JPH01230236A - Dry etching method - Google Patents

Dry etching method

Info

Publication number
JPH01230236A
JPH01230236A JP5502188A JP5502188A JPH01230236A JP H01230236 A JPH01230236 A JP H01230236A JP 5502188 A JP5502188 A JP 5502188A JP 5502188 A JP5502188 A JP 5502188A JP H01230236 A JPH01230236 A JP H01230236A
Authority
JP
Japan
Prior art keywords
etching
chamber
wafer
gas
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5502188A
Other languages
Japanese (ja)
Inventor
Nobuo Ozawa
信男 小澤
Jun Kanamori
金森 順
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP5502188A priority Critical patent/JPH01230236A/en
Publication of JPH01230236A publication Critical patent/JPH01230236A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To make it possible to detect the final point of etching accurately, by performing plasma treating of a wafer, introducing reacting gas in a chamber, and etching an Si oxide film. CONSTITUTION:A wafer 3 on which a silicon oxide film is formed is mounted on one of parallel planar electrodes 2 in a chamber 1. The inside of the chamber is evacuated so as to obtain a vacuum state. Inactive gas is introduced into the chamber 1. A high frequency is applied across the electrodes 2 from a power source 4. The gas is turned plasmatic. At this time, gases such as H2O, O2, CO and CO2 which are adsorbed in the wafer 3 when the wafer is introduced are removed by sputtering action at this time and exhausted together with exhausting N2 gas out of the chamber 1. After this treatment, reacting gas incorporating fluorine is introduced to become plasmatic. Thus, the silicon oxide film is etched.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、半導体集積回路の製造工程においてシリコン
酸化膜(SiO□)にエツチングを施すドライエツチン
グ方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a dry etching method for etching a silicon oxide film (SiO□) in the manufacturing process of semiconductor integrated circuits.

〈従来の技術〉 従来より、シリコン酸化膜に対するドライエツチングは
、第2図の概略構成図に示す如く、チャンバー1内の平
行平板電極2の一方に、シリコン酸化膜を形成したウェ
ハ3を載置して真空排気するとともに、チャンバー■内
にC2Fe +CHF:+ 、CF4 +)12.C:
l Fe等のフッ素を含む反応ガスを導入し、斯かる状
態で電極2間に高周波電源4により高周波を印加して上
記反応ガスをプラズマ化することにより行っている。
<Prior art> Conventionally, dry etching of a silicon oxide film has been carried out by placing a wafer 3 on which a silicon oxide film has been formed on one side of a parallel plate electrode 2 in a chamber 1, as shown in the schematic diagram of FIG. 12. C:
This is carried out by introducing a reactive gas containing fluorine such as 1 Fe, and applying high frequency waves between the electrodes 2 using a high frequency power source 4 to turn the reactive gas into plasma.

そしてこの様なドライエツチングでは、反応ガス中のC
(炭素)と被エツチング材料であるシリコン酸化膜中の
O(W!IN’)とが反応して生成されるCOか発光し
、そのCOの発光強度をモニタすることによりエツチン
グ終点を検出し得る。即ち、エツチング終点では上記シ
リコン酸化膜中の0かなくなってCOか生成されなくな
り、COの発光強度が急激に低下することからエツチン
グ終点が検知される。このCOの発光強度変化をモニタ
する手段として、第2図の如く、COの発する特定波長
(例えば483.5nm)の光5を光学フィルタ6を介
して受光器7で受光するとともに、該受光器7の出力信
号を信号処理装置8に通し、出力装置9から発光強度と
して出力させている。
In this type of dry etching, C in the reaction gas is
(Carbon) reacts with O(W!IN') in the silicon oxide film, which is the material to be etched, and the CO generated emits light, and the end point of etching can be detected by monitoring the emission intensity of the CO. . That is, at the end point of etching, the 0 in the silicon oxide film disappears and no CO is produced, and the emission intensity of CO rapidly decreases, so that the end point of etching is detected. As a means for monitoring the change in the emission intensity of CO, as shown in FIG. The output signal of 7 is passed through a signal processing device 8 and outputted from an output device 9 as a light emission intensity.

ところで近年、ウェハの大口径化及びデバイスの高集積
化に伴い、ドライエツチングは、−度に複数枚のウェハ
を処理するバッチ式から、−枚ずつ処理する枝葉式へ移
行している。この枚葉式のトライエツチングでは一般に
、バッチ式に近いスルーブツトを得る為にエツチング速
度を高めている。従って、特にこの枚葉式のドライエツ
チングにおいては、エツチング終点を的確に検知するこ
とが必要となる。
In recent years, as wafers have become larger in diameter and devices have become more highly integrated, dry etching has shifted from a batch method in which a plurality of wafers are processed at a time to a branch method in which wafers are processed one by one. In this single-wafer type tri-etching, the etching speed is generally increased in order to obtain a throughput close to that of the batch type. Therefore, especially in this single-wafer type dry etching, it is necessary to accurately detect the end point of etching.

〈発明か解決しようとする課題〉 しかしチャンバー1内にウェハ3を入れる際、N20.
N2.O□、co、co□といった大気ガス等かウェハ
3に吸着した状態でチャンバー1内に導入される。そし
てこれらの吸着ガスのうち、N20,02.Co、Co
2ガスが吸着した状態てシリコン酸化膜のドライエツチ
ングを行うと、吸着ガス、反応ガス及びシリコン酸化膜
が反応、解離して発生するガスの相互反応によりCOラ
ジカルが生成されて、に記本来のエツチングによる00
発光とは別の00発光が起こることになる。しかもこの
吸着ガスに起因する00発光の強度は、吸着ガスの脱離
によってエツチング中に徐々に低下する。
<Problem to be solved by the invention> However, when putting the wafer 3 into the chamber 1, N20.
N2. Atmospheric gases such as O□, co, and co□ are introduced into the chamber 1 while being adsorbed onto the wafer 3. Among these adsorbed gases, N20,02. Co, Co
When dry etching is performed on a silicon oxide film with two gases adsorbed, CO radicals are generated by the mutual reaction of the adsorbed gas, reaction gas, and silicon oxide film, which are generated by reaction and dissociation. 00 by etching
00 light emission, which is different from light emission, will occur. Moreover, the intensity of the 00 emission caused by the adsorbed gas gradually decreases during etching due to the desorption of the adsorbed gas.

従って、第3図のエツチング時開封CO発光強度の特性
図で示す様に、エツチング開始後に急激に高まったCO
発光強度は、エツチング終点teまて徐々に低下してい
くことになり、そのエツチング終点1eか不明瞭となる
Therefore, as shown in the characteristic diagram of the unsealed CO emission intensity during etching in Figure 3, the CO emission intensity rapidly increased after the start of etching.
The emission intensity gradually decreases until the etching end point te is reached, and the etching end point 1e becomes unclear.

特に枚葉式のドライエツチングにおいては。Especially in single-wafer dry etching.

エツチングを施すウェハが一枚であることから、本来の
エツチングによる00発光の強度か低く、よって60発
光の検出感度を高める為、上記吸着ガスに起因する60
発光の影響がより大きくなって、エツチング終点teの
的確な検知かより困難になる。
Since only one wafer is etched, the intensity of the original 00 emission due to etching is low, and therefore, in order to increase the detection sensitivity of the 60 emission, the 60
The influence of light emission becomes greater, making it more difficult to accurately detect the etching end point te.

上述の様に従来のドライエツチング方法では、上記吸着
ガスの為にエツチング終点を的確に検知することかでき
なくなるという問題があった。
As mentioned above, the conventional dry etching method has a problem in that the etching end point cannot be accurately detected due to the adsorbed gas.

〈課題を解決するための手段〉 本発明は上記問題点を解決すべく提案されたもので、シ
リコン酸化膜を形成したウェハに対し、チャンバー内に
導入した不活性ガスによりプラズマ処理を施した後、上
記チャンバー内に反応ガスを導入して上記シリコン酸化
膜に対するエツチングを行うことを特徴とするドライエ
ツチング方法である。
<Means for Solving the Problems> The present invention has been proposed to solve the above-mentioned problems.The present invention has been proposed in order to solve the above-mentioned problems. , a dry etching method characterized in that the silicon oxide film is etched by introducing a reactive gas into the chamber.

〈作用〉 上記方法によれば、不活性ガスによるプラズマ処理によ
って、ウェハ導入時にウェハに吸着したN20,02.
Co、Co2ガス等の吸着ガスが取除かれる。
<Operation> According to the above method, N20,02.
Adsorbed gases such as Co and Co2 gas are removed.

〈実施例〉 以下、第1図のエツチング時開封CO発光強度の特性図
、及び第2図の概略構成図を参照して本発明の一実施例
を説明する。
<Example> Hereinafter, an example of the present invention will be described with reference to the characteristic diagram of the unsealed CO emission intensity during etching shown in FIG. 1 and the schematic configuration diagram shown in FIG. 2.

本発明のドライエツチング方法における装置としては、
第2図に示した従来と同様のドライエツチング装置が使
用できる。
The apparatus for the dry etching method of the present invention includes:
A dry etching device similar to the conventional one shown in FIG. 2 can be used.

先ずチャンバーl内の平行平板電極2の一方に、シリコ
ン酸化膜を形成したウェハ3を載置して真空排気すると
ともに、チャンバーl内に不活性ガス、例えばN2ガス
を導入する。斯かる状jK4て、電極2間に高周波電源
4により高周波を印加して上記N2ガスをプラズマ化す
る。するとこのN2ガスプラズマのスパッタ作用等によ
って、ウェハ導入時にウェハ3に吸着したN20,02
゜co、co□ガス等は取除かれ、排気されるN2ガス
と共にチャンバーi外へ排出される。
First, a wafer 3 on which a silicon oxide film is formed is placed on one of the parallel plate electrodes 2 in a chamber 1, and the chamber 1 is evacuated, and an inert gas such as N2 gas is introduced into the chamber 1. In this state jK4, high frequency is applied between the electrodes 2 by the high frequency power source 4 to turn the N2 gas into plasma. Then, due to the sputtering action of this N2 gas plasma, the N20,02 adsorbed to the wafer 3 when the wafer was introduced
゜co, co□ gas, etc. are removed and discharged to the outside of the chamber i together with the exhausted N2 gas.

上記N2ガスによるプラズマ処理の後、従来のトライエ
ツチングと同様にC2F6 +CHF:I 。
After the plasma treatment using N2 gas, C2F6 +CHF:I is applied as in the conventional tri-etching.

CF4 +)i2.C:I F8等のフッ素を含む反応
ガスを導入してプラズマ化することにより、シリコン酸
化膜のエツチングを行う。
CF4+)i2. C: The silicon oxide film is etched by introducing a reactive gas containing fluorine such as IF8 and turning it into plasma.

上述の様なドライエツチング方法では、吸着ガスか除去
されている為に、吸着ガスに起因する00発光がなく、
よって00発光の強度はエツチング終点 ち、CO発光強度はエツチング終点において急激に低下
する。
In the dry etching method described above, since the adsorbed gas is removed, there is no 00 emission caused by the adsorbed gas.
Therefore, the intensity of 00 emission sharply decreases at the end point of etching, and the intensity of CO emission sharply decreases at the end point of etching.

第1図は、6インチ径のウェハに熱形成された厚さ70
 [] OAのシリコン酸化膜に対して、本発明の方法
によるトライエツチングを施した場合のエツチング時開
封CO発光強度の特性図である。CO発光強度の測定に
は、従来と同様に第2図の如く、COの発する光から光
学フィルタ6で選択した波長483.5nmの光5を受
光する受光器7と、信t+処理装首8及び出力装置9と
が用いられる。
FIG. 1 shows a 70mm thick thermoformed 6 inch diameter wafer.
[] This is a characteristic diagram of the unsealed CO emission intensity during etching when a silicon oxide film of OA is subjected to tri-etching by the method of the present invention. To measure the CO emission intensity, as in the conventional case, as shown in FIG. and an output device 9 are used.

第1図の如く測定されたCO発光強度は、エツチング開
始後に急激に高まり、エツチング中は略一定の強度を保
つ。そしてエツチング終点teの直前から急激に低下し
始め、エツチング終点1eにおいては、CO発光強度は
極端に低くなる。換言すれば、この様にCO発光強度か
急激に低下することにより、エツチング終点teを的確
に検知することかできる。
The CO emission intensity measured as shown in FIG. 1 increases rapidly after the start of etching, and remains approximately constant during etching. Then, immediately before the etching end point te, the CO emission intensity begins to decrease rapidly, and at the etching end point 1e, the CO emission intensity becomes extremely low. In other words, the etching end point te can be accurately detected by rapidly decreasing the CO emission intensity in this manner.

(発明の効果〉 以上述べた様に本発明のドライエツチング方法によれば
、シリコン酸化膜のエツチングにおけるエツチング終点
の的確な検知か可能となる。
(Effects of the Invention) As described above, according to the dry etching method of the present invention, it is possible to accurately detect the etching end point in etching a silicon oxide film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明におけるエツチング時開封CO発光強
度の特性図、 第2図は、トライエツチング装置の概略構成図、 第3図は、従来例におけるエツチング時開封CO発光強
度の特性図である。 te・・・エツチング終点。 l・・・チャンバー、  3・・・ウェハ。 特許出願人    沖電気工業株式会社−1−−”l+ 代理人        鈴木敏明、l、、−t。 J)ス;りW 第1図 第2図 Q             te −2−・ンテミ!−2ζ〈ン珈C2 Aム呻V々d々β杉9仲2ノ 第3図 手続補正力(「境)1.1.13 1.・1シ件の表示 昭和63年特許願第055021号 2、発明の名称 トライエツチング方法 3、補正をする者 ・h件との関係     特許出願人 任 所(〒105)  東京都港区虎ノ門1.1−■7
番12号名称(029)沖電気工業株式会社 代表者      取締役社長  小 杉 信 光4、
代  理  人 住 所(〒108)  東京都港区芝浦4丁目10番3
号5、補正の対象 明細書の「発明の詳細な説明」の欄 6、補正の内容
Fig. 1 is a characteristic diagram of the unsealed CO emission intensity during etching in the present invention, Fig. 2 is a schematic configuration diagram of the tri-etching device, and Fig. 3 is a characteristic diagram of the unsealed CO emission intensity during etching in the conventional example. . te...Etching end point. l...Chamber, 3...Wafer. Patent applicant: Oki Electric Industry Co., Ltd. -1--”l+ Agent: Toshiaki Suzuki, l, -t. C2 Am groan V d β cedar 9 Naka 2 No Figure 3 Procedural correction power (“boundary”) 1.1.13 1.・Indication of 1 item 1986 Patent Application No. 055021 2, Title of the invention Trial etching method 3, person making the amendment/relationship with case h Patent applicant office (105) 1.1-7 Toranomon, Minato-ku, Tokyo
No. 12 Name (029) Oki Electric Industry Co., Ltd. Representative Director and President Hikaru Kosugi 4,
Agent Address (108) 4-10-3 Shibaura, Minato-ku, Tokyo
No. 5, "Detailed Description of the Invention" column 6 of the specification subject to amendment, Contents of the amendment

Claims (1)

【特許請求の範囲】  反応ガスをプラズマ化することによりウェハのシリコ
ン酸化膜にエッチングを施すとともに、COの発光強度
の変化からエッチング終点の検出を行うドライエッチン
グ方法において、 前記ウェハに対し、チャンバー内に導入した不活性ガス
によりプラズマ処理を施した後、 前記チャンバー内に反応ガスを導入して前記シリコン酸
化膜に対するエッチングを行うことを特徴とするドライ
エッチング方法。
[Claims] In a dry etching method in which a silicon oxide film on a wafer is etched by turning a reactive gas into plasma, and the etching end point is detected from a change in the emission intensity of CO, the wafer is placed inside a chamber. A dry etching method, comprising: performing plasma treatment with an inert gas introduced into the chamber, and then introducing a reactive gas into the chamber to perform etching on the silicon oxide film.
JP5502188A 1988-03-10 1988-03-10 Dry etching method Pending JPH01230236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5502188A JPH01230236A (en) 1988-03-10 1988-03-10 Dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5502188A JPH01230236A (en) 1988-03-10 1988-03-10 Dry etching method

Publications (1)

Publication Number Publication Date
JPH01230236A true JPH01230236A (en) 1989-09-13

Family

ID=12987013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5502188A Pending JPH01230236A (en) 1988-03-10 1988-03-10 Dry etching method

Country Status (1)

Country Link
JP (1) JPH01230236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322590A (en) * 1991-03-24 1994-06-21 Tokyo Electron Limited Plasma-process system with improved end-point detecting scheme

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322590A (en) * 1991-03-24 1994-06-21 Tokyo Electron Limited Plasma-process system with improved end-point detecting scheme

Similar Documents

Publication Publication Date Title
US6297165B1 (en) Etching and cleaning methods
JP3329685B2 (en) Measuring device and measuring method
JP4227301B2 (en) End point detection method in semiconductor plasma processing
JPS6245119A (en) Dry etching device
JPH07153746A (en) Dry etching chamber cleaning method
KR0147041B1 (en) Plasma-process system with batch scheme
JPS635532A (en) Plasma cleaning process
JPH01230236A (en) Dry etching method
JP2944802B2 (en) Dry etching method
JPS61196538A (en) Vacuum processing and apparatus thereof
JP2906752B2 (en) Dry etching method
KR100466969B1 (en) Process byproduct removal method of semiconductor plasma etching chamber
JPS627880A (en) Plasma etching device
JPS6019139B2 (en) Etching method and mixture gas for plasma etching
JP3135141B2 (en) Processing equipment
JPS6245120A (en) Etching device
JPH03242929A (en) Manufacture of semiconductor device
JP3301954B2 (en) Particle measurement method for dry etching equipment
JPS63141319A (en) Dry etching treatment device
JPH0343775B2 (en)
JPS6046538B2 (en) Etching method
JPH04127428A (en) Manufacture of semiconductor device
JPH04291719A (en) Wafer processing end determining method
JPH0429315A (en) Plasma treatment device
JPH01286313A (en) Dry treatment method for semiconductor substrate surface