2〜5図は、本発明の詳細な説明するための溶出率−
経過時間又は温度−経過時間曲線である。 以   上
FIG. 1 is an explanatory diagram of an apparatus used in an embodiment of the present invention. Figures 2 to 5 show dissolution rates for detailed explanation of the present invention.
It is an elapsed time or temperature-elapsed time curve. that's all

Claims (5)

【特許請求の範囲】[Claims] (1)水に溶解することにより吸熱反応を生じる物質と
、前記物質の表面に設けられた溶出制御膜とからなる持
続型冷却剤。
(1) A continuous cooling agent comprising a substance that causes an endothermic reaction when dissolved in water and an elution control film provided on the surface of the substance.
(2)溶出制御膜がポリオレフィンおよび水不溶性鉱物
質微粒子からなり、必要に応じてこれにエチレン酢酸ビ
ニル共重合体又は水溶性ポリマーを添加した組成物から
なる特許請求の範囲第(1)項記載の冷却剤。
(2) Claim (1) in which the elution control membrane is composed of a polyolefin and water-insoluble mineral fine particles, and optionally an ethylene-vinyl acetate copolymer or a water-soluble polymer is added thereto. coolant.
(3)ポリオレフィンがポリエチレンからなり、水溶性
ポリマーがポリエチレンオキサイドからなり水不溶性鉱
物質微粒子がタルクからなる特許請求の範囲第(2)項
記載の冷却剤。
(3) The coolant according to claim (2), wherein the polyolefin is made of polyethylene, the water-soluble polymer is made of polyethylene oxide, and the water-insoluble mineral particles are made of talc.
(4)水不溶性鉱物質微粒子の配合量が組成物重量の5
0〜95%である特許請求の範囲第(2)項記載の冷却
剤。
(4) The amount of water-insoluble mineral fine particles is 5% of the weight of the composition.
The coolant according to claim (2), which has a content of 0 to 95%.
(5)水に溶解することにより、吸熱反応を生じる物質
が尿素、硝酸アンモニウム、塩化アンモニウム、硫酸ア
ンモニウム、炭酸ナトリウム、硝酸ナトリウム、硫酸ナ
トリウム、硝酸カリウム、塩化カリウム、炭酸カリウム
、硫酸カリウム、スルファミン酸グアニジンから選ばれ
た一以上の物質である特許請求の範囲第(1)項記載の
冷却剤。
(5) The substance that causes an endothermic reaction when dissolved in water is selected from urea, ammonium nitrate, ammonium chloride, ammonium sulfate, sodium carbonate, sodium nitrate, sodium sulfate, potassium nitrate, potassium chloride, potassium carbonate, potassium sulfate, and guanidine sulfamate. A coolant according to claim 1, which is one or more substances containing:
JP5782788A 1988-03-11 1988-03-11 Persistent coolant Pending JPH01230689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5782788A JPH01230689A (en) 1988-03-11 1988-03-11 Persistent coolant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5782788A JPH01230689A (en) 1988-03-11 1988-03-11 Persistent coolant

Publications (1)

Publication Number Publication Date
JPH01230689A true JPH01230689A (en) 1989-09-14

Family

ID=13066759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5782788A Pending JPH01230689A (en) 1988-03-11 1988-03-11 Persistent coolant

Country Status (1)

Country Link
JP (1) JPH01230689A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230072A (en) * 1990-02-01 1991-10-14 Shinji Ito Cooling sheet
US5261241A (en) * 1991-02-08 1993-11-16 Japan Pionics Co., Ltd. Refrigerant
US5431022A (en) * 1993-10-05 1995-07-11 Kabushiki Kaisha Nichiwa Cooling bag
WO2001039704A1 (en) * 1999-11-30 2001-06-07 The Procter & Gamble Company Cooling pad

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187482A (en) * 1982-04-27 1983-11-01 Kashiwa Kagaku Kogyo:Kk Portable cooling agent
JPS603040A (en) * 1983-06-17 1985-01-09 Matsushita Electric Ind Co Ltd Data storing method
JPS6153214A (en) * 1983-08-16 1986-03-17 ザ ウエルカム フアウンデ−シヨン リミテツド Novel composition
JPS63259365A (en) * 1987-04-13 1988-10-26 ト−ヨ−カネツ株式会社 Cooling method controlling endothermic reaction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187482A (en) * 1982-04-27 1983-11-01 Kashiwa Kagaku Kogyo:Kk Portable cooling agent
JPS603040A (en) * 1983-06-17 1985-01-09 Matsushita Electric Ind Co Ltd Data storing method
JPS6153214A (en) * 1983-08-16 1986-03-17 ザ ウエルカム フアウンデ−シヨン リミテツド Novel composition
JPS63259365A (en) * 1987-04-13 1988-10-26 ト−ヨ−カネツ株式会社 Cooling method controlling endothermic reaction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230072A (en) * 1990-02-01 1991-10-14 Shinji Ito Cooling sheet
US5261241A (en) * 1991-02-08 1993-11-16 Japan Pionics Co., Ltd. Refrigerant
US5431022A (en) * 1993-10-05 1995-07-11 Kabushiki Kaisha Nichiwa Cooling bag
WO2001039704A1 (en) * 1999-11-30 2001-06-07 The Procter & Gamble Company Cooling pad
WO2001039705A1 (en) * 1999-11-30 2001-06-07 The Procter & Gample Company Cooling pad

Similar Documents

Publication Publication Date Title
KR910007178B1 (en) Fertilizer with a degradative coating
US4019890A (en) Method for producing coated fertilizer
WO1997012695A1 (en) Additive-coated resin composition
JPS58501576A (en) Material, hollow bilayer silicate microspheres
US3238129A (en) Fire fighting compositions
JPH0469598B2 (en)
Tomaszewska et al. Encapsulation of mineral fertilizer by polysulfone using a spraying method
JP2771224B2 (en) Method for plasticizing polyvinyl alcohol resin
JPH01230689A (en) Persistent coolant
JPH02242858A (en) Water-absorbing agent and production thereof
JPH11512019A (en) Apparatus and method for coating solid particles
JPS6021952B2 (en) Coated fertilizer and its manufacturing method
JPH06313042A (en) Production of resin having high water absorption property
TWI625351B (en) Method of preparing superabsorbent polymer treated with water dispersion solution containing microparticles
JPH06313044A (en) Production of resin having high water absorption property
US20180250541A1 (en) Enhanced dry chemical fire extinguishing composition, apparatus, and method
JPH06509125A (en) How to dry microspheres
KR100665042B1 (en) Polymer macroparticle of which surface is modified by mesoparticle and nanoparticle, nanoparticle-polymer composite using the same, and preparation thereof
US20090155592A1 (en) Polymer macroparticle of which surface is modified by mesoparticle and nanoparticle, nanoparticle-polymer composite using the same, and preparation thereof
JPH09309785A (en) Coated granular fertilizer of time limit elution type
JPH10130014A (en) Coated granular material improved in hydrophilicity and its production
BR112013008992B1 (en) process for making coated detergent particles and process for coating extruded soluble surfactant particles
KR20100040247A (en) Method of controlling absorbing rate of an absorbent and the absorbent having absorbing rate controlled by the same
JP2001303034A (en) Irreversible temperature sensitive composition
Fu et al. Influence of spray drying conditions on the properties of ammonium dihydrogen phosphate fire-extinguishing particles