JPH01230445A - Light transmitter - Google Patents

Light transmitter

Info

Publication number
JPH01230445A
JPH01230445A JP63057098A JP5709888A JPH01230445A JP H01230445 A JPH01230445 A JP H01230445A JP 63057098 A JP63057098 A JP 63057098A JP 5709888 A JP5709888 A JP 5709888A JP H01230445 A JPH01230445 A JP H01230445A
Authority
JP
Japan
Prior art keywords
interface layer
core
refractive index
optical transmission
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63057098A
Other languages
Japanese (ja)
Inventor
Akira Iino
顕 飯野
Masahide Kuwabara
正英 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63057098A priority Critical patent/JPH01230445A/en
Publication of JPH01230445A publication Critical patent/JPH01230445A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/24Single mode [SM or monomode]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To contrive improvement of manufacturing yield rate, by providing a interface layer having smoothly varying refractive index between core and mold and gradually increasing fluorine content to outward, in a light transmitter of single mode type. CONSTITUTION:A quartz fine particles aggregate (suite 4) is formed through hydrolysis reaction in an oxygen-hydrogen flame in VAD method, dehydrated and vitrified to transparent glass in a heating furnace 5 and a rod is obtained. Next, the suite is accumulated on a clad part of the rod by OVD method. At the time, SiCl4 and POCl3 are cast from a central nozzle of tetralayer tube 10 and Si, H2 and Ar, O2 are respectively fed from other nozzles. Thus, an interface layer 3 is smoothly formed between core 1 and clad 2 and fluorine content in the interface layer 3 is gradually increased to outward. A generation of interface defect at line drawing, thus a manufacturing yield rate is improved.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、フッ素を含有させた単一モード型の光伝送体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a single mode optical transmission body containing fluorine.

〔従来技術〕[Prior art]

近年、光伝送体を用いた伝送システムは公衆通信のみな
らず、LAN (ローカルエリアネットワーク)やコン
ビューターネントワーク等多方面に応用されている。さ
らには国際通信の需要の増大に伴い、光海底ケーブルの
布設も進められている。
In recent years, transmission systems using optical transmission bodies have been applied not only to public communications but also to many other fields such as LAN (Local Area Network) and computer network. Furthermore, with the increasing demand for international communications, the installation of optical submarine cables is also progressing.

ところで、光海底ケーブルに使用される光伝送体には通
常の公衆通信伝送用の光伝送体よりもより低損失、大容
量のものが必要である。そこで従来から第4図に示すよ
うな屈折率分布を持つ単一モード型の光伝送体であって
、かつ超低損失の光伝送体の開発が進められてきた。
By the way, optical transmission bodies used in optical submarine cables are required to have lower loss and larger capacity than optical transmission bodies for ordinary public communication transmission. Therefore, efforts have been made to develop a single-mode optical transmission body having a refractive index distribution as shown in FIG. 4, and an ultra-low loss optical transmission body.

しかしなから、前記第4図に示す光伝送体にあってはコ
ア1とクラッド2との間の屈折率が急峻であるため、換
言すると、コア1とクラッド2との間の組成が急激に変
化しているため、母材から光伝送体を線引すると、その
際両者の界面部で欠陥が発生し易く、超低損失のものが
歩留りよく得難いという問題があった。
However, in the optical transmission body shown in FIG. 4, the refractive index between the core 1 and the cladding 2 is steep. Because of this change, when an optical transmitter is drawn from the base material, defects are likely to occur at the interface between the two, making it difficult to obtain an ultra-low loss product with good yield.

〔発明の目的〕[Purpose of the invention]

前記問題に鑑み本発明の目的は、歩留りよく、すなわち
安定して製造できる超低損失の単一モード型の光伝送体
を提供することにある。
In view of the above problems, it is an object of the present invention to provide an ultra-low loss single mode optical transmission body that can be manufactured with good yield, that is, stably.

〔発明の構成〕[Structure of the invention]

前記目的を達成すべく本発明は、コアまたはクラッドの
少なくとも一方がフッ素を含んだ単一モード型の光伝送
体において、前記コアとクラ・7ドとの間にはその屈折
率が滑らかに減少する界面層が設けられ、かつ該界面層
では内側から外側に向かってフッ素の含有量が徐々に増
大していることを特徴とするものである。
In order to achieve the above object, the present invention provides a single mode optical transmission body in which at least one of the core and the cladding contains fluorine, in which the refractive index smoothly decreases between the core and the cladding. The interface layer is characterized in that the fluorine content in the interface layer gradually increases from the inside to the outside.

(発明の実施例〕 以下に本発明の実施例を図を参照して詳細に説明する。(Embodiments of the invention) Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明の単一モード型の光伝送体の一実施例を第1図に
示す。本図が示すように、本発明の光伝送体は、コア1
とクラット2の間に、前記コア1の屈折率値からクラッ
ト2の屈折率値へとその屈折率が滑らかに変化する界面
層3を設けたたちので、しかも該界面層3内の屈折率分
布を前述の如く内側から外側に向かって滑らかに減少さ
せるべく、界面層3の内側から外側に向かってフッ素の
含有量を徐々に増大させたことを特徴としている。さら
にまた、例えばP2O6、GeO□等のいわゆる屈折率
を高めるために使用する金属酸化物の該界面層3内にお
iJる含有量分布をこの界面層3の内側から外側に向か
って徐々に減少せしめたことも特徴としている。以下の
本発明の具体例を示す。
An embodiment of the single mode optical transmission body of the present invention is shown in FIG. As shown in this figure, the optical transmission body of the present invention has a core 1
Since an interface layer 3 whose refractive index smoothly changes from the refractive index value of the core 1 to the refractive index value of the clad 2 is provided between the core 1 and the clad 2, the refractive index distribution within the interface layer 3 is The interface layer 3 is characterized in that the fluorine content is gradually increased from the inside to the outside of the interface layer 3 so that the fluorine content decreases smoothly from the inside to the outside as described above. Furthermore, the content distribution of metal oxides used to increase the so-called refractive index, such as P2O6 and GeO□, in the interface layer 3 is gradually reduced from the inside to the outside of the interface layer 3. It is also characterized by being forced. Specific examples of the present invention are shown below.

ます5iC14を同心四重管バーナ中に導入し、酸素−
水素炎の中で加水分解反応をさせて石英微粒子集合体、
いわゆるVAD法にて石英微粒子集合体(以下単にスー
トという)を得た。これは外径約45mm、長さが45
0mmであった。このようにして得たスート4を第2図
に示すように加熱炉5内に導入し、脱水、透明ガラス化
した。尚、具体的には、Heを50f /min 、 
C1zを1.51 /minをガス導入口5から流し込
みながら、まず炉内最高温度を約1200°Cに保持し
た状態で、前記スート4を200mm/hで引き下げ脱
水し、該脱水が完了したらこれを引き上げ、続いて炉内
最高温度1620°CとしかつHeを50j! /mi
n 、 C1zを1.5 E/minを前記同様に流し
ながら、前記スート4を200mm/hで引き下げ透明
ガラス化した。次にこれを延伸して外径15mm、長さ
200mmのロッドを2本製造した。尚、第2図におい
で符号7はガス排気口である。
5iC14 was introduced into a concentric quadruple tube burner, and oxygen-
A quartz fine particle aggregate is produced by a hydrolysis reaction in a hydrogen flame.
A quartz fine particle aggregate (hereinafter simply referred to as soot) was obtained by a so-called VAD method. This has an outer diameter of about 45mm and a length of 45mm.
It was 0 mm. The soot 4 thus obtained was introduced into a heating furnace 5 as shown in FIG. 2, where it was dehydrated and turned into transparent vitrification. Specifically, He was heated at 50f/min,
While flowing C1z at a rate of 1.51/min from the gas inlet 5, the soot 4 was first dehydrated by lowering the soot 4 at a rate of 200 mm/h while maintaining the maximum temperature in the furnace at approximately 1200°C. Then, the maximum temperature in the furnace was raised to 1620°C and He was increased to 50j! /mi
While flowing 1.5 E/min of C1z and C1z in the same manner as above, the soot 4 was lowered at 200 mm/h to form transparent vitrification. Next, this was stretched to produce two rods each having an outer diameter of 15 mm and a length of 200 mm. In addition, in FIG. 2, the reference numeral 7 is a gas exhaust port.

〔比較例〕[Comparative example]

続いて片方のロッド(これをロッドAという)上に、第
3図に示す所謂OVD法でクラッド部9に相当するスー
トを堆積せしめた。具体的には、5iC14を往復移動
する同心四重管バーナ9中に導入し、加水分解反応をさ
せて形成した。この外径が90mmになったときに堆積
を中止し、しかる後第2図に示す加熱炉5にて脱水、透
明ガラス化を行った。具体的には、lleを50j2 
/min 、 C1zを1.51/minをガス導入口
5から流し込みながら、まず炉内最高温度を約1200
’Cに保持した状態で、前記コア部8に相当する部分に
透明な口・7ドAを含むスートを200mm/hで引き
下げ脱水し、しかる後これを引き上げ、続いて炉内最高
温度1360°Cとし、かつlieを101/min 
、 SiF、を0.8 ffi/min、そしてC1z
 O,1l/minをガス導入口5から流し込みながら
、スートを200闘/hで引き下げクラッド部9に相当
する部分を透明ガラス化した。透明ラス化後のクラッド
2には純粋石英ガラスに対する比屈折率差(Δ−)で0
.35%に相当するフッ素がドープされ、第4図に示す
屈折率分布を有する透明ガラスロッドが得られた。この
ような操作を繰り返し、コアークラッドの比が10 :
 125になったところで、このガラスロッドを3等分
し、これを各々線引し、外径125μmの光伝送体を得
、これに紫外線硬化性樹脂被覆を施し外径380μmの
被覆光伝送体を3本得た。これを各々比較例1〜3とし
た。
Subsequently, soot corresponding to the cladding portion 9 was deposited on one of the rods (referred to as rod A) by the so-called OVD method shown in FIG. Specifically, 5iC14 was introduced into a reciprocating concentric quadruple pipe burner 9 and subjected to a hydrolysis reaction. The deposition was stopped when the outer diameter reached 90 mm, and then dehydration and transparent vitrification were performed in a heating furnace 5 shown in FIG. Specifically, lle is 50j2
/min, while pouring C1z at 1.51/min from the gas inlet 5, the maximum temperature in the furnace was first raised to about 1200
'C, the soot containing the transparent opening and 7 doors A in the part corresponding to the core part 8 is pulled down at 200 mm/h to dehydrate it, then pulled up, and then heated to a maximum temperature of 136° in the furnace. C, and lie is 101/min.
, SiF, 0.8 ffi/min, and C1z
The soot was lowered at a rate of 200 f/h while flowing O. 1 l/min from the gas inlet 5 to convert the portion corresponding to the cladding portion 9 into transparent glass. The cladding 2 after being made into a transparent lath has a relative refractive index difference (Δ-) of 0 with respect to pure silica glass.
.. A transparent glass rod doped with fluorine corresponding to 35% and having a refractive index profile shown in FIG. 4 was obtained. Repeat this operation until the core-clad ratio is 10:
When the diameter reached 125, this glass rod was divided into three equal parts, each of which was drawn to obtain a light transmitting body with an outer diameter of 125 μm, which was coated with an ultraviolet curable resin to form a coated light transmitting body with an outer diameter of 380 μm. I got three. These were designated as Comparative Examples 1 to 3, respectively.

〔実施例〕〔Example〕

他方のロッド(以下これをロッドBという)上に、第3
図に示す所謂OVD法でクラッド部9に相当するスート
を堆積せしめた。但しこの場合は、前記四重管バーナ1
0の中央ノズルからは5iCI4(43°C、キャリア
ガスAr83 m l /m1n)及びPOCl2(0
°C、キャリアガスAr20 mi/m1n)を流し、
内側から2番目のノズルからは5i(35°C1キヤリ
アガスAr198m l /min )とH2を流した
。また3番目のノズルからはArを流し、最外層のノズ
ルからは02を流した。この条件でロンドB上に厚さ1
mrrlスートを堆積せしめた。しかる後POChのキ
ャリアガス流量を15 mC’minに下げ、2層目と
して厚さ1mmのスートを堆積させた。同様に3層目は
P。
On the other rod (hereinafter referred to as rod B), a third
Soot corresponding to the cladding portion 9 was deposited by the so-called OVD method shown in the figure. However, in this case, the quadruple pipe burner 1
5iCI4 (43°C, carrier gas Ar83 ml/ml) and POCl2 (0
°C, carrier gas Ar20 mi/m1n) was flowed,
5i (35°C1 carrier gas Ar 198ml/min) and H2 were flowed from the second nozzle from the inside. Further, Ar was flowed from the third nozzle, and 02 was flowed from the outermost nozzle. Under these conditions, a thickness of 1
mrrl soot was deposited. Thereafter, the POCh carrier gas flow rate was lowered to 15 mC'min, and soot with a thickness of 1 mm was deposited as a second layer. Similarly, the third layer is P.

C13のキャリアガス流量を10 mで/minとし、
その後5mρ/minづつPOCI+1の導入量を下げ
つつ、本発明でいうところの界面層3に相当するスート
を形成し、5層目以降は5iC14のみと、いわゆるク
ラッド2に相当する部分のスートを形成した。このよう
にしてその外径が90mmとなったところで堆積を中止
し、以下前記ロッドAの場合と同様の方法、条件で脱水
、透明ガラス化を行った。その結果得られた透明ガラス
ロッドの屈折率分布を調べたら第1図に示すようになっ
ていた。これを比較例の場合と同様に3等分して線引し
、外径125μmの光伝送体を得、これに紫外線硬化性
樹脂をして外径380μmの被覆光伝送体を3本得た。
The C13 carrier gas flow rate was 10 m/min,
Thereafter, while decreasing the amount of POCI+1 introduced by 5 mρ/min, a soot corresponding to the interface layer 3 in the present invention is formed, and from the 5th layer onwards, only 5iC14 and soot corresponding to the so-called cladding 2 are formed. did. In this way, the deposition was stopped when the outer diameter reached 90 mm, and dehydration and transparent vitrification were performed in the same manner and under the same conditions as in the case of rod A. When the refractive index distribution of the resulting transparent glass rod was examined, it was as shown in FIG. This was divided into three equal parts and drawn as in the case of the comparative example to obtain a light transmitting body with an outer diameter of 125 μm, and this was coated with an ultraviolet curable resin to obtain three coated light transmitting bodies with an outer diameter of 380 μm. .

以下これらを実施例1〜3とする。These will be referred to as Examples 1 to 3 below.

上記各々3木の被覆光伝送体の波長1.55μm帯での
伝送損失は表1に示す通りであった。
The transmission loss of each of the above-mentioned three coated optical transmitters in the wavelength band of 1.55 μm was as shown in Table 1.

尚、表1において比1とは比較例1を、実1とは実施例
1を意味している。またカントオフ波長及びモードフィ
ールド径の単位はμm、伝送損失の単位はdB/kmで
ある。
In Table 1, Ratio 1 means Comparative Example 1, and Actual 1 means Example 1. Further, the unit of cant-off wavelength and mode field diameter is μm, and the unit of transmission loss is dB/km.

表1 条長  カントオ モードフィ 伝送損失(km)  
  フ波長  −ルド径 比113.1   1.51   10.8  0.1
97比214.5   1.49   10.7  0
.202比313.8   1.49   10.7 
 0.172実113.6  1.50  11.0 
 0.17B実214.1   1.51   11.
1  0.182実314.0   1.5011.0
  0.175前記表1が示すように、ロッドAから得
られた比較例のものよりも、ロッドBがら得られた本発
明の実施例のものの方がより低損失であった。尚表1に
おける条長は、ガラスロッI”A及びBを共に3等分し
、かつずべて同じザイズに切り揃えたものから得られた
良品の長さを示しているが、本発明の実施例の方がより
長く良品の光伝送体を得られることが明白である。
Table 1 Length Kanto mode Transmission loss (km)
Wavelength - Radius ratio 113.1 1.51 10.8 0.1
97 ratio 214.5 1.49 10.7 0
.. 202 ratio 313.8 1.49 10.7
0.172 fruit 113.6 1.50 11.0
0.17B real 214.1 1.51 11.
1 0.182 actual 314.0 1.5011.0
0.175 As shown in Table 1 above, the loss of the example of the present invention obtained from rod B was lower than that of the comparative example obtained from rod A. Note that the length in Table 1 indicates the length of a good product obtained by dividing glass rods I''A and B into three equal parts and cutting them all to the same size. It is clear that a good quality optical transmission body can be obtained for a longer period of time.

本発明のものにあっては、コアークラッドの界面層3に
リンが微小量存在し、このため界面層3のガラス化がそ
の他の部分よりも早く進むので、その部分のフッ素ドー
プ量がより小さくなる。その結果第1図に示すような屈
折率分布となり、フッ素ドープ量は界面層3の内側がら
外側に向かって徐々に増大していった。従って、界面層
3では組成が急激に変化していないため、線引時に界面
部に欠陥が発生しにくくなり、低損失のものがより歩留
りよく製造できるのである。
In the case of the present invention, a minute amount of phosphorus exists in the interface layer 3 of the core cladding, and therefore the vitrification of the interface layer 3 proceeds faster than other parts, so the amount of fluorine doped in that part is smaller. Become. As a result, the refractive index distribution was as shown in FIG. 1, and the amount of fluorine doped gradually increased from the inside to the outside of the interface layer 3. Therefore, since the composition of the interface layer 3 does not change rapidly, defects are less likely to occur at the interface during drawing, and products with low loss can be manufactured with higher yield.

尚、実施例では界面層3の部分に微小量のリンをドープ
することで、透明ガラスを促進せしめてフッ素ドープ量
を制御したが、脱水時の温度条件を選ぶことでも前記界
面層3の透明ガラス化速度を制御卸することができる。
In the example, the interfacial layer 3 was doped with a small amount of phosphorus to promote transparent glass and the amount of fluorine doped was controlled. Vitrification speed can be controlled.

さらにまた本実施例ではコア1の組成については純粋石
英の例のみ示しているが、コアに少なくともフッ素を含
んだ光伝送体にも本発明を応用できることは言うまでも
ない。加えて、界面層3の部分に微小量のリン(具体的
にはP2O5)に変えてゲルマニウム(具体的にはGe
O□)を使用することも可能である。
Furthermore, in this embodiment, only pure quartz is shown as the composition of the core 1, but it goes without saying that the present invention can also be applied to optical transmitters whose cores contain at least fluorine. In addition, germanium (specifically Ge) is added to the interface layer 3 instead of a minute amount of phosphorus (specifically P2O5).
It is also possible to use O□).

〔発明の効果] 前述の如く本発明によれば、低損失の単一モード型光伝
送体を歩留りよく製造することができる。
[Effects of the Invention] As described above, according to the present invention, a low-loss single-mode optical transmission body can be manufactured with high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す光伝送体の屈折率分布
を示すグラフ、第2回は脱水、透明ガラス化方法を示す
概略図、第3図はクラッド部を形成する方法を示す概略
図、第4図は従来の単一モード型光伝送体の屈折率分布
を示すグラフである。 1〜コア 2〜クラツト 3〜界面層 4〜スート 5
〜加熱炉 特許出願人   古河電気工業株式会社第1図 ″イL4.−。 1C14 第6図 5加熱炉 第4図
Fig. 1 is a graph showing the refractive index distribution of an optical transmission body showing an embodiment of the present invention, Part 2 is a schematic diagram showing a method of dehydration and transparent vitrification, and Fig. 3 shows a method of forming a cladding part. The schematic diagram, FIG. 4, is a graph showing the refractive index distribution of a conventional single mode optical transmission body. 1~Core 2~Crat 3~Interfacial layer 4~Soot 5
~ Heating Furnace Patent Applicant Furukawa Electric Co., Ltd. Figure 1 "I L4.-. 1C14 Figure 6 5 Heating Furnace Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)コアまたはクラッドの少なくとも一方がフッ素を
含んだ単一モード型の光伝送体において、前記コアとク
ラッドとの間にはその屈折率が滑らかに減少する界面層
が設けられ、かつ該界面層では内側から外側に向かって
フッ素の含有量が徐々に増大していることを特徴とする
光伝送体。
(1) In a single mode optical transmission body in which at least one of the core and the cladding contains fluorine, an interface layer whose refractive index smoothly decreases is provided between the core and the cladding, and the interface layer An optical transmission body characterized in that the fluorine content in the layers gradually increases from the inside to the outside.
(2)前記界面層では内側から外側に向かって金属酸化
物の含有量が徐々に減少していることを特徴とする請求
項1記載の光伝送体。
(2) The optical transmission body according to claim 1, wherein the content of metal oxide in the interface layer gradually decreases from the inside to the outside.
JP63057098A 1988-03-10 1988-03-10 Light transmitter Pending JPH01230445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63057098A JPH01230445A (en) 1988-03-10 1988-03-10 Light transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63057098A JPH01230445A (en) 1988-03-10 1988-03-10 Light transmitter

Publications (1)

Publication Number Publication Date
JPH01230445A true JPH01230445A (en) 1989-09-13

Family

ID=13046032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63057098A Pending JPH01230445A (en) 1988-03-10 1988-03-10 Light transmitter

Country Status (1)

Country Link
JP (1) JPH01230445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006083354A2 (en) * 2004-11-18 2006-08-10 Nextrom Holding, S.A. Low-water optical fiber preform and process for making it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006083354A2 (en) * 2004-11-18 2006-08-10 Nextrom Holding, S.A. Low-water optical fiber preform and process for making it
WO2006083354A3 (en) * 2004-11-18 2006-11-30 Nextrom Holding Sa Low-water optical fiber preform and process for making it

Similar Documents

Publication Publication Date Title
KR900003449B1 (en) Dispersion-shift fiber and its production
US4217027A (en) Optical fiber fabrication and resulting product
US3932162A (en) Method of making glass optical waveguide
US4230472A (en) Method of forming a substantially continuous optical waveguide
CN102249533B (en) Method for manufacturing large-size low-water-peak prefabricated rod
Schultz Fabrication of optical waveguides by the outside vapor deposition process
US4846867A (en) Method for producing glass preform for optical fiber
CN102757179B (en) Method for preparing large-size optical fiber preform
JP2959877B2 (en) Optical fiber manufacturing method
US4334903A (en) Optical fiber fabrication
Blankenship et al. The outside vapor deposition method of fabricating optical waveguide fibers
GB2314077A (en) Making optical fibres by drawing rod-in-tube preforms
CN110045456A (en) A kind of single mode optical fiber and preparation method thereof of ultra-low loss large effective area
CN112051640A (en) Ultra-low loss G.654E optical fiber and manufacturing method thereof
US4932990A (en) Methods of making optical fiber and products produced thereby
US4915716A (en) Fabrication of lightguide soot preforms
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
US4318726A (en) Process for producing optical fiber preform
JPH01230445A (en) Light transmitter
CN113461322A (en) Optical fiber and method for manufacturing optical fiber preform
AU647051B2 (en) Method for making a preform doped with a metal oxide
CN110937796A (en) Method for manufacturing broadband multimode optical fiber preform
JPS63315530A (en) Production of optical fiber preform
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same