JPH01229026A - Aromatic polyisocyanate and its production - Google Patents

Aromatic polyisocyanate and its production

Info

Publication number
JPH01229026A
JPH01229026A JP63055043A JP5504388A JPH01229026A JP H01229026 A JPH01229026 A JP H01229026A JP 63055043 A JP63055043 A JP 63055043A JP 5504388 A JP5504388 A JP 5504388A JP H01229026 A JPH01229026 A JP H01229026A
Authority
JP
Japan
Prior art keywords
group
aromatic polyisocyanate
formula
reaction
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63055043A
Other languages
Japanese (ja)
Other versions
JP2581736B2 (en
Inventor
Kiyoshi Yotsuumi
四海 潔
Ryuji Haseyama
龍二 長谷山
Kozo Hayashi
林 耕造
Katsuyoshi Sasagawa
勝好 笹川
Teruhiro Yamaguchi
彰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63055043A priority Critical patent/JP2581736B2/en
Priority to KR1019890002889A priority patent/KR930000374B1/en
Publication of JPH01229026A publication Critical patent/JPH01229026A/en
Priority to US07/773,787 priority patent/US5171468A/en
Application granted granted Critical
Publication of JP2581736B2 publication Critical patent/JP2581736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F18/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PURPOSE:To obtain the title novel isocyanate which is useful as a starting substance for polyurethane resins or polyurea resins which is used in foams, elastomer, synthetic leather or adhesive, by reaction of phosgen with a specific aromatic resin or its salt. CONSTITUTION:The reaction of phosgen with an aromatic amine resin of formula I (A is phenylene, alkylene, alkyl-substituted phenylene, diphenylene, diphenyl ether, naphthynyl; R1 is H, halogen, 1-4C alkoxy, 1-5C alkyl; 1 is 1, 2; m is 0-3; n is 0-300) or its salt gives the subject polyisocyanate of formula II.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、芳香族ポリイソシアナートおよびその製造方
法に関する0本発明のイソシアナートは新規な構造のポ
リイソシアネートであり、ポリウレタン樹脂やポリウレ
ア樹脂の原料として発泡体、弾性体、合成皮革、接着剤
、フィルム等多方面に使用する事が出来る。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an aromatic polyisocyanate and a method for producing the same. As a raw material, it can be used in a variety of ways, including foams, elastic bodies, synthetic leather, adhesives, and films.

(従来の技術) 芳香族ポリイソシアナートとして従来より公知のものは
一般式(e)で示される、ポリフェニルメタンポリイソ
シアナート所謂 P−MDI がよく知られ、ポリウレタン樹脂、ポリウ
レア樹脂の原料として多方面に使用されている。
(Prior Art) A well-known aromatic polyisocyanate is polyphenylmethane polyisocyanate (P-MDI) represented by the general formula (e), which is widely used as a raw material for polyurethane resins and polyurea resins. It is used in the direction.

(発明が解決しようとする課題) 本発明は、上記P−MDI とは構造の全(異なる、ポ
リウレタン樹脂、ポリウレア樹脂等の原料として新たな
用途が期待される、新規な芳香族ポリイソシアナートを
提供する事を課題としている。
(Problems to be Solved by the Invention) The present invention is directed to a novel aromatic polyisocyanate which is expected to find new uses as a raw material for polyurethane resins, polyurea resins, etc. The challenge is to provide.

(課題を解決するための手段および作用)本発明者らは
、上記した課題を達成するために鋭を検討した結果、特
定の構造を有する芳香族アミン樹脂又はその塩を用いる
ことによって本発明の課題が達成されることを見出し、
本発明を完成させるに至った。
(Means and effects for solving the problem) As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the present invention can be achieved by using an aromatic amine resin having a specific structure or a salt thereof. finding that the task can be accomplished,
The present invention has now been completed.

すなわち、本発明は、 一般式(a) (式中、Aはフェニレン基、アルキレン基、アルキル置
換フェニレン基、ジフェニレン基、ジフェニルエーテル
基又はナフチレニル基を示し、R3は水素原子、ハロゲ
ン原子、炭素数4以下の低級アルコキシ基又は炭素数5
以下の低級アルキル基を示し、かつR2は互いに同一で
あっても異なってもよく、環を形成してもよい、lはl
又は2を示し1、は0〜3の整数を示し、7は0〜30
0の整数を示す、)で表される芳香族ポリイソシアナー
トであり、更には、 一般式(b) (式中、^、R1、l、11、Rは請求項1に記載のも
のと同し) で表される芳香族アミン樹脂又はその塩とホスゲンを反
応させることを特徴とする一般式(a)で示される芳香
族ポリイソシアナートの製造方法である。
That is, the present invention is based on the general formula (a) (wherein A represents a phenylene group, an alkylene group, an alkyl-substituted phenylene group, a diphenylene group, a diphenyl ether group, or a naphthylenyl group, and R3 is a hydrogen atom, a halogen atom, or has a carbon number of 4 The following lower alkoxy group or carbon number 5
represents the following lower alkyl group, R2 may be the same or different from each other, and may form a ring; l is l
or 2, 1 represents an integer from 0 to 3, and 7 represents an integer from 0 to 30.
It is an aromatic polyisocyanate represented by the general formula (b) (in which ^, R1, 1, 11, and R are the same as those described in claim 1). (b) A method for producing an aromatic polyisocyanate represented by the general formula (a), which comprises reacting an aromatic amine resin represented by the following or a salt thereof with phosgene.

一般式(b)で表される芳香族アミン樹脂は最近開発さ
れたばかりの全く新規の化合物であり、その性状および
製造法は、特願昭62−252517号および特願昭6
2−282048号に詳細に記述されている。
The aromatic amine resin represented by the general formula (b) is a completely new compound that was recently developed, and its properties and manufacturing method are disclosed in Japanese Patent Application No. 62-252517 and Japanese Patent Application No. 6
2-282048.

本発明の一般式(a)で表される芳香族ポリイソシアナ
ートの製法について述べる。
The method for producing the aromatic polyisocyanate represented by the general formula (a) of the present invention will be described.

本発明の芳香族ポリイソシアナートは前述の一噴弐(b
)で表される芳香族アミン樹脂を直接ホスゲンと反応さ
せる方法、又は、−tC式(b)で表される芳香族アミ
ン樹脂の塩酸塩等の塩を予め合成し、これを不活性溶媒
中にQiさせてホスゲンと反応させる方法によって製造
される。
The aromatic polyisocyanate of the present invention is
) A method of directly reacting an aromatic amine resin represented by formula (b) with phosgene, or a method of synthesizing a salt such as a hydrochloride of an aromatic amine resin represented by -tC formula (b) in advance and reacting it in an inert solvent. It is produced by a method of allowing Qi to react with phosgene.

前者の方法は”冷熱二段ホスゲン化″と呼ばれ、反応の
実施態様は特に限定はないが、−Sにはホスゲンガス導
入管を備えた反応系内が充分に撹拌可能な反応器に不活
性溶媒の存在下、反応系内を0〜5°Cに冷却しホスゲ
ンガスを導入し、ホスゲンを不活性溶媒に所定!溶解さ
せ、その後、所定量のホスゲンガスを導入しながら不活
性溶媒に溶解した上記芳香族アミン樹脂?8液を添加す
る。この間反応液の温度を15°C以下に保ち、発生す
る塩化水素と過剰ホスゲンは還流冷却器を通して逃がす
0反応器内容物はスラリ状となる。主反応はカルバミル
クロリドおよびアミン塩酸塩の生成である。アミン溶液
の添加後、所定時間反応を続ける。
The former method is called "cold-thermal two-stage phosgenation," and there are no particular limitations on the implementation of the reaction. In the presence of a solvent, the inside of the reaction system is cooled to 0 to 5°C, phosgene gas is introduced, and phosgene is used as an inert solvent! The above aromatic amine resin was dissolved and then dissolved in an inert solvent while introducing a predetermined amount of phosgene gas. Add 8 liquids. During this time, the temperature of the reaction solution is kept below 15°C, and the generated hydrogen chloride and excess phosgene are released through a reflux condenser.The contents of the reactor become slurry. The main reactions are the production of carbamyl chloride and amine hydrochloride. After addition of the amine solution, the reaction is continued for a predetermined period of time.

以上を冷ホスゲン化と称する。The above process is called cold phosgenation.

次に反応系内を過熱し約1時間で140°Cに昇温する
。昇温時には熔解ホスゲンが気化して泡立ちやすいので
、冷ホスゲン化時に比較してホスゲン流量を所定量に減
少させる。昇温後、所定時間反応を続ける。スラリか完
全に溶解すれば反応終了とする0以上を熱ホスゲン化と
称する。なお熱ホスゲン化の主反応はカルバミルクロリ
ドのイソシアナートへの分解とアミン塩酸塩のイソシア
ナートへのホスゲン化である。
Next, the reaction system was heated to 140°C in about 1 hour. Since dissolved phosgene tends to vaporize and foam when the temperature is raised, the phosgene flow rate is reduced to a predetermined amount compared to when cold phosgenation is performed. After raising the temperature, the reaction is continued for a predetermined period of time. If the slurry is completely dissolved, the reaction is complete, and a reaction of 0 or more is called thermal phosgenation. The main reactions of thermal phosgenation are decomposition of carbamyl chloride to isocyanate and phosgenation of amine hydrochloride to isocyanate.

熱ホスゲン化終了後、反応系内を160’cに加熱し窒
素ガスを所定量吹き込み、溶解ガスを除き、未反応のカ
ルバミルクロリドの分解を充分に行う。
After the completion of thermal phosgenation, the inside of the reaction system is heated to 160'C and a predetermined amount of nitrogen gas is blown into the reaction system to remove dissolved gas and sufficiently decompose unreacted carbamyl chloride.

次いで冷却後、減圧上不活性溶媒を留去し芳香族ポリイ
ソシアナートを得る。
After cooling, the inert solvent is distilled off under reduced pressure to obtain aromatic polyisocyanate.

後者の方法は”アミン塩酸塩のホスゲン化法”と呼ばれ
るもので、予め上記芳香族アミン樹脂の塩酸塩を合成す
る。塩酸塩の合成法は周知の方法で、芳香族アミン樹脂
を塩化水素又は濃塩酸と処理する事により容易に得られ
る。充分に乾燥し、微粉砕化された上記の芳香族アミン
塩酸塩を前述の”冷熱二段ホスゲン化法”で用いたのと
同様な反応器内で不活性溶媒に分散させ、反応温度を8
0〜150°Cに維持し、ホスゲンガスを導入しイソシ
アナートを合成する0反応の進行は、発生する塩化水素
のガスの量と原料の不活性溶媒に不溶の芳香族アミン塩
酸塩が消失し、反応液が透明均一になる事により推測で
きる0発生する塩化水素と過剰のホスゲンガスは還流冷
却器を通して逃がす。
The latter method is called "amine hydrochloride phosgenation method," and the hydrochloride of the aromatic amine resin is synthesized in advance. The hydrochloride is easily synthesized by a well-known method by treating an aromatic amine resin with hydrogen chloride or concentrated hydrochloric acid. The above aromatic amine hydrochloride, which has been thoroughly dried and pulverized, is dispersed in an inert solvent in a reactor similar to that used in the above-mentioned "cold-hot two-stage phosgenation method", and the reaction temperature is raised to 8.
The progress of the reaction, which is maintained at 0 to 150°C and synthesizes isocyanate by introducing phosgene gas, is due to the amount of hydrogen chloride gas generated and the disappearance of the aromatic amine hydrochloride that is insoluble in the inert solvent as a raw material. The generated hydrogen chloride and excess phosgene gas, which can be inferred by the fact that the reaction solution becomes transparent and homogeneous, are released through a reflux condenser.

反応終了後に反応溶媒中に窒素ガスを導入し溶存してい
るホスゲンを除き、冷却後濾過した後、不活性溶媒を減
圧上留去し芳香族ポリイソシアナートを得る。
After the reaction is completed, nitrogen gas is introduced into the reaction solvent to remove dissolved phosgene, and after cooling and filtration, the inert solvent is distilled off under reduced pressure to obtain aromatic polyisocyanate.

導入するホスゲンの量は”冷熱二段ホスゲン化法°及び
”アミン塩酸塩のホスゲン化法”弁理論量の3倍から1
0倍量用いれば充分である。又不活性溶媒としては芳香
族炭化水素または塩素化芳香族炭化水素であり、好まし
くはオルトジクロルベンゼンである。
The amount of phosgene to be introduced is 3 to 1 times the theoretical amount of the “cold-heat two-stage phosgenation method” and the “amine hydrochloride phosgenation method”.
It is sufficient to use 0 times the amount. The inert solvent is an aromatic hydrocarbon or a chlorinated aromatic hydrocarbon, preferably orthodichlorobenzene.

(実施例) 以下、実施例により本発明を具体的に説明する。(Example) Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例は一般式(a)に於いて特にAがp−フェニレン
基、R3が水素原子、lであるポリパラキシリレンポリ
フェニルポリイソシアナート (C)について記述する
が、本発明は以下 (c) の実施例のみに限定されるものではない。
Examples will be particularly described for polyparaxylylene polyphenyl polyisocyanate (C) in which A is a p-phenylene group, R3 is a hydrogen atom, and l in the general formula (a). ) is not limited to the examples.

(実施例1) −C式(b)“で示されるポリバラキシリレンポリアリ
ニンを (b)゛ 原料としてホスゲン化を行った。原料のポリアニリン梼
脂の分子量分布はGPCカラムによる高速液体クロマト
グラフィーにより組成分析した結果、一般式(b)°の
n−0は76.3wtχ、n−1は18.7wt%、n
=2は4.3wt%、n−=3以上はQ、7wt%であ
り、平均分子量は約350、過塩素酸−氷酢酸法による
この樹脂のアミン当量は0.653eq/100 gで
あった。撹拌後、温度計、ホスゲンガス導入管、冷却管
、滴下ロートを装備した21反応フラスコにオルトジク
ロルベンゼン682gを装入し、撹拌下、反応フラスコ
を氷水浴につけ内温を1〜2°Cにし、ホスゲンガスを
too g /時の割合で導入した0次いでオルトジク
ロルベンゼン704gに溶解した上記ポリアニリン樹脂
100gを45分間で滴下した0滴下時も100 g 
/時の割合でホスゲンガスを導入した。この時の温度は
2〜8°C2更に30分間ホスゲンガスを100g/時
の割合で導入しながら4〜5 ”Cで冷ホスゲン化を行
った。冷ホスゲン化により反応フラスコ内はカルバミル
クロリドとアミン塩酸塩の生成により黄緑色のスラリ状
を呈した0次いで反応フラスコをマントルヒーターによ
り過熱を行い、約45分間で140’cまで昇温した。
(Example 1) Phosgenation was carried out using polyvaraxylylene polyalinine represented by formula (b) -C as a raw material (b). The molecular weight distribution of the polyaniline resin as a raw material was determined by high performance liquid chromatography using a GPC column. As a result of compositional analysis, n-0 of general formula (b)° is 76.3wtχ, n-1 is 18.7wt%, n
=2 is 4.3 wt%, n-=3 or more is Q, 7 wt%, the average molecular weight is about 350, and the amine equivalent of this resin by the perchloric acid-glacial acetic acid method was 0.653 eq/100 g. . After stirring, 682 g of orthodichlorobenzene was charged into a 21 reaction flask equipped with a thermometer, phosgene gas introduction tube, cooling tube, and dropping funnel, and while stirring, the reaction flask was placed in an ice water bath to bring the internal temperature to 1 to 2 °C. Then, 100 g of the above polyaniline resin dissolved in 704 g of orthodichlorobenzene was added dropwise over 45 minutes.
Phosgene gas was introduced at a rate of /h. At this time, the temperature was 2 to 8°C2.Cold phosgenation was carried out at 4 to 5"C while introducing phosgene gas at a rate of 100 g/hour for another 30 minutes. Due to the cold phosgenation, carbamyl chloride and amine were present in the reaction flask. The reaction flask, which had formed a yellow-green slurry due to the formation of hydrochloride, was then heated using a mantle heater, and the temperature was raised to 140'C in about 45 minutes.

昇温時も100 g /時の割合でホスゲンガスを導入
した、昇温の過程でスラリは激しく塩化水素カスを出し
ながらオルトジクロルベンゼンに完溶した。
During the temperature rise, phosgene gas was introduced at a rate of 100 g/hour. During the temperature rise, the slurry completely dissolved in ortho-dichlorobenzene while generating hydrogen chloride residue.

更に140”Cの状態でtoog/時の割合でホスゲン
ガスを導入しながら熱ホスゲン化を行った。冷熱二段ホ
スゲン化で合計525gのホスゲンガスを導入した。こ
れは理論量の8.1倍であった0次いで反応液を160
°Cまで昇温後、2時間窒素ガスを500a+f/分の
割合で導入し、溶存ガスを除き、又未反応のカルバミル
クロリドを充分に分解した。
Furthermore, thermal phosgenation was carried out at 140"C while introducing phosgene gas at a rate of toog/hour. A total of 525 g of phosgene gas was introduced in the cold and hot two-stage phosgenation. This was 8.1 times the theoretical amount. Then, the reaction solution was heated to 160 ml.
After raising the temperature to °C, nitrogen gas was introduced at a rate of 500 a+f/min for 2 hours to remove dissolved gas and to sufficiently decompose unreacted carbamyl chloride.

冷却後、僅かの不溶物を濾過して除いて、減圧下(約1
mmHg)オルトジクロルベンゼンを留去し、ポリパラ
キシリレンボリフェニルボリイソンアナ−) 119.
8gを得た0分析結果はNC0%23.5%(理論値2
3.5%)、加水分解性塩素0 、28w t%、酸分
0.063%、残存0DCBは47 ppmであった。
After cooling, a small amount of insoluble matter was removed by filtration, and the mixture was heated under reduced pressure (approximately 1
119.
The analysis result of 8g obtained is NC0%23.5% (theoretical value 2
3.5%), hydrolyzable chlorine was 0.28 wt%, acid content was 0.063%, and residual 0DCB was 47 ppm.

なお、この芳香族ポリイソシアナートのIR分析の結果
を第1図に示した。
The results of IR analysis of this aromatic polyisocyanate are shown in FIG.

実施例2 実施例1で得られた芳香族ポリイソシアナート30gを
減圧蒸留の操作で精製を行った。沸点210〜220 
’C/ 0.2 mmHg、奈留フラスコの油浴/!!
 220〜240°Cで黄色透明液体約20gを得た。
Example 2 30 g of the aromatic polyisocyanate obtained in Example 1 was purified by vacuum distillation. Boiling point 210-220
'C/ 0.2 mmHg, Naru flask oil bath/! !
Approximately 20 g of a yellow transparent liquid was obtained at 220-240°C.

この液状物は速やかに固化して融点45〜48°Cの結
晶になった。この液状物は実施例1で得られた芳香族ポ
リイソシアナート−s式(C)に於いてn=0のパラキ
シリレンジフェニルイソシアナートである事が以下の示
す分析の結果明らかとなった。
This liquid material quickly solidified into crystals with a melting point of 45-48°C. As a result of the analysis shown below, it was revealed that this liquid was paraxylylene diphenyl isocyanate in which n=0 in the aromatic polyisocyanate-s formula (C) obtained in Example 1.

・元素分析(CzzLaNtO□) HN 計算値(χ)  ?7.63  4.74  8.23
分析(+!(χ)  77.86  4.35  8.
25・NC0% 分析値24.65%(計算値24.6
9%)・IR第2図 ・HNMR(CDCl3.7M5) ppm63.92
 (4H−CH,−x2 )7.10 (12)I  
Ph−H,X3 )実施例3 実施例1と同様に一般式(b)゛で示されるポリパラキ
シリレンポリアニリンを原料としてホスゲン化を行った
。原料のポリアニリン樹脂の分子量分布は、実施例1と
同様な組成分析によれば、n−〇は56.5wt%、n
=1は26.5wt%、n=2は10.1−t%、n=
3は5.5wt%、n==4は1.3wt%であり、平
均分子量は約423、過塩素酸−氷酢酸法によるこの樹
脂のアミン当量は0.633eq/100 gであった
。このポリアニリン樹脂100gをオルトジクロルベン
ゼン704gに溶解し、実施例1と同様の方法でホスゲ
ン化を行った。冷熱二段ホスゲン化で合計400gのホ
スゲンガスを導入した。これは理論量の6.4倍であっ
た0次いで反応液から溶存ガスを除き、又、カルバミル
クロリドを充分に分解した。冷却後、ろ過を行い、次い
で減圧下にオルトジクロルベンゼンを留去し、ボリパラ
キシリレンボリフェニルボリイソシアナー) 103.
5 gを得た0分析したところ、NC0%23.1%、
加水分解性塩素0.41wt%、酸分0.10%であっ
た。
・Elemental analysis (CzzLaNtO□) HN calculated value (χ)? 7.63 4.74 8.23
Analysis (+!(χ) 77.86 4.35 8.
25・NC0% Analysis value 24.65% (calculated value 24.6
9%)・IR Figure 2・HNMR (CDCl3.7M5) ppm63.92
(4H-CH,-x2)7.10 (12)I
Ph-H, According to the same compositional analysis as in Example 1, the molecular weight distribution of the raw material polyaniline resin was 56.5 wt%, n-
=1 is 26.5wt%, n=2 is 10.1-t%, n=
3 was 5.5 wt%, n==4 was 1.3 wt%, the average molecular weight was about 423, and the amine equivalent of this resin by the perchloric acid-glacial acetic acid method was 0.633 eq/100 g. 100 g of this polyaniline resin was dissolved in 704 g of orthodichlorobenzene, and phosgenation was performed in the same manner as in Example 1. A total of 400 g of phosgene gas was introduced in the cold and hot two-stage phosgenation. This amount was 6.4 times the theoretical amount.Next, dissolved gas was removed from the reaction solution, and carbamyl chloride was sufficiently decomposed. After cooling, filtration is performed, and then orthodichlorobenzene is distilled off under reduced pressure to obtain polyparaxylylene polyphenyl polyisocyaner) 103.
Upon analysis of the obtained 5 g, NC0% 23.1%,
The hydrolyzable chlorine content was 0.41 wt% and the acid content was 0.10%.

(発明の効果) 本発明に方法によって得られる芳香族ポリイソシアナー
トは、従来より知られていない全く新規な化合物であり
、ポリウレタン樹脂、ポリウレア樹脂等の原料として新
規な用途が期待される。又この芳香族ポリイソンアナー
トから高真空茎留等の操作で、−S式(a)に於いてA
がp−フェニレン基、R1が水素原子、1.nがOの比
較的低分子の芳香族ポリイソンアナート(芳香族ジイソ
ンアナート)が得られ、これも全く新規な化合物であり
新しい用途が期待される。
(Effects of the Invention) The aromatic polyisocyanate obtained by the method of the present invention is a completely new compound that has not been previously known, and is expected to find new uses as a raw material for polyurethane resins, polyurea resins, etc. In addition, by operations such as high vacuum distillation from this aromatic polyisoneanate, A in -S formula (a) can be obtained.
is a p-phenylene group, R1 is a hydrogen atom, 1. A relatively low-molecular aromatic polyisonanate (aromatic diisonanate) in which n is O is obtained, and this is also a completely new compound and is expected to have new uses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1におけるポリパラキシリレンポリフェ
ニルポリイソシアナートのIRチャートであり、第2図
は実施例2におけるパラキシリレンジフェニルイソシア
ナートのIRチャートである。 特許出願人  三井東圧化学株式会社 Δ直重 (η) 迭及率(’/e)
FIG. 1 is an IR chart of polyparaxylylene polyphenyl polyisocyanate in Example 1, and FIG. 2 is an IR chart of paraxylylene diphenyl isocyanate in Example 2. Patent applicant: Mitsui Toatsu Chemical Co., Ltd. ΔNaoshige (η) Reference rate ('/e)

Claims (4)

【特許請求の範囲】[Claims] (1)一般式(a) ▲数式、化学式、表等があります▼(a) (式中、Aはフェニレン基、アルキレン基、アルキル置
換フェニレン基、ジフェニレン基、ジフェニルエーテル
基又はナフチレニル基を示し、R_1は水素原子、ハロ
ゲン原子、炭素数4以下の低級アルコキシ基又は炭素数
5以下の低級アルキル基を示し、かつR_1は互いに同
一であっても異なってもよく、環を形成してもよい。_
lは1又は2を示し、_mは0〜3の整数を示し、_n
は0〜300の整数を示す。)で表される芳香族ポリイ
ソシアナート。
(1) General formula (a) ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (a) (In the formula, A represents a phenylene group, an alkylene group, an alkyl-substituted phenylene group, a diphenylene group, a diphenyl ether group, or a naphthylenyl group, and R_1 represents a hydrogen atom, a halogen atom, a lower alkoxy group having 4 or less carbon atoms, or a lower alkyl group having 5 or less carbon atoms, and R_1 may be the same or different from each other, and may form a ring._
l represents 1 or 2, _m represents an integer from 0 to 3, _n
represents an integer from 0 to 300. ) aromatic polyisocyanate.
(2)一般式(b) ▲数式、化学式、表等があります▼(b) (式中、A、R_1、_l、_m、_nは請求項1に記
載のものと同じ) で表される芳香族アミン樹脂又はその塩とホスゲンを反
応させることを特徴とする一般式(a)で示される芳香
族ポリイソシアナートの製造方法。
(2) General formula (b) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (b) (In the formula, A, R_1, _l, _m, _n are the same as those described in claim 1) Fragrance represented by A method for producing an aromatic polyisocyanate represented by the general formula (a), which comprises reacting a group amine resin or a salt thereof with phosgene.
(3)Aがp−フェニレン基、R_1が水素原子、_l
が1である請求項1に記載の芳香族ポリイソシアナート
(3) A is p-phenylene group, R_1 is hydrogen atom, _l
The aromatic polyisocyanate according to claim 1, wherein is 1.
(4)nが0である請求項3に記載の芳香族ポリイソシ
アナート。
(4) The aromatic polyisocyanate according to claim 3, wherein n is 0.
JP63055043A 1988-03-10 1988-03-10 Aromatic polyisocyanate and method for producing the same Expired - Lifetime JP2581736B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63055043A JP2581736B2 (en) 1988-03-10 1988-03-10 Aromatic polyisocyanate and method for producing the same
KR1019890002889A KR930000374B1 (en) 1988-03-10 1989-03-09 Process for producing aromatic polyisocyanate
US07/773,787 US5171468A (en) 1988-03-10 1991-10-11 Aromatic polyisocyanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63055043A JP2581736B2 (en) 1988-03-10 1988-03-10 Aromatic polyisocyanate and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01229026A true JPH01229026A (en) 1989-09-12
JP2581736B2 JP2581736B2 (en) 1997-02-12

Family

ID=12987639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63055043A Expired - Lifetime JP2581736B2 (en) 1988-03-10 1988-03-10 Aromatic polyisocyanate and method for producing the same

Country Status (2)

Country Link
JP (1) JP2581736B2 (en)
KR (1) KR930000374B1 (en)

Also Published As

Publication number Publication date
KR890014594A (en) 1989-10-24
JP2581736B2 (en) 1997-02-12
KR930000374B1 (en) 1993-01-16

Similar Documents

Publication Publication Date Title
JPH03118368A (en) Preparation of polyisocyanate containing urethodione
JPH02341B2 (en)
CA1116621A (en) Preparation of organic mono- and poly- isocyanates
US3250796A (en) 4-isocyanatophenyl naphthylmethanes
US3264336A (en) Purification of isocyanates by reduction of the hydrolyzable chlorine and acid content
US3920644A (en) Process for preparing halogen-containing organic isocyanates
US2908704A (en) Process of preparing isocyanates
US4597909A (en) Process for the production of polyisocyanates
JPH025754B2 (en)
JPH01229026A (en) Aromatic polyisocyanate and its production
JP3198827B2 (en) Isocyanate group-containing silicon compound and method for producing the same
US3322812A (en) Alkyl isocyanatoalkyl carbonates
JPS5918722A (en) Polyisocyanurate salts and manufacture
US3410866A (en) Isocyanates of selected fluoroalkylimidazolines
JPH09216860A (en) Production of ether isocyanate
US3282975A (en) Process for producing stable, undistilled tolylene diisocyanate compositions
US3551469A (en) 1,3,5-cyclohexane triisocyanate
US5171468A (en) Aromatic polyisocyanate
JPH07316122A (en) Production of methylene-crossliked polyphenylene polyisocyanate
US3649687A (en) 1 3 5-cyclohexane tricarbonyl chloride
JP3163532B2 (en) Aromatic diisocyanate
JP3223781B2 (en) Aromatic diisocyanate
JPS5839151B2 (en) Production method of aliphatic isocyanate
JPH11310567A (en) Production of aliphatic isocyanate compound
JP2548343B2 (en) Aliphatic triisocyanate compound and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12