JPH01229721A - Driving power distribution ratio detecting device for four-wheel-drive vehicle - Google Patents

Driving power distribution ratio detecting device for four-wheel-drive vehicle

Info

Publication number
JPH01229721A
JPH01229721A JP5529988A JP5529988A JPH01229721A JP H01229721 A JPH01229721 A JP H01229721A JP 5529988 A JP5529988 A JP 5529988A JP 5529988 A JP5529988 A JP 5529988A JP H01229721 A JPH01229721 A JP H01229721A
Authority
JP
Japan
Prior art keywords
distribution ratio
driving force
force distribution
clutch
drive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5529988A
Other languages
Japanese (ja)
Other versions
JP2552321B2 (en
Inventor
Genpei Naitou
原平 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63055299A priority Critical patent/JP2552321B2/en
Publication of JPH01229721A publication Critical patent/JPH01229721A/en
Application granted granted Critical
Publication of JP2552321B2 publication Critical patent/JP2552321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To improve detecting accuracy of ratio correcting theoretical drive power distribution ratio to the actual drive power distribution ratio considering various conditions by calculating front to rear drive power distribution ratio being based on each detection value of clutch connecting power, car speed and a difference between front and rear wheel rotary speeds. CONSTITUTION:A four-wheel-drive vehicle provides a driving system clutch means 1 halfway a driving system distributively transmitting drive power of an engine to front and rear wheels, changing distribution ratio of drive power to the front and rear wheels by adjusting the connecting force of the clutch means 1. In this constitution, each means 2-4, which respectively detects at least clutch connecting force, car speed and a difference between front and rear wheel rotary speeds, is provided as the detecting means. A means 5, which calculates front to rear drive power distribution ratio being based on each detection value from each detecting means 2-4, is provided. In this way, theoretical drive power distribution ratio by the clutch connecting force is corrected to the actual drive power distribution ratio considering a road surface friction coefficient and a tire condition or the like, and detecting accuracy of the drive power distribution ratio is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、クラッチ締結力の増減により前後駆動力配分
の変更が可能な四輪駆動車の駆動力配分比検出装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a driving force distribution ratio detection device for a four-wheel drive vehicle that can change front and rear driving force distribution by increasing or decreasing clutch engagement force.

(従来の技術) 従来の四輪駆動車の駆動力配分表示装置としては、例え
ば、実開昭62−47430号公報に記載されているよ
うな装置が知られている。
(Prior Art) As a conventional drive force distribution display device for a four-wheel drive vehicle, for example, a device as described in Japanese Utility Model Application Publication No. 62-47430 is known.

この従来装置は、前後輪の一方への伝達トルクを発生す
るクラッチ締結力の指令値検出のみに基づいて駆動力配
分比を検出し、この検出された駆動力配分比による駆動
力配分状況を連続的あるいは複数段的に表示するもので
ある。
This conventional device detects the driving force distribution ratio based only on detecting the command value of the clutch engagement force that generates the torque transmitted to one of the front and rear wheels, and continuously monitors the driving force distribution situation based on the detected driving force distribution ratio. It is displayed in multiple stages or in multiple stages.

(発明が解決しようとする課題) しかしながら、この従来装置にあっては、駆動力配分状
況といえどもクラッチ締結力そのものを前後駆動力配分
比と仮定して表示するに逢ぎないものであった為、概略
的な前接駆動力配分状況を知ることが出来ても、実際に
タイヤから路面に伝達されている正確な前後駆動力配分
比情報を運転者に伝えることが出来ず、この為に運転者
が駆動力配分比の変化による車両挙動の変化を予測出来
ないという課題を残していた。
(Problem to be Solved by the Invention) However, in this conventional device, even though it is a driving force distribution situation, it is not suitable to display the clutch engagement force itself assuming that it is the front and rear driving force distribution ratio. Even if it is possible to know the approximate frontal driving force distribution situation, it is not possible to convey to the driver accurate information on the frontal driving force distribution ratio that is actually transmitted from the tires to the road surface. However, there remained the problem that operators were unable to predict changes in vehicle behavior due to changes in the driving force distribution ratio.

即ち、実際には走行路面摩擦係数やタイヤ等の影響で、
例えば、同じクラッチ締結力を付与していてもタイヤか
ら路面に伝達される駆動力は一定ではなく、前後駆動力
配分比も逐次変化する。
In other words, in reality, due to the influence of the road surface friction coefficient, tires, etc.
For example, even if the same clutch engagement force is applied, the driving force transmitted from the tires to the road surface is not constant, and the front-rear driving force distribution ratio also changes sequentially.

(課題を解決するための手段) 本発明は、上述のような課題を解決することを目的とし
てなされたもので、この目的達成のために本発明では、
以下に述べる手段とした。
(Means for Solving the Problems) The present invention has been made for the purpose of solving the above-mentioned problems, and in order to achieve this purpose, the present invention includes the following:
The method described below was adopted.

第1図のクレーム概念図に示すように、エンジン駆動力
を前後輪に分配伝達するエンジン駆動系の途中に駆動系
クラッチ手段1を備え、該駆動系フランチ手段1の締結
力増減により前後輪への駆動力配分比が変更される四輪
駆動車において、検出手段として、少なくとも前記クラ
ッチ締結力を直接または間接的に検出するクラッチ締結
力検出手段2と、車速を検出する車速検出手段3と、前
後輪回転速度差を検出する前後輪回転速度差検出手段4
とを有し、これらの検出手段からの検出値に基づいて前
後駆動力配分比を演算により検出する前後駆動力配分比
演算手段5を設けた事を特徴とする。
As shown in the conceptual diagram of the claim in FIG. 1, a drive system clutch means 1 is provided in the middle of an engine drive system that distributes and transmits engine driving force to the front and rear wheels, and the engagement force of the drive system flanch means 1 is increased or decreased to transfer the engine drive force to the front and rear wheels. In a four-wheel drive vehicle in which the driving force distribution ratio is changed, the detection means includes at least clutch engagement force detection means 2 that directly or indirectly detects the clutch engagement force, and vehicle speed detection means 3 that detects the vehicle speed. Front and rear wheel rotation speed difference detection means 4 for detecting the front and rear wheel rotation speed difference
The present invention is characterized in that a longitudinal driving force distribution ratio calculation means 5 is provided which calculates and detects the longitudinal driving force distribution ratio based on the detected values from these detection means.

ここで、駆動系クラッチ手段1とは、電子制御による外
部からの制御油圧等で締結される多板摩擦クラッチや入
出力軸の回転差で伝達トルクを発生する粘性クラッチ等
のように前後輪への駆動力配分比の変更が可能なりラッ
チ手段をいう。
Here, the drive system clutch means 1 refers to a multi-disc friction clutch that is engaged by externally controlled oil pressure using electronic control, or a viscous clutch that generates transmission torque based on the rotational difference between input and output shafts, etc. The latch means allows the driving force distribution ratio to be changed.

(作 用) 走行中に前後駆動力配分比を検出する時は、前後駆動力
配分比演算手段5において、クラッチ締結力を直接また
は間接的に検出するクラッチ締結力検出手段2と、車速
を検出する車速検出手段3と、前後輪回転速度差を検出
する前後輪回転速度差検出手段4からの検出値に基づい
て、少なくともこれらの検出値を含む所定の演算式によ
り前後駆動力配分比が演算により検出される。
(Function) When detecting the front-rear driving force distribution ratio while driving, the front-rear driving force distribution ratio calculation means 5 uses the clutch engagement force detection means 2, which directly or indirectly detects the clutch engagement force, and detects the vehicle speed. Based on the detected values from the vehicle speed detection means 3 that detects the difference in rotational speed of the front and rear wheels, and the front and rear wheel rotational speed difference detection means 4 that detects the difference in rotational speed of the front and rear wheels, the front and rear driving force distribution ratio is calculated using a predetermined calculation formula that includes at least these detected values. Detected by

従って、車速及び前後輪回転速度差が間接的な路面摩擦
係数やタイヤ状態等の情報をもたらすことになり、クラ
ッチ締結力による理論上の駆動力配分比か路面摩擦係数
影響やタイヤ影響等を考慮した実際の駆動力配分比に補
正され、精度の高い前後駆動力配分比を検出することが
出来る。
Therefore, the vehicle speed and the difference in rotational speed of the front and rear wheels provide indirect information such as the road surface friction coefficient and tire condition, and the theoretical driving force distribution ratio due to the clutch engagement force, the influence of the road surface friction coefficient, the tire influence, etc. are taken into consideration. This is corrected to the actual driving force distribution ratio, and the front-rear driving force distribution ratio can be detected with high accuracy.

(実施例) 以下、本発明の実施例を図面により詳述する。(Example) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

尚、この実施例を述べるにあったで、外部からの電子制
御により駆動力配分が変更される後輪駆動をベースにし
た四輪駆動車の駆動力配分比検出装置を例にとる。
In describing this embodiment, we will take as an example a driving force distribution ratio detection device for a four-wheel drive vehicle based on rear wheel drive, in which the driving force distribution is changed by external electronic control.

まず、構成を説明する。First, the configuration will be explained.

実施例の駆動力配分制御装置りが適用される四輪駆動車
は、第2図に示すように、トランスファ装置10、エン
ジン11、トランスミッション12、トランスファ入力
軸13、後輪側駆動軸14、多板摩擦クラッチ(駆動系
クラッチ手段)15.リヤディファレンシャル16、後
輪17、フロントディファレンシャル18、前輪1つ、
ギヤトレーン20、前輪側駆動軸21を備えている。
As shown in FIG. 2, a four-wheel drive vehicle to which the driving force distribution control device of the embodiment is applied includes a transfer device 10, an engine 11, a transmission 12, a transfer input shaft 13, a rear wheel drive shaft 14, and a multi-wheel drive vehicle. Plate friction clutch (drive system clutch means) 15. 16 rear differentials, 17 rear wheels, 18 front differentials, 1 front wheel,
It includes a gear train 20 and a front wheel drive shaft 21.

上記多板摩擦クラッチ15は、前記トランスファ入力軸
13(後輪側駆動軸14に直結される)と前輪駆動軸2
1側との間に介装されたもので、クラッチ圧制御により
前輪19測への伝達トルクの変更が可能である。
The multi-disc friction clutch 15 connects the transfer input shaft 13 (directly connected to the rear wheel drive shaft 14) and the front wheel drive shaft 2.
The torque transmitted to the front wheels can be changed by controlling the clutch pressure.

尚、第3図はトランスファ装置10の具体例を示したも
ので、トランスファケース22の中に前記多板摩擦クラ
ッチ15やギヤ順やシャフト順が納められている。
Incidentally, FIG. 3 shows a specific example of the transfer device 10, in which the multi-disc friction clutch 15, gear arrangement, and shaft arrangement are housed in a transfer case 22.

第3図中、159はプッシュプレート、+5hはリター
ンスプリング、24はクラッチ圧油入力ポート、25は
クラッチ圧油路、26は後輪側出力軸、27は潤滑用油
路、28はスピードメータ用ビニオン、29はオイルシ
ール、30はベアリング、31はニードルベアリング、
32はスラストヘアリンク、33は継手フランジである
In Figure 3, 159 is a push plate, +5h is a return spring, 24 is a clutch pressure oil input port, 25 is a clutch pressure oil path, 26 is a rear wheel side output shaft, 27 is a lubricating oil path, and 28 is for a speedometer. Binion, 29 is an oil seal, 30 is a bearing, 31 is a needle bearing,
32 is a thrust hair link, and 33 is a joint flange.

次に、前記多板摩擦クラッチ15を締結させるためのク
ラッチ油圧Pの制御及び駆動力配分比の検出をする電子
制御装置40は、第4図に示すように、検知手段として
、後輪回転速度センサ41と左前輪速度センサ42と右
前輪速度センサ43とを備え、制御処理手段として、コ
ントロールユニット45を備え、出力手段として、電磁
比例リリーフバルブ46と駆動力配分比表示装置60を
備えている。
Next, as shown in FIG. 4, an electronic control device 40 that controls the clutch oil pressure P for engaging the multi-disc friction clutch 15 and detects the driving force distribution ratio detects the rear wheel rotational speed as a detection means. It includes a sensor 41, a left front wheel speed sensor 42, and a right front wheel speed sensor 43, a control unit 45 as a control processing means, and an electromagnetic proportional relief valve 46 and a driving force distribution ratio display device 60 as an output means. .

前記各車輪速度センサ41,42.43は、それぞれ左
右の前輪19位置や後輪側駆動軸14の途中に設けられ
、軸に固定されたセンサロータと、センサロータの回転
による磁力変化を検知するピックアップとによる回転セ
ンサ等が用いられ、これら各センサ41,42.43か
らは軸回転に応じた車輪速信号(nr)、(wf、)。
Each of the wheel speed sensors 41, 42, and 43 is provided at the left and right front wheel 19 positions or in the middle of the rear drive shaft 14, and detects a sensor rotor fixed to the shaft and changes in magnetic force due to rotation of the sensor rotor. A rotation sensor based on a pickup is used, and each of these sensors 41, 42, and 43 outputs wheel speed signals (nr), (wf,) according to shaft rotation.

(wf2)が出力される。(wf2) is output.

前記コントロールユニット45は、車載のマイクロコン
ピュータを中心とする回路が用いられ、内部回路として
、入力インターフェース451、RAM452. RO
M453. CPU454.出力インターフェース45
5を偏えている。
The control unit 45 uses a circuit mainly based on an on-vehicle microcomputer, and includes an input interface 451, a RAM 452 . R.O.
M453. CPU454. Output interface 45
5 is biased.

前記電磁比例リリーフバルブ46は、コントロールユニ
ット45からの指令電流信号(1)の出力が指令電流値
I” =0の場合はクラッチ油圧P=0となるが、指令
電流信号(1)の出力が指令電流値I*〉0の場合はバ
ルブが閉じ方向に移動し、油圧源50からのライン圧を
ドレーン油量制御により指令電流値■*の大きさに応じ
たクラッチ油圧Pとなす(第5図)。尚、クラッチ油圧
Pとクラッチ締結カニとの関係は次式であられされる(
第6図)。
In the electromagnetic proportional relief valve 46, when the output of the command current signal (1) from the control unit 45 is the command current value I" = 0, the clutch oil pressure P = 0, but if the output of the command current signal (1) is When the command current value I*>0, the valve moves in the closing direction, and the line pressure from the hydraulic source 50 is controlled to the clutch oil pressure P according to the magnitude of the command current value ■* by controlling the drain oil amount (fifth (Figure).The relationship between the clutch oil pressure P and the clutch engagement crab is expressed by the following formula (
Figure 6).

P−T/(μ・A・2n−Rm) 但し、μ:クラッチ板の摩擦係数、A:ピストンへの圧
力作用面積、n、フリクションディスク枚斂、Rm:フ
リクションディスクのトルク伝達有効半径で、クラッチ
油圧Pを増大させると、クラッチ締結力Tも比例して増
大する。
P-T/(μ・A・2n-Rm) However, μ: friction coefficient of clutch plate, A: pressure acting area on piston, n: friction disk disc, Rm: torque transmission effective radius of friction disk, When the clutch oil pressure P is increased, the clutch engagement force T also increases proportionally.

前記駆動力配分比表示装置60は、車室内の運転者から
視認できる位置に設けられ、コントロールユニット45
で行なわれる駆動力配分比の演算処理結果がデジタルや
アナログ表示される。
The driving force distribution ratio display device 60 is provided in a position visible to the driver inside the vehicle, and is controlled by the control unit 45.
The results of the calculation of the driving force distribution ratio are displayed in digital or analog form.

次に、作用を説明する。Next, the effect will be explained.

尚、作用を述べるにあたって、前後駆動力配分制御作用
と、前後駆動力配分比検出作用とに分けて述へる。
In describing the operation, the function will be divided into the front-rear driving force distribution control function and the front-rear drive force distribution ratio detection function.

[前後駆動力配分制御作用1 まず、実施例での駆動力配分制御作動の全体的流れを、
第7図に示すフローチャート図により説明する。
[Front-rear driving force distribution control operation 1 First, the overall flow of the driving force distribution control operation in the embodiment is as follows.
This will be explained with reference to the flowchart shown in FIG.

ステップaでは、各センサ41,42.43から左前輪
速w+1.右前輪速wf 2.後輪回転速度Nrが読み
込まれる。
In step a, each sensor 41, 42, 43 detects the left front wheel speed w+1. Right front wheel speed wf 2. The rear wheel rotation speed Nr is read.

ステップbでは、前記ステップaで読み込まれた左前輪
l!!Wf1と右前輪速w+2とタイヤ径rとから、車
速Vfと前後輪回転速度差ΔNと左右前輪回転速度差へ
nが演算により求められる。
In step b, the left front wheel l! read in step a above! ! From Wf1, right front wheel speed w+2, and tire diameter r, vehicle speed Vf, front and rear wheel rotational speed difference ΔN, and left and right front wheel rotational speed difference n are calculated.

車速Vfは、左右前輪iJwf +9wf 2の小さい
方とタイヤ径rとから次式で求められる。
The vehicle speed Vf is determined by the following formula from the smaller of the left and right front wheels iJwf + 9wf 2 and the tire diameter r.

Vf=r*  (mi n  (wf  1.wf  
2))尚、車速Vfは、左右前輪速wfl、wf2の平
均値により求めても良いし、また、直接、絶対車速を検
出しても良い。
Vf=r* (min (wf 1.wf
2)) The vehicle speed Vf may be determined by the average value of the left and right front wheel speeds wfl and wf2, or the absolute vehicle speed may be directly detected.

前後輪回転速度差ΔNは、接輪回転速度Nrと平均前輪
回転速度とから次式で求められる。
The front and rear wheel rotational speed difference ΔN is calculated from the contact wheel rotational speed Nr and the average front wheel rotational speed using the following equation.

△N=Nr−((wf + +wf 2)/2)尚、こ
れは、前後輪の差動回転検出により直接検出しても良い
ΔN=Nr−((wf + +wf 2)/2) Note that this may be directly detected by differential rotation detection of the front and rear wheels.

左右前輪回転速度差Δnは、左前輪速wf+と右前輪速
wf2とから次式により求められる。
The left and right front wheel rotational speed difference Δn is determined from the left front wheel speed wf+ and the right front wheel speed wf2 using the following equation.

△n (=1wf 、−wf、l) 尚、この左右前輪回転速度差Δnは、旋回半径Rならび
に横加速度Y9を演算により得るためのものである為、
操舵角θにより旋回半径Rを求めても、横加速度センサ
等で直接、横加速度Y9を検出しても良い。
Δn (=1wf, -wf, l) Note that this left and right front wheel rotational speed difference Δn is for calculating the turning radius R and lateral acceleration Y9, so
The turning radius R may be determined using the steering angle θ, or the lateral acceleration Y9 may be directly detected using a lateral acceleration sensor or the like.

ステップCでは、前記ステップbで求められた前後輪回
転速度差ΔNが△N≧0か△N<Oかの判断がなされる
In step C, it is determined whether the front and rear wheel rotational speed difference ΔN obtained in step b is ΔN≧0 or ΔN<O.

そして、前記ステップbからは、ステップCの判断に基
づいてステップd(定速・加速時の制御)またはステッ
プe(減速時の制御)へ進む前後輪回転速度差ΔNに基
づく制御と、ステップf(高速時の制御)へ進む車速V
fに基づく制御とが並行して実行される。
Then, from step b, control based on the front and rear wheel rotational speed difference ΔN proceeds to step d (control during constant speed/acceleration) or step e (control during deceleration) based on the judgment in step C, and step f Vehicle speed V advancing to (control at high speed)
Control based on f is executed in parallel.

ステップdの定速・加速時の制御では、左右前輪回転速
度差△nと車速Vfとから横方向加速度Y9を求め、横
方向加速度Y9と前後輪回転速度差ΔNによりクラッチ
締結力Txが演算される。
In the control during constant speed/acceleration in step d, the lateral acceleration Y9 is determined from the left and right front wheel rotational speed difference Δn and the vehicle speed Vf, and the clutch engagement force Tx is calculated from the lateral acceleration Y9 and the front and rear wheel rotational speed difference ΔN. Ru.

尚、詳しくは■の処理内容を示す第8図により後述する
Further, details will be described later with reference to FIG. 8 showing the processing contents of (2).

ステ・ンブeの減速時の制御では、車速Vfと前後輪回
転速度差絶対値1△N1によりクラッチ締結力T ne
gか演算される。尚、詳しくは■の処理内容を示す第9
図〜第11図により後述する。
In the control during deceleration of the steering wheel, the clutch engagement force T ne is determined based on the vehicle speed Vf and the absolute value 1△N1 of the difference in rotational speed of the front and rear wheels.
g is calculated. For details, please refer to Section 9 which shows the processing contents of ■.
This will be described later with reference to FIGS.

ステップfの高速時の制御では、車速Vfのみによりク
ラッチ締結力Tvが演算される。尚、詳しくは■の処理
内容を示す第12図及び第13図   −により後述す
る。
In the control at high speed in step f, the clutch engagement force Tv is calculated based only on the vehicle speed Vf. Further, details will be described later with reference to FIGS. 12 and 13-, which show the processing contents of (2).

ステップ9及びステップhでは、それぞれ逆側のクラッ
チ締結力Tx、Tnegを0(ゼロ)に設定する。
In step 9 and step h, the clutch engagement forces Tx and Tneg on the opposite side are respectively set to 0 (zero).

ステップiでは、目標クラッチ締結力T*が、各クラッ
チ締結力Tx、Tneg、Tvのうち最大値を2択する
ことにより求められる。
In step i, the target clutch engagement force T* is determined by selecting the two maximum values among the clutch engagement forces Tx, Tneg, and Tv.

T*=max (Tx、Tneg、Tv)ステップ」で
は、前記目標クラッチ締結力T*が得られるクラッチ圧
制御信号(1)が電磁比例リリーフバルフ46に出力さ
れる。
In the "T*=max (Tx, Tneg, Tv) step", the clutch pressure control signal (1) from which the target clutch engagement force T* is obtained is output to the electromagnetic proportional relief valve 46.

次に、前記ステップdでの定速・加速時の制御処理内容
■を第8図のフローチャート図により説明する(特願昭
62−36036号参照)。
Next, the control process (2) during constant speed/acceleration in step d will be explained with reference to the flowchart shown in FIG. 8 (see Japanese Patent Application No. 62-36036).

ステップ100では、前記ステップbでの各データに基
づいて旋回半径Rが演算により求められる。
In step 100, a turning radius R is calculated based on the data obtained in step b.

尚、旋回半径Rの演算式は、以下の通りである。The calculation formula for the turning radius R is as follows.

次のステップ101〜ステツプ109で旋回半径日の増
大割合の減少及び増加方向の変化速度を規制するローパ
スフィルタが実現されろ。
In the next steps 101 to 109, a low-pass filter is realized that regulates the rate of change in the direction of decrease and increase in the rate of increase in turning radius.

ステップ101では、前記ステップ100て得られた旋
回半径Rと1周期前の旋回半径日。どの差により単位時
間当りの変化量△Rが演算により求められる。
In step 101, the turning radius R obtained in step 100 and the turning radius date one cycle before. Based on which difference, the amount of change ΔR per unit time is calculated.

ステップ102では、△Rの正負を判断し、旋回半径R
か増加方向か減少方向かの判断がなされ、以後の処理ル
ートを異ならせる。
In step 102, it is determined whether ΔR is positive or negative, and the turning radius R
A judgment is made as to whether the amount is increasing or decreasing, and the subsequent processing route is changed.

ステップ102で△Rが正、即ち、旋回半径Rが増加方
向である場合には、ステップ103でその変化幅が設定
値A4よりも大きいか否かが判断され、この設定値A4
が旋回半径日が増加する場合のローパスフィルタの値と
なる。
If ΔR is positive in step 102, that is, the turning radius R is increasing, it is determined in step 103 whether or not the range of change is larger than the set value A4.
is the value of the low-pass filter when the turning radius increases.

そして、ステップ103でΔRがA4より大きい場合は
、ステップ104に進んでフィルタリングされ、旋回半
径R×が、RO+A、の演算式により求められる。
If ΔR is larger than A4 in step 103, the process proceeds to step 104 where filtering is performed, and the turning radius Rx is determined by the calculation formula: RO+A.

また、ステップ103で△RがA4より小さい場合は、
ステップ+05へ進み、演算による旋回半径Rがそのま
ま旋回半径R×としてセットされる。
Further, if ΔR is smaller than A4 in step 103,
Proceeding to step +05, the calculated turning radius R is directly set as the turning radius Rx.

一方、ステップ102で△Rが負、即ち、旋回半径Rが
減少方向である場合には、ステップ+06でその変化幅
が設定値A5より大きいか否かが判断され、この設定値
へ5が旋回半径Rが減少する場合のローパスフィルタの
値となる。尚、設定値A5は設定値A4よりも大の値で
ある。
On the other hand, if ΔR is negative in step 102, that is, the turning radius R is in the decreasing direction, it is determined in step +06 whether the change width is larger than the set value A5, and 5 is set to this set value. This is the value of the low-pass filter when the radius R decreases. Note that the set value A5 is a larger value than the set value A4.

そして、ステップ106で1ΔR1がA5より大きい場
合は、ステップ107へ進んでフィルタリングされ、旋
回半径RxがR8−A3の演算式により求められる。
If 1ΔR1 is larger than A5 in step 106, the process proceeds to step 107 where filtering is performed and the turning radius Rx is determined by the calculation formula R8-A3.

また、ステップ106で1ΔR1がA5より小さい場合
は、ステップ+08へ進み、演算による旋回半径Rがそ
のまま旋回半径Rxとしてセットされる。
If 1ΔR1 is smaller than A5 in step 106, the process proceeds to step +08, and the calculated turning radius R is directly set as the turning radius Rx.

ステップ109では、今回の制御周期で求められた旋回
半径Rxの値かΔRの演算用のRoとして記憶される。
In step 109, the value of the turning radius Rx found in the current control cycle is stored as Ro for calculating ΔR.

ステップ110では、ローパスフィルタにかけられた旋
回半径Rxと、車速Vfとによって横加速度Y9が下記
の演算により求められる。
In step 110, the lateral acceleration Y9 is determined by the following calculation using the low-pass filtered turning radius Rx and the vehicle speed Vf.

ステップ111では、比例係数(ゲイン)にが前記横加
速度Y9を用いて下記の演算式により求められる。
In step 111, a proportional coefficient (gain) is determined using the lateral acceleration Y9 according to the following arithmetic expression.

K=− ステップ112では、前言己ステップbで求められた前
後輪回転速度差ΔNの補正埴へNxが求められる。尚、
補正値ΔN×は、ΔN<0の場合、タイト]−すとみな
して八Nx=0とし、ΔN≧0の場合、旋回軌跡分の補
正を行なって、△N x=ΔN−f  (Rx、Vf)
とする。
K=- In step 112, Nx is determined as a correction value for the front and rear wheel rotational speed difference ΔN determined in step b. still,
When ΔN<0, the correction value ΔN× is assumed to be tight] and set to 8Nx=0. When ΔN≧0, the correction value is corrected for the turning trajectory, and ΔNx=ΔN−f (Rx, Vf)
shall be.

ステップ113では、前記比例係数にと補正値へNxと
からクラッチ締結力Th(−に・△Nx)が演算により
求められる。
In step 113, the clutch engagement force Th (-△Nx) is calculated from the proportional coefficient and the correction value Nx.

ステップ114では、所定の比例係数に℃と前後輪回転
速度差ΔNとからクラッチ締結力T℃(=K・ΔN)が
演算により求められる。
In step 114, clutch engagement force T°C (=K·ΔN) is calculated from a predetermined proportional coefficient, °C, and front and rear wheel rotational speed difference ΔN.

ステップ115では、クラッチ締結力Txとして前記両
りランチ締結力Th、TJ2のうち大きし1方の値が選
択される。
In step 115, the larger one of the launch engagement forces Th and TJ2 is selected as the clutch engagement force Tx.

つまり、Th≧Tj2の時     Tx=ThTh<
T℃の8−1¥     Tx=TJ2として設定され
る。
In other words, when Th≧Tj2, Tx=ThTh<
It is set as 8-1\Tx=TJ2 of T°C.

このように、クラッチ締結力T×は、通常、旋回半径R
の値にフィルタをかけることにより間接的に横加速度Y
9によって決定する比例係aKの値にフィルタをかけて
求められたクラッチ締結力Thとなるが、極端に小さな
値とはならないように、実測値の基づいて求められる所
定のクラッチ締結力T℃が最低前られるようにしている
In this way, the clutch engagement force Tx is normally determined by the turning radius R
By applying a filter to the value of , we can indirectly calculate the lateral acceleration Y
The clutch engagement force Th obtained by applying a filter to the value of the proportional coefficient aK determined by 9 is obtained, but in order to avoid an extremely small value, the predetermined clutch engagement force T℃ obtained based on the actual measurement value is I try to at least be able to do it in advance.

次に、前記ステップeでの減速時の制御処理内容■を第
9図のフローチャート図により説明する。
Next, the content of the control process (2) during deceleration in step e will be explained with reference to the flowchart of FIG.

ステップ120では、ゲインにnegが車速Vfの関数
により求められる。このゲインにnegは、第10図及
び第11図に示すように、前後輪回転速度差ΔNが負か
ら正に転じる車速V。まではにneg=0であり、車速
V。から車速V、まではKneg = O”□K oま
で徐々に増大し、車速V1を越えたらにneg−に。の
値となる。
In step 120, the gain neg is determined as a function of the vehicle speed Vf. In this gain, neg is the vehicle speed V at which the front and rear wheel rotational speed difference ΔN changes from negative to positive, as shown in FIGS. 10 and 11. Until then, neg=0 and the vehicle speed is V. From vehicle speed V, the value gradually increases until Kneg=O"□Ko, and when the vehicle speed exceeds V1, the value becomes neg-.

ステップ12〕では、前記ステップ200で得られたゲ
インK negと、前後輪回転速度差絶対値1△N1と
からクラッチ締結力T negが次式での、運算により
求められる。
In step 12], clutch engagement force T neg is calculated from the gain K neg obtained in step 200 and the absolute value 1ΔN1 of the front and rear wheel rotational speed difference using the following equation.

T neg−にneg * l△N1 次に、前記ステップfでの高速時の制御処理内容■を第
12図のフローチャート図により説明する。
T neg- to neg * lΔN1 Next, the content of the control processing at high speed in step f will be explained with reference to the flowchart of FIG.

ステップ130では、車速V+のみによる関数でクラッ
チ締結力Tvが次式での演算により求められる。
In step 130, the clutch engagement force Tv is calculated as a function of only the vehicle speed V+ using the following equation.

Tv=f  (Vf) この重連関数f  (Vf)は、第13図に示すような
内容で、車速感応によるクラッチ締結力の増加は、高速
走行時の安定性が主眼であるので、クラッチ締結力Tv
がゼロ以上となる始点の車速゛J2はおよそ80 km
/hで、最大クラッチ締結力TVmaXに達する車速V
3はおよそ+20km/h程度とし、低・中速時の旋回
性に影響が及ばない範囲とする。
Tv=f (Vf) This multiple function f (Vf) has the content as shown in Fig. 13, and the increase in clutch engagement force due to vehicle speed sensitivity is mainly aimed at stability during high-speed driving, so clutch engagement Power Tv
The vehicle speed at the starting point where is greater than zero is approximately 80 km.
/h, the vehicle speed V reaches the maximum clutch engagement force TVmaX
3 is approximately +20 km/h, which is a range that does not affect turning performance at low to medium speeds.

また、最大クラッチ締結力Tvmaxは、高速直進安定
性を満足する値であり、且つ、加速旋回時にステア特性
を弱アンダーステア特性にするのに十分な値とする。
Further, the maximum clutch engagement force Tvmax is a value that satisfies high-speed straight running stability, and is also a value that is sufficient to make the steering characteristic into a weak understeer characteristic during acceleration turning.

以上述べた制御作動により、例えば、80 km/h以
下の低・中速での定速・加速時には、車速対応のクラッ
チ締結力Tvがほぼゼロである為、クラッチ締結力Tx
が目標クラッチ締結力T*とじて選択される。
Due to the control operation described above, for example, during constant speed/acceleration at low/medium speeds of 80 km/h or less, the clutch engagement force Tv corresponding to the vehicle speed is almost zero, so the clutch engagement force Tx
is selected as the target clutch engagement force T*.

また、減速時には、高車速でない限り、クラッチ締結力
T negが目標クラッチ締結力T*として選択される
Furthermore, during deceleration, the clutch engagement force T neg is selected as the target clutch engagement force T* unless the vehicle speed is high.

また、例えば、80 km/h以上の高速走行時には、
クラッチ締結力Txとクラ・ンチ締結力Tvとの値うち
大きい方の値が目標クラッチ締結力T*として選択され
る。つまり、前後輪回転速度差ΔNが小さい場合でも車
速Vfか高車速の場合には、クラッチ締結力Tvの値が
目標クラッチ締結力T*として選択される。
Also, for example, when driving at high speeds of 80 km/h or more,
The larger value of the clutch engagement force Tx and the clutch engagement force Tv is selected as the target clutch engagement force T*. That is, even when the front and rear wheel rotational speed difference ΔN is small, if the vehicle speed is Vf or high, the value of the clutch engagement force Tv is selected as the target clutch engagement force T*.

従って、低・中速走行での加・減速の安定性と、高速直
進走行での安定性と、高速旋回加速での最適なステア特
性とを全て満足出来るという効果が得られる。
Therefore, it is possible to achieve the effect of satisfying all of the requirements of acceleration/deceleration stability at low and medium speeds, stability during high-speed straight running, and optimal steering characteristics during high-speed turning acceleration.

尚、実際の走行では、前記(イ)〜(ハ)のように走行
状況が明確に異なることは少なく、各要素が複合的にな
っているが、各要素によるクラッチ締結力のうち影響度
のいち1ゴん大きな最大値を2択することで、いずれに
しろ安定サイドに制御されることになる(特願昭62−
302473号参照)。
In actual driving, the driving conditions rarely differ clearly as in (a) to (c) above, and each element is complex, but the degree of influence of the clutch engagement force due to each element is By selecting two maximum values that are each one larger, the control will be on the stable side in any case (Patent application 1986-
302473).

[前後駆動力配分比検出作用] まず、車輪速から駆動力配分比を求める理論計算につい
て、第14図、第15図により述べる。
[Detection of front-rear driving force distribution ratio] First, the theoretical calculation for determining the driving force distribution ratio from the wheel speed will be described with reference to FIGS. 14 and 15.

但し、VLf、Wr;輪荷重、Sf、Sr:スリンブ率
、wf、wr;車輪速、Of、Or:駆動力、Tf、T
r;軸トルク、ロ、タイヤー路面間摩擦係数、r:タイ
ヤ半径、V、車速である。
However, VLf, Wr: wheel load, Sf, Sr: sling ratio, wf, wr: wheel speed, Of, Or: driving force, Tf, T
r: shaft torque, b: coefficient of friction between tire and road surface, r: tire radius, V: vehicle speed.

Ti=Oi−r Oi=pi−Wi 口 i=に一5i 一方、 V 1 共V ■ W1=   (Si+1) 、、△N=wr−wf=   (Sr−9f)   =
12)(+)、 (2)により、 前輪側駆動力配分比Tf%=Tf/(Tf+Tr)・・
・(4) により、前輪側駆動力配分比Tf%を計算により求ぬる
ことか出来る。
Ti=Oi-r Oi=pi-Wi mouth i=ni5i On the other hand, V 1 both V ■ W1= (Si+1) , △N=wr-wf= (Sr-9f) =
12) (+), From (2), front wheel side driving force distribution ratio Tf%=Tf/(Tf+Tr)...
- From (4), the front wheel drive force distribution ratio Tf% can be calculated.

次に、前記(4)式の各変数の計算方法について、第1
6図を参照して述べる。
Next, regarding the calculation method of each variable in the above formula (4), the first
This will be explained with reference to Figure 6.

・フロント軸トルクTf Tf=TXif   if;ファイナルギヤ比・車速V ・輪荷重Wf、Wr ・前後輪回転速度差ΔN ΔN = w r −w f ・制駆動剛性係数に 以上の理論計算式に基づく計算例を示す。・Front shaft torque Tf Tf=TXif if; Final gear ratio/vehicle speed V ・Wheel load Wf, Wr ・Difference in rotational speed between front and rear wheels ΔN ΔN = w r - w f ・Braking/driving stiffness coefficient An example of calculation based on the above theoretical calculation formula is shown below.

■ リジット4WDとなった場合 前記(4)式において、△N=Oとすると、となり、重
量配分比と一致する。
■ In the case of rigid 4WD In the above equation (4), if △N=O, then it becomes, which matches the weight distribution ratio.

■ 駆動力配分比一定の制御が出来るか9前記(4)式
において、■f%入力、Tf出力として解くと、 ・・・(6) となり、駆動力配分比一定制御は可能である。
■ Is it possible to control the driving force distribution ratio at a constant rate? 9 In the above equation (4), if we solve for ■f% input and Tf output, we get (6), and it is possible to control the driving force distribution ratio at a constant rate.

但し、制駆動剛性係数には路面摩擦係数やタイヤ状態に
よって変化するし、前後輪回転速度差ΔNや車速Vは旋
回補正を要する。
However, the braking/driving stiffness coefficient changes depending on the road surface friction coefficient and tire condition, and the front and rear wheel rotational speed difference ΔN and the vehicle speed V require turning correction.

次に、上述の理論計算に基づいてコントロールユニット
45で行なわれる駆動力配分比検出処理作動の流れを第
17図に示すフローチャート図により説明する。
Next, the flow of the driving force distribution ratio detection processing operation performed by the control unit 45 based on the above-mentioned theoretical calculation will be explained with reference to the flowchart shown in FIG.

ステップ200では、上記駆動力配分制御処理作動にお
いて求められた前後輪回転速度差△N。
In step 200, the front and rear wheel rotational speed difference ΔN obtained in the driving force distribution control processing operation is determined.

車速Vf、旋回半径R1目標クラッチ締結力T*が読み
込まれる。
Vehicle speed Vf and turning radius R1 target clutch engagement force T* are read.

ステ・ンブ201では、ステップ200 t’の入力値
により求心加速度Y9と前後加速度×9とが下記の式で
計算される。
In step 201, centripetal acceleration Y9 and longitudinal acceleration x 9 are calculated using the following equations based on the input values at step 200 t'.

Y9=Vf’/R X g= (V +−Vfo) /ΔtVfoは所定の
制御周期△を前に読み込まれた車速で×9は車速の全分
値により求められる。
Y9=Vf'/R X g= (V+-Vfo)/ΔtVfo is the vehicle speed read before the predetermined control period Δ, and x9 is obtained from the total value of the vehicle speed.

尚、求心加速度Y9と前後加速度×9は、Gセンサを用
いて直接検出しても良い。
Note that the centripetal acceleration Y9 and the longitudinal acceleration x9 may be directly detected using a G sensor.

ステップ202では、前輪荷重Wfと後輪荷重Wrとが
、前後加速度×9の関数として下記の式で計算される。
In step 202, the front wheel load Wf and the rear wheel load Wr are calculated as a function of longitudinal acceleration x 9 using the following formula.

Wf = (A 、 −A、−X 9) /2W r 
−(A 2 + A o・X 9 ) / 2尚、この
前接輪荷重Wf、Wrは、ストロークセンサ等で直接検
出しても良い。
Wf = (A, -A, -X9) /2W r
−(A 2 + A o·X 9 )/2 Note that the front wheel loads Wf and Wr may be directly detected by a stroke sensor or the like.

ステップ203では、タイヤの制駆動剛性係2々kxが
求心加速度Y9及び前後輪回転速度差ΔNの関数として
下記の式で求められる。
In step 203, the braking/driving stiffness coefficient 2kx of the tire is determined as a function of the centripetal acceleration Y9 and the front and rear wheel rotational speed difference ΔN using the following equation.

ここで、この制駆動剛性係数に、は、路面摩擦係数μに
よって変化する値であり、第18図に示すように、k、
(高−路)>k、(低μ路)の関係にある。
Here, the braking/driving stiffness coefficient is a value that changes depending on the road surface friction coefficient μ, and as shown in FIG. 18, k,
The relationship is (high-road)>k, (low-μ road).

しかし、路面摩擦係数μを直接検出出来ないので、求心
加速度Y9と前後輪回転速度差ΔNにより間接的に検出
する。即ち、 求心加速度が大きい一高μ路 求心加速度が小さい一低口路 更に、第19図に示すように、 前後輪回転速度差入−スリップ大−低μ路前後輪回転速
度差小→スリップ小→高μ路の関係を式に表す。
However, since the road surface friction coefficient μ cannot be directly detected, it is indirectly detected using the centripetal acceleration Y9 and the front and rear wheel rotational speed difference ΔN. That is, one high μ road with large centripetal acceleration, one low exit road with small centripetal acceleration, and furthermore, as shown in Fig. 19, front and rear wheel rotational speed difference - large slip - low μ road front and rear wheel rotational speed difference small → small slip. →Represent the relationship of high μ road as a formula.

kx=f (Y9.ΔN) =A 3 +Aa・Yg  Aa・ΔN但し、A3.A
、、A、は定数。
kx=f (Y9.ΔN) =A 3 +Aa・Yg Aa・ΔN However, A3. A
,,A, is a constant.

ステップ204では、前輪側駆動力配分比Tf%と後輪
側駆動力配分比Tr%とを下記の式により計算する。
In step 204, the front wheel side driving force distribution ratio Tf% and the rear wheel side driving force distribution ratio Tr% are calculated using the following formula.

Tr%=1−Tf% 但し、A5は定数 ステップ205では、前記ステップ204で求めた前輪
側駆動力配分比Tf%と後輪側駆動力配分比Tr%を運
転者に知らせるべく、駆動力配分比表示装置60へ出力
する。
Tr%=1-Tf% However, A5 is a constant In step 205, the driving force distribution is changed to inform the driver of the front wheel driving force distribution ratio Tf% and the rear wheel driving force distribution ratio Tr% obtained in step 204. It is output to the ratio display device 60.

以上の駆動力配分比検出処理によって、目標クラッチ締
結力T*を基礎情報とし、車速Vf及び前後輪回転速度
差ΔNを間接的な路面摩擦係数μやタイヤ状態等の情報
源として、目標クラッチ締結力T*による理論上の駆動
力配分比が路面摩擦係数影響やタイヤ影響等を考慮した
形で実際の駆動力配分比に補正され、精度の高い前後駆
動力配分比Tf%、Tr%が検出される。
Through the above driving force distribution ratio detection processing, the target clutch engagement force T* is used as basic information, and the vehicle speed Vf and the front and rear wheel rotational speed difference ΔN are used as indirect information sources such as the road surface friction coefficient μ and tire condition. The theoretical driving force distribution ratio based on force T* is corrected to the actual driving force distribution ratio in consideration of the influence of road surface friction coefficient, tire influence, etc., and highly accurate front and rear driving force distribution ratios Tf% and Tr% are detected. be done.

従って、実施例の駆動力配分比検出装置では、以下に列
挙する効果が得られる。
Therefore, the driving force distribution ratio detection device of the embodiment provides the following effects.

■ 正確な前後駆動力配分比Tf%、 Tr%の情報が
駆動力配分比表示装置60により運転者に伝わることに
なり、運転者は前後駆動力配分比Tf%。
■ Information on the accurate front-rear driving force distribution ratio Tf% and Tr% is transmitted to the driver by the driving force distribution ratio display device 60, and the driver can confirm the front-rear driving force distribution ratio Tf%.

Tr%による車両の挙動変化を的確に予測することが出
来る。
Changes in vehicle behavior due to Tr% can be accurately predicted.

■ 検出した前後駆動力配分仕丁f%、 Tr%を駆動
力配分制御の入力情報として、フィードバックすること
で、駆動力配分比を一定に保つ制御や、クラッチ締結力
ではなく、前後駆動力配分比Tf%。
■ By feeding back the detected front and rear driving force distribution partitions f% and Tr% as input information for driving force distribution control, it is possible to maintain a constant driving force distribution ratio, and to control the front and rear driving force distribution ratio instead of clutch engagement force. Tf%.

Tr%を制御目標とする、実際走行に対応した最適の駆
動力配分制御を行なうことが出来る。
Optimal driving force distribution control corresponding to actual driving can be performed with Tr% as a control target.

■ 車両に設置するセンサとしては、接輪回転速度セン
サ41と左前輪速度センサ42と右前輪速度センサ43
のわずか3つのセンサだけのコスト的に有利で信頼性の
高い装置で、駆動力配分制御のみならず、駆動力配分比
検出を行なうことが出来る。
■ Sensors installed on the vehicle include a contact wheel rotation speed sensor 41, a left front wheel speed sensor 42, and a right front wheel speed sensor 43.
This cost-effective and highly reliable device with only three sensors is capable of not only driving force distribution control but also driving force distribution ratio detection.

以上、実施例を図面により詳述してきたが、具体的な構
成、制御内容はこの実施例に限られるものではない。
Although the embodiment has been described above in detail with reference to the drawings, the specific configuration and control contents are not limited to this embodiment.

例えば、実施例では、外部から締結力が制御されるクラ
ッチのみで前後輪の駆動力配分比が決まる例を示したが
、この電子制御クラッチとプラネタリ−ギヤセット等と
を組合わせたトランスファ装置とした場合には、駆動力
配分比を求めるにあたって、目標クラ・ンチ締結力によ
る配分比にプラネタリ−ギヤセット等による配分比を考
慮し、最終の駆動力配分比を決める。
For example, in the example, the driving force distribution ratio between the front and rear wheels is determined only by a clutch whose engagement force is controlled externally, but a transfer device that combines this electronically controlled clutch with a planetary gear set, etc. In this case, when determining the driving force distribution ratio, the final driving force distribution ratio is determined by considering the distribution ratio by the target clutch engagement force and the distribution ratio by the planetary gear set, etc.

また、駆動系クラッチ手段として自ら締結力を生じる粘
性クラッチを用いた場合には、クラッチ締結力Tを、締
結力発生原因である入出力軸の回転速度差ΔNの関数(
T=f(ΔN))により推定演算して求める。
In addition, when a viscous clutch that generates its own engagement force is used as the drive system clutch means, the clutch engagement force T is a function of the rotation speed difference ΔN between the input and output shafts, which is the cause of the generation of the engagement force (
It is obtained by performing an estimation calculation using T=f(ΔN)).

(発明の効果) 以上説明してきたように、本発明の四輪駆動車の駆動力
配分比検出装置にあっては、検出手段として、少なくと
もクラッチ締結力を直接または間接的に検出するクラッ
チ締結力検出手段と、車速を検出する車速検出手段と、
前後輪回転速度差を検出する前後輪回転速度差検出手段
とを有し、これらの検出手段からの検出値に基づいて前
後駆動力配分比を演算により検出する前後駆動力配分比
演算手段を設けた事を特徴とする為、車速及び前後輪回
転速度差か間接的な路面摩擦係数やタイヤ状態等の情報
をもたらすことになり、クラッチ締結力による理論上の
駆動力配分比が路面摩擦係数影響やタイヤ影響等を考慮
した実際の駆動力配分比に補正され、精度の高い前後駆
動力配分比を検出することが出来るという効果が得られ
る。
(Effects of the Invention) As explained above, in the driving force distribution ratio detection device for a four-wheel drive vehicle of the present invention, the detection means includes a clutch engagement force that directly or indirectly detects at least a clutch engagement force. a detection means; a vehicle speed detection means for detecting vehicle speed;
and front and rear wheel rotation speed difference detection means for detecting a front and rear wheel rotation speed difference, and front and rear drive force distribution ratio calculation means for calculating a front and rear drive force distribution ratio based on the detected values from these detection means. Since the vehicle speed and front and rear wheel rotational speed differences indirectly provide information such as the road surface friction coefficient and tire condition, the theoretical driving force distribution ratio due to the clutch engagement force has an effect on the road surface friction coefficient. The effect is that the front/rear driving force distribution ratio can be detected with high accuracy by correcting it to the actual driving force distribution ratio taking into account factors such as tire influence and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の四輪駆動車の駆動力配分比検出装置を
示すクレーム概念図、第2図は実施例装置が適用される
四輪駆動車を示す図、第3図は実施例装置のトランスフ
ァ装置を示す断面図、第4図は実施例装置のコントロー
ルユニットを示すフロック線図、第5図はクラッチ油圧
とクラッチ締結力の関係特性図、第6図は指令電流値と
クラッチ圧の関係特性図、第7図は実施例装置のコント
ロールユニットでの駆動力配分制御作動の流れを示すフ
ローチャート図、第8図は定速・加速時の制御処理作動
の流れを示すフローチャート図、第9図は減速時の制御
処理作動の流れを示すフローチャート図、第10図は車
速に対するゲイン特性図、第11図は車速に対する前後
輪回転速度差特性図、第12図は高速時の制御処理作動
の流れを示すフローチャート図、第13図は車速に対す
るクラッチ締結力特性図、第14図は走行時の駆動系の
力学モデル図、第15図はスリップ率に対する路面摩擦
係数特性図、第16図は車両の寸法モデル図、第17図
は実施例装置のコントロールユニットでの駆動力配分比
検出処理作動の流れを示すフローチャート図、第18図
は低μ路と高μ路とでの路面摩擦係数特性比較図、第1
9図は前後輪回転速度差と路面摩擦係数特性との関係対
応図である。 1・・・駆動系クラッチ手段 2・・・クラッチ締結力検出手段 3・・・車速検出手段 4・・・前後輪回転速度差検出手段 5・・・前後駆動力配分比演算手段
FIG. 1 is a conceptual diagram of a claim showing a driving force distribution ratio detection device for a four-wheel drive vehicle according to the present invention, FIG. 2 is a diagram showing a four-wheel drive vehicle to which the embodiment device is applied, and FIG. 3 is a diagram showing the embodiment device. 4 is a flock diagram showing the control unit of the embodiment device, FIG. 5 is a characteristic diagram showing the relationship between clutch oil pressure and clutch engagement force, and FIG. 6 is a diagram showing the relationship between command current value and clutch pressure. 7 is a flowchart showing the flow of driving force distribution control operation in the control unit of the embodiment device; FIG. 8 is a flowchart showing the flow of control processing operation at constant speed/acceleration; FIG. 9 Figure 10 is a flowchart showing the flow of control processing operations during deceleration, Figure 10 is a gain characteristic diagram versus vehicle speed, Figure 11 is a front and rear wheel rotational speed difference characteristic diagram versus vehicle speed, and Figure 12 is a flowchart of control processing operations at high speeds. A flowchart showing the flow, Fig. 13 is a clutch engagement force characteristic diagram with respect to vehicle speed, Fig. 14 is a dynamic model diagram of the drive system during driving, Fig. 15 is a road surface friction coefficient characteristic diagram with respect to slip rate, and Fig. 16 is a vehicle 17 is a flowchart showing the flow of the driving force distribution ratio detection processing operation in the control unit of the embodiment device, and FIG. 18 is a comparison of road surface friction coefficient characteristics on low μ road and high μ road. Figure, 1st
FIG. 9 is a diagram showing the relationship between the front and rear wheel rotational speed difference and the road surface friction coefficient characteristics. 1... Drive system clutch means 2... Clutch engagement force detection means 3... Vehicle speed detection means 4... Front and rear wheel rotational speed difference detection means 5... Front and rear driving force distribution ratio calculation means

Claims (5)

【特許請求の範囲】[Claims] (1)エンジン駆動力を前後輪に分配伝達するエンジン
駆動系の途中に駆動系クラッチ手段を備え、該駆動系ク
ラッチ手段の締結力増減により前後輪への駆動力配分比
が変更される四輪駆動車において、 検出手段として、少なくとも前記クラッチ締結力を直接
または間接的に検出するクラッチ締結力検出手段と、車
速を検出する車速検出手段と、前後輪回転速度差を検出
する前後輪回転速度差検出手段とを有し、 これらの検出手段からの検出値に基づいて前後駆動力配
分比を演算により検出する前後駆動力配分比演算手段を
設けた事を特徴とする四輪駆動車の駆動力配分比検出装
置。
(1) A drive system clutch means is provided in the middle of the engine drive system that distributes and transmits the engine drive power to the front and rear wheels, and the drive power distribution ratio to the front and rear wheels is changed by increasing or decreasing the engagement force of the drive system clutch means. In the drive vehicle, the detection means includes at least a clutch engagement force detection means that directly or indirectly detects the clutch engagement force, a vehicle speed detection means that detects vehicle speed, and a front and rear wheel rotational speed difference that detects a front and rear wheel rotational speed difference. A driving force for a four-wheel drive vehicle, comprising: a front-rear driving force distribution ratio calculating means for calculating a front-rear driving force distribution ratio based on detected values from these detecting means. Distribution ratio detection device.
(2)前記前後駆動力配分比演算手段は、車速V、前後
輪回転速度差ΔN、クラッチ締結力Tの関数関係である
下記の式 Tf%=f(T、V、ΔN) =T/(K_1*T+K_2*ΔN/V) により前輪側駆動力配分比Tf%を求める手段である請
求項1記載の四輪駆動車の駆動力配分比検出装置。
(2) The front and rear driving force distribution ratio calculating means calculates the following formula Tf%=f(T,V,ΔN)=T/( 2. The driving force distribution ratio detection device for a four-wheel drive vehicle according to claim 1, wherein the driving force distribution ratio detection device for a four-wheel drive vehicle is means for determining the front wheel side driving force distribution ratio Tf% by: K_1*T+K_2*ΔN/V).
(3)前記前後駆動力配分比演算手段は、請求項2記載
の式において、K_1、K_2を車両の前後重量配分の
関数である下記の式 K_1=(1+Wr/Wf) K_2=K_3*Wr 但し、Wf;フロント重量 Wr;リヤ重量 により求める手段である請求項2記載の四輪駆動車の駆
動力配分比検出装置。
(3) In the equation according to claim 2, the front-rear driving force distribution ratio calculating means calculates the following equation in which K_1 and K_2 are functions of front-rear weight distribution of the vehicle: K_1=(1+Wr/Wf) K_2=K_3*Wr , Wf; front weight Wr; rear weight.
(4)前記前後駆動力配分比演算手段は、請求項3記載
の式において、K_3を路面摩擦係数μの関数により求
める手段である請求項3記載の四輪駆動車の駆動力配分
比検出装置。
(4) The driving force distribution ratio detection device for a four-wheel drive vehicle according to claim 3, wherein the longitudinal driving force distribution ratio calculating means is means for calculating K_3 in the equation according to claim 3 by a function of the road surface friction coefficient μ. .
(5)前記前後駆動力配分比演算手段は、請求項3記載
の式において、K_3を求心加速度Y_9及び前後輪回
転速度差ΔNの関数により求める手段である請求項3記
載の四輪駆動車の駆動力配分比検出装置。
(5) The four-wheel drive vehicle according to claim 3, wherein the front-rear driving force distribution ratio calculating means is means for calculating K_3 in the equation according to claim 3 by a function of centripetal acceleration Y_9 and front-rear wheel rotational speed difference ΔN. Driving force distribution ratio detection device.
JP63055299A 1988-03-09 1988-03-09 Drive force distribution ratio detector for four-wheel drive vehicle Expired - Lifetime JP2552321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63055299A JP2552321B2 (en) 1988-03-09 1988-03-09 Drive force distribution ratio detector for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63055299A JP2552321B2 (en) 1988-03-09 1988-03-09 Drive force distribution ratio detector for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPH01229721A true JPH01229721A (en) 1989-09-13
JP2552321B2 JP2552321B2 (en) 1996-11-13

Family

ID=12994695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63055299A Expired - Lifetime JP2552321B2 (en) 1988-03-09 1988-03-09 Drive force distribution ratio detector for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP2552321B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250226A (en) * 1985-08-30 1987-03-04 Mazda Motor Corp Transmission torque controlling device for four-wheel-drive vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250226A (en) * 1985-08-30 1987-03-04 Mazda Motor Corp Transmission torque controlling device for four-wheel-drive vehicle

Also Published As

Publication number Publication date
JP2552321B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
JP2528485B2 (en) Drive force distribution controller for four-wheel drive vehicle
US6634451B2 (en) Power distribution control system for a vehicle
US6076033A (en) Process for controlling yaw moment in vehicle
US6708088B2 (en) Vehicle behavior control apparatus
JP3409439B2 (en) Driving force distribution control system for left and right wheels and front and rear wheels
US7325640B2 (en) Power transmission system for four-wheel drive vehicle
EP1686031B1 (en) Control device for a four-wheel drive vehicle
JP2528484B2 (en) Drive force distribution controller for four-wheel drive vehicle
US4936406A (en) Power transmitting system for a four-wheel drive vehicle
CA2220905C (en) Yaw moment control system in vehicle
US20040059494A1 (en) Differential limiting control apparatus for a vehicle and the method thereof
JPH01114523A (en) Drive power controller for four-wheel-drive vehicle
JPH0729555B2 (en) Drive force distribution controller for four-wheel drive vehicle
US7386383B2 (en) Differential limiting control apparatus for a vehicle and the method thereof
JP2001287561A (en) Driving force control device for four-wheel drive vehicle
US4973294A (en) Limited-slip differential control system
US5752575A (en) Torque distribution control system in vehicle
JP3827837B2 (en) Vehicle motion control device
JPS63203421A (en) Driving force distribution controller for four-wheel-drive vehicle
JPH01229721A (en) Driving power distribution ratio detecting device for four-wheel-drive vehicle
JP2770670B2 (en) Driving force distribution control system for front and rear wheels and left and right wheels
JP4519216B2 (en) Vehicle motion control device
JPH0425899B2 (en)
JP2508215B2 (en) Vehicle acceleration slip prevention device
JP2679070B2 (en) Vehicle differential limiting control device