JPH0122903B2 - - Google Patents

Info

Publication number
JPH0122903B2
JPH0122903B2 JP4784381A JP4784381A JPH0122903B2 JP H0122903 B2 JPH0122903 B2 JP H0122903B2 JP 4784381 A JP4784381 A JP 4784381A JP 4784381 A JP4784381 A JP 4784381A JP H0122903 B2 JPH0122903 B2 JP H0122903B2
Authority
JP
Japan
Prior art keywords
somatostatin
plasma
labeled
buffer
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4784381A
Other languages
Japanese (ja)
Other versions
JPS57161651A (en
Inventor
Fumitsugu Ishigami
Teikin Shin
Kenichi Imagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Pharmaceutical Co Ltd
Original Assignee
Otsuka Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co Ltd filed Critical Otsuka Pharmaceutical Co Ltd
Priority to JP4784381A priority Critical patent/JPS57161651A/en
Publication of JPS57161651A publication Critical patent/JPS57161651A/en
Publication of JPH0122903B2 publication Critical patent/JPH0122903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 本発明はソマトスタチンの定量法に関する。 近年医学の進歩と共に各種複雑な病気の治療が
可能になつてきたが、その功績の一つとして各種
生理活性成分の分析即ち診断学の技術の向上を挙
げることができる。各種生理活性成分の測定によ
り病名を診断するには、血液中に存在する微量の
生理活性成分を迅速且つ正確にしかも再現性よく
定量することが要求される。 例えば血液中に存在するソマトスタチンを定量
することにより中枢性疾患、各種の消化管疾患、
副腎腫瘍等の疾病の診断が可能であり、このソマ
トスタチンは例えばラジオイムアツセイ法(RIA
法)等の抗原抗体反応を利用する免疫測定法によ
り定量されている。RIA法の原理を例に示せば以
下の通りである。即ち 125Iで標識されたTyr−ソ
マトスタチン(標識抗原)と標識されていないソ
マトスタチン(非標識抗原)とを抗体に対して競
合的に反応させ、次に非結合標識抗原(F)と標識抗
原抗体結合物(B)とを分離し、その放射能を測定し
てB/B+F値を求める。この際B/B+F値と
非標識抗原の量との間には逆相関関係が成立す
る。そこで検体中に含有されている非標識抗原を
測定する場合には、予め適当な種々の量の非標識
抗原を含有する溶液に標識抗原とその抗体とを加
え上記と同様の操作を行ない既知量の非標識抗原
に対するB/B+F(B/B0)値を求めて標準曲
線を作成しておき、次に未知量の非標識抗原を含
有する検体に標識抗原とその抗体とを加え、上記
と同様の操作により得られるB/B+F値を上記
標準曲線にあてはめて検体中の非標識抗原の含有
量を求めることができる。 血漿中に含有されているソマトスタチンも上記
の方法により測定されてきたが、最近の研究によ
125Iで標識されたTyr−ソマトスタチン(以下
「標識ソマトスタチン」という)が血漿と混合さ
れている状態では徐々に分解されることが報告さ
れ、免疫測定法によりソマトスタチンを定量する
欠点が指摘されている。特にRIA法においては免
疫反応(抗原抗体反応)に通常数目を必要とする
が、この間に標識ソマトスタチンがかなり分解さ
れ、その結果血漿中に含されるソマトスタチンを
正確に定量することが不可能となる。 以上の見地より標識ソマトスタチンの分解を抑
制して血漿中に含まれるソマトスタチンを正確に
定量する試みが種々講じられている。その代表的
な試みの一つとして標識ソマトスタチンの安定化
を計るべく、まず血漿よりソマトスタチンを抽出
して標識ソマトスタチンの安定性を阻害する物質
を除去し、しかる後にソマトスタチン含有の抽出
液を免疫測定法に供してソマトスタチンを定量し
ようとする所謂間接法がある。しかしながらこの
間接法には、抽出という操作が更に必要となり大
量のサンプルを速やかに処理しなければならない
とする医学界の要請に合致しない点及び血漿から
ソマトスタチンを完全に抽出することが困難であ
る点において問題がある。またこの間接法とは全
く別の観点に立ち、血漿からソマトスタチンを抽
出することなく、免疫反応の際に反応系内に種々
の阻害剤を存在させて標識ソマトスタチンを安定
化せしめ、血漿中のソマトスタチンを定量しよう
とする所謂直接法も試みられている。例えばクリ
ニカ キミカ アクタ(Clinica Chimica Acta)
第87巻第275〜283頁(1978年)やダイアベテス
(DIABETES)第27巻第5号第523〜529頁
(1978年)には、血漿にアプロチニン(トラジロ
ール)やエチレンジアミン四酢酸ナトリウムを添
加し、次いでこの血漿をRIA法に供してソマトス
タチンを定量する方法が報告されている。しかし
ながらこの直接法では、阻害剤は標識ソマトスタ
チンの安定化に有効ではなく標識ソマトスタチン
は血漿中において尚不安定であり、時間の経過と
共に標識ソマトスタチンが徐々に分解されるを避
け得ず、それ故血漿中のソマトスタチンを正確に
定量することは不可能である。 本発明者らは斯かる現状に鑑み血漿中のソマト
スタチンを直接法により正確に定量し得る新しい
方法を開発すべく鋭意研究を重ねてきた。その結
果血漿を含む免疫反応系においてPHを4〜5.5に
調整することにより標識ソマトスタチンが安定化
され長時間に亘り標識ソマトスタチンの分解が認
められないという事実を見い出した。本発明は斯
かる知見に基づいて完成されたものである。 即ち本発明は、 125Iで標識されたTyr−ソマト
スタチンを標識抗原として用いる免疫測定法によ
り血液中に存在するソマトスタチンを定量するに
際し、PH4〜5.5の範囲内で免疫測定を行なうこ
とを特徴とするソマトスタチンの定量法に係る。 本発明におけるTyr−ソマトスタチンは、以下
の構造を持つ。 本発明の方法によれば、免疫反応の際において
即ち標識ソマトスタチンが血漿と混合されている
状態において、標識ソマトスタチンを長時間に亘
つて安定化でき、それ故血漿中のソマトスタチン
を正確に再現性よく定量し得る。また本発明の方
法は、従来の間接法の如き血漿中からソマトスタ
チンを抽出するという操作は不必要であり、それ
故大量のサンプルを迅速に処理するのに好適であ
る。 本発明では血漿中のソマトスタチンを定量する
に当り、標識ソマトスタチン、ソマトスタチン含
有血漿及びこれらの抗体を含有する免疫反応系を
PH4〜5.5に調整する。PHの調整には従来公知の
緩衝剤を広く使用でき、斯かる緩衝剤を免疫反応
系のPHが4〜5.5になるように適当量使用すれば
よい。用いられる緩衝剤としては具体的には
0.2M−フタル酸水素カリウム−0.2M水酸化ナト
リウム(PH4.8)等のフタレート−水酸化ナトリ
ウム系緩衝剤、0.2Mグリシン−0.2M塩酸(PH
5.0)等のグリシン−塩酸系緩衝剤、0.2M酢酸−
0.2M酢酸ナトリウム(PH4〜5.2)等の酢酸系緩
衝剤、0.1Mクエン酸−0.2Mリン酸水素二ナトリ
ウム(PH5.4)、0.1Mクエン酸−0.1Mクエン酸ナ
トリウム(PH4.4〜5)、0.1M第二クエン酸ナト
リウム−0.1M塩酸(PH4〜5)、0.1M第一クエ
ン酸カリウム−0.1M水酸化ナトリウム(PH4〜
5.5)等のクエン酸系緩衝剤、0.2Mコハク酸−
0.2M水酸化ナトリウム(PH4.4)等のコハク酸系
緩衝剤等を例示できる。 本発明では免疫反応系に通常のアミノ酸、例え
ばヒスチジン、フエニルアラニン、アルギニン、
チロシン等を添加することも可能である。アミノ
酸の添加により標識ソマトスタチンをより一層長
期間に亘つて安定化し得、ソマトスタチンをより
一層精度よく定量することができる。アミノ酸の
添加量としてアミノ酸の種類等により異なり一概
には言えないが、後述する免疫測定条件下におい
て血漿中に含まれるソマトスタチン等の蛋白質が
沈殿せず、またアミノ酸が適当に沈澱する範囲内
で適宜選択するのがよい。更に本発明では免疫反
応系にゼラチン、牛血清アルブミン、ナトリウム
アジド、塩化ナトリウム等を適宜選択してもよ
い。 RIA法を例にとり、血漿中のソマトスタチンを
定量する手順につき以下に詳述する。まず常法に
従い血漿し、遠心分離器を用いて血漿を分離す
る。採血及び血漿分離は通常4〜30℃程度の雰囲
気下に行なうのがよい。分離された血漿に所定量
の標識ソマトスタチン、抗血清(抗体)、緩衝剤
及び必要に応じてアミノ酸等の成分を添加し、通
常4〜37℃にて1〜100時間程度インキユベート
する。次に標識ソマトスタチン−抗体結合物(B)と
非結合ソマトスタチン(F)とを通常の分離方法、例
えばデキストラン炭末法、二抗体法、固相法、ポ
リエチレングリコール法、タルク法、硫安法、エ
タノール法等により分離し、それらの放射能をγ
−カウンターを用いて測定してB/B+F値を求
め、予め作成されている標準曲線より血漿中のソ
マトスタチンの含有量が決定される。尚標準曲線
の作成は従来の方法と異なるところはない。 以下に実施例を挙げて本発明をより一層明らか
にする。 実施例 1 125Iで標識されたTyr−ソマトスタチンの製造 500mMリン酸緩衝液(PH=7.2)50μに撹拌
下Tyr−ソマトスタチン〔〔財)タンパク質奨励
会〕2μg(0.2M酢酸と0.2M−NaClの溶液とし
て20μ)、次いでNa 125I1ミリキユリー(200m
Mリン酸緩衝液(PH=7.2)の溶液として20μ)
及びクロラミンT20μg(50mMリン酸緩衝液
(PH=7.2)の溶液として20μを加え、45秒イン
キユベートする。D,L−チロシン100μg(200
mMリン酸緩衝液(PH=7.2)の溶液として100μ
)加えて未反応のNa 125Iを消費させて反応を
停止する。この反応混液をCM−セフアデツクス
C−25カラム〔溶出液:0.13M−NaCl、0.1w/
v%BSA(牛血清アルブミン)の50mMリン酸緩
衝液(PH=6.8)〕に付し、 125I−Tyr−ソマトス
タチン標識抗原を得る。 実施例 2 150mMNaCl、0.1w/v%BSAの50mMクエ
ン酸溶液を調整する。同様に150mMNaCl、0.1
%BSAの100mMリン酸2ナトリウム溶液を調整
する。PHメーターでPHを測定しながら両者を混合
し、PH4.0の150mMNaCl、0.1%BSAのクエン
酸・リン酸緩衝液を得る。 同様にPH4.5の150mMNaCl、0.1%BSAのクエ
ン酸・リン酸緩衝液を得る。 上記のPH4.0の緩衝液0.5mlに正常人血漿0.1ml、
前記実施例1で得た 125I−Tyr−ソマトスタチン
10000cpmの上記緩衝液(PH4.0)0.1ml及びソマト
スタチン抗血清(OAL272;特開昭56−16415号
参照)の上記緩衝液0.1ml(×70000フアイナル)
を加え、4℃にて20時間インキユベートする。デ
キストラン炭末(0.5%NoritA、0.05%
DextraneT−70の上記PH4.0緩衝液1ml)を加え
て、4℃、1時間インキユベートし、8000rpm15
分間4℃にて遠心分離する。上清及び沈渣を分離
し、放射活性をγ−カウンターにて測定し、B/
B+F(%)値を求める。これをを0日の値とす
る。同様にPH4.0の緩衝液0.5mlに正常人血漿0.1ml
125I−Tyr−ソマトスタチン10000cpmの緩衝
液(PH4.0)0.1mlを加えて、4℃にて、1日間、
2日間、3日間、4日間及び5日間それぞれイン
キユベートして−20℃にて凍結したサンプルを得
る。それらを前記と同様に融解後ソマトスタチン
抗血清を加えて4℃、20時間インキユベートし、
デキストラン炭末法によりBF分離し、放射活性
を測定し、各々のB/B+F値を求める。それら
を1日後、2日後、3日後、4日後及び5日後の
値とする。 PH4.5の緩衝液においても、上記PH4.0の緩衝液
で測定したと同様にして、0日、1日、2日、3
日、4日及び5日後のB/B+F値を求める。結
果を第1図に示す。第1図よりPH4.0及びPH4.5に
おいて 125I−Tyr−ソマトスタチンが安定である
ことが判る。 比較例 1 前記実施例2と同様にしてPH6.5の150m
MNaCl、0.1%BSAのクエン酸・リン酸緩衝液を
得る。該緩衝液を用いて実施例2と同様にして0
日〜5日後のB/B+F値を求める。結果を前記
第1図に併記する。 実施例 8 150mMNaCl、100mMヒスチジン、0.1%BSA
の50mMクエン酸溶液を調整する。 150mMNaCl、100mMヒスチジン、0.1%BSA
の100mMリン酸2ナトリウム溶液を調整する。
PHメーターでPHを測定しながら両者を混合し、PH
5.5の150mMNaCl、100mMヒスチジン、0.1%
BSAのクエン酸・リン酸緩衝液を得る。該緩衝
液を用いて実施例2と同様にして0日、2日、4
日後のB/B+F値を求める。結果を第2図に示
す。 実施例 4 100mMヒスチジン、0.1ゼラチン、0.02%アジ
化ナトリウムの200mMクエン酸溶液を調整し、
PHメーターでPHを測定しながら水酸化ナトリウム
水溶液でPHを5.0に調整して緩衝液を作製する。 上記の緩衝液0.2mlに抗血清の上記緩衝液0.2ml
(OAL272×70000フアイナル)、 125−Tyr−ソマ
トスタチン10000cpmの上記緩衝液0.2ml及び既知
量のソマトスタチン((財)タンパク質奨励会)
の上記緩衝液0.1mlを加え、4℃にて72時間イン
キユベートする。実施例2と同様にしてデキスト
ラン炭末法によりBF分離しB/B0を求める。 尚B0はソマトスタチン濃度が0の時のB値を
示す。かくして第8図に示す標準曲線を得る。 実施例 5 実施例4と同様にして、PH5の100mMヒスチ
ジン、0.1%ゼラチン、0.02%アジ化ナトリウム
の200mMクエン酸緩衝液を調整する。 健常人6人より早朝空腹時にヘパリン(0.01
mg/ml)下に5ml採血する。各々血漿を分離し、
−20℃にて保存する。 上記実施例4と同様にして、既知量のソマトス
タチンの替りに上記の血漿(検体)0.1mlを加え
て免疫反応及びBF分離を行ない、B/B0を算出
する。実施例4の標準曲線より検体のソマトスタ
チン濃度を求める。結果を下記第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for quantifying somatostatin. In recent years, with advances in medicine, it has become possible to treat various complex diseases, and one of the achievements of this is the improvement of diagnostic techniques, that is, the analysis of various physiologically active components. Diagnosing diseases by measuring various physiologically active components requires rapid, accurate, and reproducible quantification of trace amounts of physiologically active components present in blood. For example, by quantifying somatostatin present in the blood, central disease, various gastrointestinal diseases,
It is possible to diagnose diseases such as adrenal gland tumors, and somatostatin can be used, for example, by radioimmunoassay (RIA).
It is quantified by an immunoassay method that utilizes antigen-antibody reactions, such as (method). An example of the principle of the RIA method is as follows. That is, 125 I-labeled Tyr-somatostatin (labeled antigen) and unlabeled somatostatin (unlabeled antigen) are competitively reacted with the antibody, and then the unbound labeled antigen (F) and the labeled antigen-antibody are reacted competitively with the antibody. The bound substance (B) is separated and its radioactivity is measured to determine the B/B+F value. At this time, an inverse correlation is established between the B/B+F value and the amount of unlabeled antigen. Therefore, when measuring the unlabeled antigen contained in a sample, add the labeled antigen and its antibody to a solution containing appropriate amounts of unlabeled antigen in advance and perform the same procedure as above to measure the known amount. Calculate the B/B+F (B/B 0 ) value for the unlabeled antigen and create a standard curve. Next, add the labeled antigen and its antibody to a sample containing an unknown amount of unlabeled antigen, and perform the above procedure. The content of unlabeled antigen in the sample can be determined by applying the B/B+F value obtained by the same operation to the above standard curve. Somatostatin contained in plasma has also been measured by the above method, but recent research has shown that when Tyr-somatostatin labeled with 125 I (hereinafter referred to as "labeled somatostatin") is mixed with plasma, It has been reported that somatostatin is degraded into In particular, in the RIA method, the immune reaction (antigen-antibody reaction) usually requires several reactions, but during this time labeled somatostatin is considerably degraded, making it impossible to accurately quantify somatostatin contained in plasma. . From the above viewpoint, various attempts have been made to accurately quantify somatostatin contained in plasma by suppressing the decomposition of labeled somatostatin. One of the representative attempts is to stabilize labeled somatostatin by first extracting somatostatin from plasma, removing substances that inhibit the stability of labeled somatostatin, and then using the somatostatin-containing extract in an immunoassay. There is a so-called indirect method that attempts to quantify somatostatin by subjecting it to . However, this indirect method requires an additional extraction operation, which does not meet the demands of the medical community that a large amount of samples must be processed quickly, and it is difficult to completely extract somatostatin from plasma. There is a problem with this. In addition, from a completely different perspective from this indirect method, without extracting somatostatin from plasma, various inhibitors are present in the reaction system during the immune reaction to stabilize labeled somatostatin, and somatostatin in plasma is stabilized. A so-called direct method has also been attempted to quantify the For example, Clinica Chimica Acta.
Vol. 87, pp. 275-283 (1978) and DIABETES, Vol. 27, No. 5, pp. 523-529 (1978), disclose that aprotinin (trasylol) and sodium ethylenediaminetetraacetate are added to plasma. A method has been reported in which the plasma is then subjected to the RIA method to quantify somatostatin. However, in this direct method, the inhibitor is not effective in stabilizing labeled somatostatin, and labeled somatostatin is still unstable in plasma, and it is inevitable that labeled somatostatin will be gradually degraded over time. It is not possible to accurately quantify somatostatin in In view of the current situation, the present inventors have conducted extensive research in order to develop a new method that can accurately quantify somatostatin in plasma by a direct method. As a result, it was discovered that by adjusting the pH to 4 to 5.5 in an immune reaction system containing plasma, labeled somatostatin was stabilized and no decomposition of labeled somatostatin was observed over a long period of time. The present invention was completed based on this knowledge. That is, the present invention is characterized in that when somatostatin present in blood is quantified by an immunoassay using 125 I-labeled Tyr-somatostatin as a labeled antigen, the immunoassay is carried out within a pH range of 4 to 5.5. Relates to a method for quantifying somatostatin. Tyr-somatostatin in the present invention has the following structure. According to the method of the present invention, labeled somatostatin can be stabilized for a long time during an immune reaction, that is, when labeled somatostatin is mixed with plasma, and therefore somatostatin in plasma can be accurately and reproducibly determined. Can be quantified. Furthermore, the method of the present invention does not require the operation of extracting somatostatin from plasma as in the conventional indirect method, and is therefore suitable for rapidly processing a large amount of samples. In the present invention, when quantifying somatostatin in plasma, labeled somatostatin, plasma containing somatostatin, and an immune reaction system containing these antibodies are used.
Adjust the pH to 4-5.5. A wide variety of conventionally known buffers can be used to adjust the pH, and such buffers may be used in an appropriate amount so that the pH of the immune reaction system is 4 to 5.5. Specifically, the buffering agent used is
Phthalate-sodium hydroxide buffer such as 0.2M potassium hydrogen phthalate-0.2M sodium hydroxide (PH4.8), 0.2M glycine-0.2M hydrochloric acid (PH4.8), etc.
Glycine-hydrochloric acid buffer such as 5.0), 0.2M acetic acid-
Acetic acid buffer such as 0.2M sodium acetate (PH4-5.2), 0.1M citric acid - 0.2M disodium hydrogen phosphate (PH5.4), 0.1M citric acid - 0.1M sodium citrate (PH4.4-5) ), 0.1M secondary sodium citrate - 0.1M hydrochloric acid (PH4-5), 0.1M primary potassium citrate - 0.1M sodium hydroxide (PH4-5)
Citric acid buffer such as 5.5), 0.2M succinic acid
Examples include succinic acid buffers such as 0.2M sodium hydroxide (PH4.4). In the present invention, amino acids commonly used in the immune response system, such as histidine, phenylalanine, arginine,
It is also possible to add tyrosine and the like. By adding amino acids, labeled somatostatin can be stabilized for a longer period of time, and somatostatin can be quantified with higher accuracy. The amount of amino acids to be added varies depending on the type of amino acid, etc., but it cannot be stated unconditionally, but it can be adjusted as appropriate within the range in which proteins such as somatostatin contained in plasma do not precipitate under the immunoassay conditions described below, and the amino acids precipitate appropriately. It is better to choose. Furthermore, in the present invention, gelatin, bovine serum albumin, sodium azide, sodium chloride, etc. may be appropriately selected for the immune reaction system. Taking the RIA method as an example, the procedure for quantifying somatostatin in plasma will be described in detail below. First, plasma is collected using a conventional method, and the plasma is separated using a centrifuge. Blood collection and plasma separation are usually preferably carried out in an atmosphere of about 4 to 30°C. A predetermined amount of labeled somatostatin, antiserum (antibody), a buffer, and components such as amino acids, if necessary, are added to the separated plasma, and the mixture is incubated usually at 4 to 37°C for about 1 to 100 hours. Next, the labeled somatostatin-antibody conjugate (B) and unbound somatostatin (F) are separated using conventional methods such as dextran charcoal method, dual antibody method, solid phase method, polyethylene glycol method, talc method, ammonium sulfate method, and ethanol method. etc., and their radioactivity is γ
- The B/B+F value is obtained by measuring using a counter, and the content of somatostatin in plasma is determined from a standard curve prepared in advance. Note that the creation of the standard curve is no different from the conventional method. Examples are given below to further clarify the present invention. Example 1 Production of Tyr-somatostatin labeled with 125 I Added 2 μg of Tyr-somatostatin (Protein Promotion Foundation) to 50 μg of 500 mM phosphate buffer (PH = 7.2) with stirring (in 0.2 M acetic acid and 0.2 M NaCl). 20 μl as a solution), then Na 125 I1 milliquiry (200 m
20μ as a solution in M phosphate buffer (PH=7.2))
Add 20μg of chloramine T (20μg as a solution in 50mM phosphate buffer (PH = 7.2) and incubate for 45 seconds. D,L-tyrosine 100μg (200μg)
100μ as a solution in mM phosphate buffer (PH=7.2)
) In addition, unreacted Na 125 I is consumed to stop the reaction. This reaction mixture was applied to a CM-Sephadex C-25 column [eluent: 0.13M-NaCl, 0.1w/
v%BSA (bovine serum albumin) in 50mM phosphate buffer (PH=6.8)] to obtain 125I -Tyr-somatostatin-labeled antigen. Example 2 Prepare a 50mM citric acid solution in 150mM NaCl, 0.1 w/v% BSA. Similarly, 150mM NaCl, 0.1
Prepare a 100 mM disodium phosphate solution of % BSA. Mix the two while measuring the pH with a PH meter to obtain a citric acid/phosphate buffer solution of 150mM NaCl and 0.1% BSA with a pH of 4.0. Similarly, obtain a citric acid/phosphate buffer solution of 150 mM NaCl and 0.1% BSA at pH 4.5. 0.1ml of normal human plasma in 0.5ml of the above PH4.0 buffer solution,
125 I-Tyr-somatostatin obtained in Example 1 above
0.1 ml of the above buffer (PH4.0) at 10,000 cpm and 0.1 ml of the above buffer (×70,000 final) of somatostatin antiserum (OAL272; see JP-A-16-16415)
and incubate at 4°C for 20 hours. Dextran charcoal powder (0.5% NoritA, 0.05%
Add 1 ml of the above PH4.0 buffer solution of Dextrane T-70 and incubate at 4°C for 1 hour at 8000 rpm15.
Centrifuge for minutes at 4°C. The supernatant and sediment were separated, radioactivity was measured using a γ-counter, and B/
Find the B+F (%) value. Let this be the value of day 0. Similarly, 0.1ml of normal human plasma in 0.5ml of pH4.0 buffer.
and 125 I-Tyr-somatostatin 10,000 cpm buffer solution (PH4.0) 0.1 ml was added and incubated at 4°C for 1 day.
Samples were incubated for 2 days, 3 days, 4 days, and 5 days, respectively, and frozen at -20°C. After thawing them in the same manner as above, somatostatin antiserum was added and incubated at 4°C for 20 hours.
BF is separated by the dextran charcoal method, radioactivity is measured, and each B/B+F value is determined. These values are taken as values after 1 day, 2 days, 3 days, 4 days, and 5 days. In the PH4.5 buffer solution, measurements were taken on day 0, day 1, day 2, and day 3 in the same manner as in the case of the buffer solution with pH 4.0.
The B/B+F values are determined after 1 day, 4 days, and 5 days. The results are shown in Figure 1. It can be seen from FIG. 1 that 125 I-Tyr-somatostatin is stable at PH4.0 and PH4.5. Comparative Example 1 150m at PH6.5 in the same manner as in Example 2
Obtain a citrate-phosphate buffer of MNaCl and 0.1% BSA. 0 in the same manner as in Example 2 using the buffer solution.
Find the B/B+F value after 5 days. The results are also shown in FIG. 1 above. Example 8 150mM NaCl, 100mM histidine, 0.1% BSA
Prepare a 50mM citric acid solution. 150mM NaCl, 100mM histidine, 0.1% BSA
Prepare a 100 mM disodium phosphate solution.
Mix the two while measuring the PH with a PH meter, and check the PH
5.5 150mM NaCl, 100mM histidine, 0.1%
Obtain BSA citrate/phosphate buffer. Using the buffer solution, the same procedure as in Example 2 was carried out on day 0, day 2, and day 4.
Find the B/B+F value after 1 day. The results are shown in Figure 2. Example 4 A 200mM citric acid solution of 100mM histidine, 0.1 gelatin, and 0.02% sodium azide was prepared,
Prepare a buffer solution by adjusting the pH to 5.0 with an aqueous sodium hydroxide solution while measuring the pH with a pH meter. 0.2ml of the above buffer with antiserum in 0.2ml of the above buffer
(OAL272 x 70,000 final), 0.2 ml of the above buffer containing 10,000 cpm of 125 -Tyr-somatostatin and a known amount of somatostatin (Protein Promotion Association)
Add 0.1 ml of the above buffer and incubate at 4°C for 72 hours. BF separation is performed in the same manner as in Example 2 using the dextran charcoal method to determine B/B 0 . Note that B 0 indicates the B value when the somatostatin concentration is 0. The standard curve shown in FIG. 8 is thus obtained. Example 5 In the same manner as in Example 4, a 200 mM citrate buffer with pH 5 of 100 mM histidine, 0.1% gelatin, and 0.02% sodium azide is prepared. Heparin (0.01
Collect 5 ml of blood (mg/ml). Separate plasma from each
Store at -20℃. In the same manner as in Example 4 above, 0.1 ml of the above plasma (specimen) is added instead of the known amount of somatostatin, immune reaction and BF separation are performed, and B/B 0 is calculated. The somatostatin concentration of the sample is determined from the standard curve of Example 4. The results are shown in Table 1 below. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はインキユベートした日数と
B/B+F(%)との関係を示すグラフである。
第3図はソマトスタチン濃度とB/B0(%)との
関係を示すグラフである。
FIGS. 1 and 2 are graphs showing the relationship between the number of days of incubation and B/B+F (%).
FIG. 3 is a graph showing the relationship between somatostatin concentration and B/B0 (%).

Claims (1)

【特許請求の範囲】[Claims] 125Iで標識されたTyr−ソマトスタチンを標
識抗原として用いる免疫測定法により血液中に存
在するソマトスタチンを定量するに際し、PH4〜
5.5の範囲内で免疫測定を行なうことを特徴とす
るソマトスタチンの定量法。
1 When quantifying somatostatin present in blood by immunoassay using 125 I-labeled Tyr-somatostatin as a labeled antigen, PH4-
A method for quantifying somatostatin, characterized by performing immunoassay within a range of 5.5.
JP4784381A 1981-03-31 1981-03-31 Quantitative determination for somatostatin Granted JPS57161651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4784381A JPS57161651A (en) 1981-03-31 1981-03-31 Quantitative determination for somatostatin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4784381A JPS57161651A (en) 1981-03-31 1981-03-31 Quantitative determination for somatostatin

Publications (2)

Publication Number Publication Date
JPS57161651A JPS57161651A (en) 1982-10-05
JPH0122903B2 true JPH0122903B2 (en) 1989-04-28

Family

ID=12786643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4784381A Granted JPS57161651A (en) 1981-03-31 1981-03-31 Quantitative determination for somatostatin

Country Status (1)

Country Link
JP (1) JPS57161651A (en)

Also Published As

Publication number Publication date
JPS57161651A (en) 1982-10-05

Similar Documents

Publication Publication Date Title
Ghazal et al. Hormone immunoassay interference: a 2021 update
DE3783928T2 (en) METHOD FOR IMMUNOASSAY.
FI67760C (en) FOERFARANDE FOER BESTAEMNING AV CONCENTRATIONS AV EN FRI LIGAND FRAON EN BIOLOGISK VAETSKA
Fahrenkrug et al. Radioimmunoassay of vasoactive intestinal polypeptide (VIP) in plasma
Tunn et al. Simultaneous measurement of cortisol in serum and saliva after different forms of cortisol administration
Endres et al. Immunochemiluminometric and immunoradiometric determinations of intact and total immunoreactive parathyrin: performance in the differential diagnosis of hypercalcemia and hypoparathyroidism
Soldin et al. Trimester-specific reference intervals for thyroxine and triiodothyronine in pregnancy in iodine-sufficient women using isotope dilution tandem mass spectrometry and immunoassays
Sainio et al. Radioimmunoassay of total and free corticosterone in rat plasma: measurement of the effect of different doses of corticosterone
Lapčı́k et al. Immunoassay of 7-hydroxysteroids: 1. Radioimmunoassay of 7β-hydroxy dehydroepiandrosterone
McConway et al. Development and evaluation of a simple, direct, solid-phase radioimmunoassay of serum cortisol from readily available reagents
Dechaud et al. New approach to competitive lanthanide immunoassay: time-resolved fluoroimmunoassay of progesterone with labeled analyte.
JPH0780913B2 (en) Selective Immunoassay for Completely Intact Pla-collagen Peptide (Type III) and Procollagen (Type III)
DE68914252T2 (en) Method of determining an antigen.
JP3490715B2 (en) Method for detecting hemoglobin-promoting glucosylated end products
Dokoh et al. Development of a radioligand immunoassay for 1, 25-dihydroxycholecalciferol receptors utilizing monoclonal antibody
JPH0122903B2 (en)
Skovsted Radioimmunoassays of T3, r‐T3 and r‐T2 in Human Serum
AUDRAN et al. Transient hypoparathyroidism induced by synthetic human parathyroid hormone-(1–34) treatment
CA1245552A (en) Determination of steroid hormone glucuronides
JPS637621B2 (en)
Bodola et al. Rapid, simplified radioimmunoassay of arginine-vasopressin and atrial natriuretic peptide in plasma.
JPH07110879B2 (en) Monoclonal antibody
EP0100395B1 (en) Reagent for determination of human urine kallikrein
Mattox et al. Determination of urinary tetrahydroaldosterone glucosiduronic acid by radioimmunoassay
JP2925601B2 (en) New antigen assay