JPH01228539A - Formation of built-up film - Google Patents

Formation of built-up film

Info

Publication number
JPH01228539A
JPH01228539A JP63054680A JP5468088A JPH01228539A JP H01228539 A JPH01228539 A JP H01228539A JP 63054680 A JP63054680 A JP 63054680A JP 5468088 A JP5468088 A JP 5468088A JP H01228539 A JPH01228539 A JP H01228539A
Authority
JP
Japan
Prior art keywords
film
substrate
liquid
monomolecular film
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63054680A
Other languages
Japanese (ja)
Inventor
Tsutomu Miyasaka
力 宮坂
Narikazu Hashimoto
斉和 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP63054680A priority Critical patent/JPH01228539A/en
Publication of JPH01228539A publication Critical patent/JPH01228539A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • B05D1/202Langmuir Blodgett films (LB films)
    • B05D1/206LB troughs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation Of Insulating Films (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To cover a solid base plate with a superthin film by separating a solid base plate in contact with the monomolecular film of amphiphilic organic molecules from the surface of a liquid inclined at an angle of 0-15 deg. to a gas- liquid surface. CONSTITUTION:A base plate 1 is attached from within a gas phase to the monomolecular film 2 of organic molecules preformed on the surface of a liquid approximately parallel to the liquid surface. The surface of the base plate 1 is then inclined at a small angle theta(0 deg.<theta<15 deg.) to a gas-liquid surface to thereby separate the base plate 1 from the liquid surface. The aforesaid inclination angle may be kept constant or gradually changed during the separation process. In the case of an aqueous phase instead of the liquid phase, the second layer 2 of the monomolecular film is formed in this process on the surface of the base plate with its hydrophilic group facing the same. Preferably, the separation speed is not more than 5mm/min. in terms of the moving speed in the vertical direction to the gas-liquid surface of the base plate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機超薄膜の形成方法に関し、特に分子配向を
もった有機超薄膜を短時間に基板上に累積する技術に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming an organic ultra-thin film, and more particularly to a technique for accumulating an organic ultra-thin film with molecular orientation on a substrate in a short time.

(従来の技術) 気−液界面に形成された両親媒性分子の単分子膜を固体
基板上に移し取る方法はすでに1930年代にLang
miuir  とBlodgettにより構築され、L
angmiutr −Blodgett法もしくは垂直
浸漬法と呼ばれている。また、このような方法で基板上
に被覆された単分子膜(m’onolayer)や累積
膜(multi 1ayer)は一般にL−B膜と称さ
れ、有機超薄膜の代表として利用されている。このよう
に形成された有機超薄膜のニーズは、半導体素子用の絶
縁薄膜、非線型光学材料用薄膜、センサー用の機能性薄
膜、あるいは磁気記録材料の表面保護膜など広い分野に
及んでおり、有機分子のもつ配向性や膜の超薄性といっ
た他の成膜方法では得がたい特徴がうまく利用されてい
る。
(Prior art) A method for transferring a monomolecular film of amphiphilic molecules formed at a gas-liquid interface onto a solid substrate was already developed in the 1930s by Lang
Constructed by miuir and Blodgett, L
It is called the angmiutr-Blodgett method or the vertical immersion method. Further, a monolayer (m'onolayer) or a cumulative layer (multilayer) coated on a substrate using such a method is generally referred to as an LB film, and is used as a representative organic ultra-thin film. The needs for organic ultra-thin films formed in this way span a wide range of fields, including insulating thin films for semiconductor devices, thin films for nonlinear optical materials, functional thin films for sensors, and surface protective films for magnetic recording materials. This method successfully takes advantage of features that are difficult to obtain with other film formation methods, such as the orientation of organic molecules and the ultra-thinness of the film.

しかしながら、製膜の簡便さ、迅速性、制御の容易さと
いった生産性の点ではまだ難点が多く、実用化のための
製膜方法の改良が望まれている。
However, there are still many drawbacks in terms of productivity such as simplicity, speed, and controllability of film formation, and improvements in the film formation method for practical use are desired.

そこで最近では垂直浸漬法に代わり福田らによる水平付
着法の利用が普及してきた(福田清成、「材料技術」第
4巻第6号261頁、1986年)。
Therefore, recently, instead of the vertical dipping method, the use of the horizontal adhesion method by Fukuda et al. has become popular (Kiyonari Fukuda, "Materials Technology" Vol. 4, No. 6, p. 261, 1986).

この方法は垂直浸漬法に比べると膜の被覆に要する時間
は短かく、かつ均一性と配向性にも優れた膜が形成され
ることが多いとされている。
It is said that this method requires less time to coat the film than the vertical dipping method, and often forms a film with excellent uniformity and orientation.

一方では単分子膜被覆の作業能率を上げるための装置の
改良が行われている。特開昭60−183724号、同
60−193533号には膜形成溶液の水面添加と基板
への被覆を連続的に行う方法の例が示されている。又、
円筒型の基板もしくは基板の支持具を用いて、これを気
−液界面を横切って回転させることにより単分子膜を連
続的に累積する方法が、Th1n 5olid Fil
ms + 99巻221頁、1983年に示されている
On the other hand, improvements are being made to equipment to increase the efficiency of monomolecular film coating. JP-A-60-183724 and JP-A-60-193533 disclose examples of methods in which the addition of a film-forming solution to the water surface and the coating on the substrate are carried out continuously. or,
Th1n 5olid Film is a method of continuously accumulating a monomolecular film by using a cylindrical substrate or a support for the substrate and rotating it across the gas-liquid interface.
ms+, Vol. 99, p. 221, 1983.

さらに特開昭61−42364号、同61−42365
号にはレンズ状の曲面をもつ基板を気−液界面で往復回
転動作させることにより、垂直浸漬法の原理にならって
この基板に累積膜を形成する手段が開示されている。
Furthermore, JP-A-61-42364 and JP-A No. 61-42365
This publication discloses a means for forming a cumulative film on a substrate having a lens-like curved surface by rotating the substrate reciprocatingly at the air-liquid interface based on the principle of the vertical immersion method.

(発明が解決しようとする課題) 以上の従来法で単分子膜を累積するためには、垂直浸漬
法及びこれにならった方法では基板の往復に相当の時間
を要することになり、また水平付着法では液面からの基
板の剥離に先だって液面上の単分子膜を除去するための
清浄作業の工程が必要なためこのための時間を要するこ
とになる。これらは生産性の点で大きなデメリットとな
る。
(Problems to be Solved by the Invention) In order to accumulate a monomolecular film using the conventional method described above, the vertical dipping method and methods modeled on it require a considerable amount of time to move the substrate back and forth, and horizontal adhesion requires a considerable amount of time. This method requires a cleaning process to remove the monomolecular film on the liquid surface before peeling off the substrate from the liquid surface, which takes time. These are major disadvantages in terms of productivity.

また、簡便のために水平付着法を清浄工程を省略して短
時間で行うことにより予期せず単分子膜が1層以上付着
することがあるが、この場合は被覆が不均一となり、良
好な分子配向が得られることは少ない。
In addition, if the horizontal deposition method is performed in a short time by omitting the cleaning process for convenience, one or more monolayers may unexpectedly adhere, but in this case, the coating will be uneven and a good Molecular orientation is rarely obtained.

これらは被覆工程に要する時間の問題であるが。These problems are related to the time required for the coating process.

被覆の可能性の点においても従来の方法では第−層の被
覆は通常効率良く進むが、第二層目からの累積は既存の
膜の剥離などをしばしば伴うために被覆に適した基板の
選択および累積工程での乾燥時間の選択が必要となり、
累積は必ずしも容易でない。
In terms of coating possibilities, conventional methods usually coat the first layer efficiently, but since the accumulation from the second layer often involves peeling of the existing film, it is difficult to select a suitable substrate for coating. It is necessary to select the drying time in the accumulation process.
Accumulation is not always easy.

本発明の目的はしたがって、有機分子の華分子累積層か
らなる超薄膜を固体基板上に迅速に被覆する方法を提供
することであり、第2には、有機分子が二次元的に分子
配向した均一性の高い累積膜を迅速に形成する方法を提
供することであり、第3には、従来のL−B法では累積
の難かしい固体基板に対しても単分子膜の累積が効率よ
く達成される累積方法を提供することである。
It is therefore an object of the present invention to provide a method for rapidly coating a solid substrate with an ultra-thin film consisting of an accumulated layer of organic molecules. The purpose is to provide a method for quickly forming a highly uniform cumulative film, and thirdly, it is possible to efficiently accumulate a monomolecular film even on a solid substrate where it is difficult to deposit using the conventional L-B method. The purpose of the present invention is to provide an accumulation method.

本発明のこれらの目的は、気体−液体界面に形成された
両親媒性有機分子の単分子膜を固体基板上の一平面上に
被覆する工程において、固体基板の該平面を液相上の単
分子膜の膜面に対向させな大きく15°より小さい角度
で傾斜させた状態で液面から剥離させる一連の操作を行
うことにより達成することができた。
These objects of the present invention are to cover one plane of a solid substrate with a monomolecular film of amphiphilic organic molecules formed at a gas-liquid interface. This could be achieved by performing a series of operations in which the molecular film was peeled from the liquid surface while being tilted at an angle of less than 15°, not facing the film surface.

本発明によれば気−液界面に予め形成された両親媒性有
機分子の単分子膜を固体基板上に水平付着法により1層
移し取った後、続いて基板平面を気−液界面に対しわず
かに(0°より大きく15゜より小さい角度)傾けなが
ら液面から徐々に引き離すことにより、第2層目が累積
され、1回の連続操作で2層の単分子膜が基板上に分子
配向をもって被覆される。
According to the present invention, one layer of a monomolecular film of amphiphilic organic molecules previously formed at the gas-liquid interface is transferred onto a solid substrate by a horizontal deposition method, and then the plane of the substrate is moved to the gas-liquid interface. By gradually pulling away from the liquid surface while tilting slightly (greater than 0° and less than 15°), a second layer is accumulated and two monolayers are molecularly oriented on the substrate in one continuous operation. coated with

本発明で気−液界面に形成される単分子膜は種々の両親
媒性有機分子が作る単分子膜が適用できる。単分子膜の
形成法とキャラクテリゼーションに関しては、G、  
L、 Ga1nes 、Jr、著[Insoluble
Monolayers at Liguid−Gas 
InterfacesJ +Interscience
 、Ne@york (1966年)などに詳述されて
いる。典型的な単分子膜は水−空気界面すなわち水面上
に形成されるものであり、これらの分子は、分子中に親
水性基と疎水性基が共存する界面活性型の水に不溶な有
機分子である。単分子膜形成に適した化合物は、親水性
基と疎水性基を分子中に同時に持つ両親媒性の界面活性
型化合物である。このような化合物を揮発性有機溶液か
ら水面上に展開した後適当な表面圧力に圧縮する操作に
より、親水性基を水面下に向は疎水性基を水面上に向け
た状態で分子が配向し最密にパックされた単分子膜を形
成することができる。
The monomolecular film formed at the gas-liquid interface in the present invention can be a monomolecular film made of various amphiphilic organic molecules. Regarding the formation method and characterization of monolayers, see G.
Written by L. Ga1nes, Jr. [Insoluble
Monolayers at Liquid-Gas
InterfacesJ +Interscience
, Ne@york (1966), etc. A typical monomolecular film is formed at the water-air interface, that is, on the water surface, and these molecules are surface-active water-insoluble organic molecules in which hydrophilic and hydrophobic groups coexist. It is. A compound suitable for forming a monolayer is an amphipathic surface-active compound having both a hydrophilic group and a hydrophobic group in the molecule. By developing such a compound from a volatile organic solution onto the water surface and compressing it to an appropriate surface pressure, the molecules are oriented with the hydrophilic groups facing below the water surface and the hydrophobic groups facing above the water surface. Closely packed monolayers can be formed.

分子全体が疎水性の不溶性化合物では分子が配向しにく
いために凝集を引き起こしやすく、単分子膜となって安
定な表面圧力を与えることは難かしい。従って、単分子
膜形成用化合物としては親水性、疎水性のバランスのと
れた水に不溶で且つ不揮発性の化合物を使用することが
必要である。
Insoluble compounds in which the entire molecule is hydrophobic have difficulty in orienting the molecules, which tends to cause aggregation, making it difficult to form a monomolecular film and apply stable surface pressure. Therefore, as a compound for forming a monomolecular film, it is necessary to use a water-insoluble and nonvolatile compound with a well-balanced hydrophilicity and hydrophobicity.

このような性質をもった化合物としては、゛例えば長鎖
アルキル(一般炭素数16以上)をもったカルボン酸、
エステル、アルコール、チオール、アルデヒド、アミド
、エーテル、アミン、アンモニウム塩、あるいは金属キ
レートなどがあげられる。また、機能性化合物として、
色素M(シアニン、メロシアニン、スクアリリウム化合
物、キサンチン系化合物、トリフェニルメタン系化合物
、アントラキノン系化合物など)、光異性化を行う化合
物(アゾベンゼン、スピロピランおよびスピロオキサジ
ン誘導体、インジゴ系化合物、フルギド系化合物、レナ
ノールなど)、触媒および光触媒機態をもつ化合物(ポ
ルフィリン誘導体、ルテニウムビピリジニウム錯体など
)、生体物質と相互作用する化合物(リン膜質、コレス
テロールなど)、包接機能をもつ化合物(たとえばクラ
ウンエーテル類、シクロデキストリン誘導体)などもあ
げられる、さらに機能性化合物の固定に有用な反応性基
をもった化合物としてたとえば、特願昭61−3155
42号、同62−158994号、同62−21364
7号、に例示される化合物も有用である。
Compounds with such properties include, for example, carboxylic acids with long-chain alkyls (generally having 16 or more carbon atoms);
Examples include esters, alcohols, thiols, aldehydes, amides, ethers, amines, ammonium salts, and metal chelates. In addition, as a functional compound,
Pigments M (cyanine, merocyanine, squarylium compounds, xanthine compounds, triphenylmethane compounds, anthraquinone compounds, etc.), compounds that undergo photoisomerization (azobenzene, spiropyran and spirooxazine derivatives, indigo compounds, fulgide compounds, lenanol) ), compounds with catalytic and photocatalytic mechanisms (porphyrin derivatives, ruthenium bipyridinium complexes, etc.), compounds that interact with biological substances (phosphorus membranes, cholesterol, etc.), compounds with inclusion functions (e.g. crown ethers, cyclodextrins, etc.) Further, examples of compounds having reactive groups useful for fixing functional compounds include, for example, Japanese Patent Application No. 3155/1986.
No. 42, No. 62-158994, No. 62-21364
Compounds exemplified in No. 7 are also useful.

単分子膜を被覆するための固体基板としては金属、金属
酸化物、セラミクス、カーボン、珪素化合物などの無機
材料、高分子樹脂や天然樹脂などの有機材料およびこれ
らの複合材料を含む多くのものを用いることができる。
Many solid substrates for coating monomolecular films include inorganic materials such as metals, metal oxides, ceramics, carbon, and silicon compounds, organic materials such as polymer resins and natural resins, and composite materials of these materials. Can be used.

単分子膜が被覆される表面はこれらの材料の一部であっ
てもよい、また被覆される表面は平坦であることが望ま
しいが、光学的に平坦である必要はなく、また必ずしも
全面が幾何学的に平坦である必要はない。
The surface coated with a monomolecular film may be part of these materials, and although it is desirable that the coated surface be flat, it does not have to be optically flat, and the entire surface may not necessarily be geometrically flat. It doesn't have to be academically flat.

本発明において単分子膜が形成される液相(subph
ase)が水相の場合は、固体基板の被覆の対象となる
表面は、疎水性であることが好ましい。
In the present invention, a liquid phase (subph) in which a monomolecular film is formed
When the solid substrate is in an aqueous phase, the surface to be coated of the solid substrate is preferably hydrophobic.

これは水平付着により直接表面に被覆される第1層目の
単分子膜が分子の疎水基側から基板に付着することによ
るもので、疎水相互作用により物理的に安定な吸着状態
が形成されやすいためである。
This is because the first layer of monomolecular film, which is directly coated on the surface by horizontal adhesion, attaches to the substrate from the hydrophobic group side of the molecule, and a physically stable adsorption state is likely to be formed due to hydrophobic interaction. It's for a reason.

ここで、疎水性とはその固体表面の水に対する接触角が
常温下で少くとも25#より大きいと定義される。疎水
性は水に対する接触角が40e以上であることが好まし
く90’以上であればさらに好ましい。疎水性の表面は
各種の有機材料、無機材料を用いて得ることができる。
Here, hydrophobicity is defined as a solid surface having a contact angle with water of at least 25# at room temperature. Regarding hydrophobicity, the contact angle with water is preferably 40e or more, and more preferably 90' or more. Hydrophobic surfaces can be obtained using various organic and inorganic materials.

例えば、有機物としてはポリスチレン、ポリエチレン、
ポリプロピレン、フルオロカーボンなどの高分子樹脂、
有機珪素化合物、脂質、油脂、天然タンパクなど多くの
水に不溶な化合物を用いることができる。
For example, organic materials include polystyrene, polyethylene,
Polymer resins such as polypropylene and fluorocarbons,
Many water-insoluble compounds can be used, such as organosilicon compounds, lipids, fats and oils, and natural proteins.

これらは基板の一部または全体であってもよいし、基板
の表面に被覆された形態であってもよい。無機材料は多
くが疎水性に乏しいが、表面を適当な疎水性物質で被覆
し改質することにより用いることができる。例えば、シ
リカガラスなど酸化物の表面は、表面の水酸基と反応で
きる有機珪素化合物などで予め化学処理することで、疎
水化することができる。有機珪素化合物としては例えば
アルキルアルコキシシラン、アリールアルコキシシラン
、アルキルクロルシラン、アリールクロルシランなどが
一般に有用である。あるいは、単に浸漬法により固体粒
子を、疎水性有機化合物の溶液に浸漬した後乾燥する方
法によっても該化合物で被覆された疎水性表面を得るこ
とができる。
These may be part or all of the substrate, or may be coated on the surface of the substrate. Although most inorganic materials have poor hydrophobicity, they can be used by coating and modifying the surface with a suitable hydrophobic substance. For example, the surface of an oxide such as silica glass can be made hydrophobic by preliminarily chemically treating it with an organic silicon compound that can react with hydroxyl groups on the surface. As the organosilicon compound, for example, alkylalkoxysilane, arylalkoxysilane, alkylchlorosilane, arylchlorosilane, etc. are generally useful. Alternatively, a hydrophobic surface coated with a hydrophobic organic compound can also be obtained by simply immersing solid particles in a solution of a hydrophobic organic compound and then drying the solid particles.

つぎに本発明の被覆操作について第1図に基づいて説明
する。
Next, the coating operation of the present invention will be explained based on FIG.

被覆操作は2つの工程から成る。The coating operation consists of two steps.

本発明の第1の工程は第1図aおよびbに示すように、
予め液面上に形成された有機分子の単分子膜2に対し、
基板lを気相中から液面に対してほぼ水平の角度で単分
子膜に接合させる工程であり、これは従来知られる水平
付着法の工程の一部と同様である。この工程で被覆にか
かわる基板面は単分子膜の面に対し水平に接触させるこ
とが好ましいが、第2の工程の準備として予め低い角度
θ(Q*<θ<15°)で傾斜させて接触させても実際
上の問題はない。液相が水相の場合、この工程で単分子
膜が疎水基を基板面に向けて1層被覆される。
The first step of the present invention, as shown in FIGS. 1a and b,
With respect to the monomolecular film 2 of organic molecules formed in advance on the liquid surface,
This is a process in which the substrate l is bonded to a monomolecular film from a gas phase at an angle substantially horizontal to the liquid level, and this is similar to a part of the process of the conventionally known horizontal adhesion method. In this step, it is preferable that the substrate surface involved in coating be brought into contact with the surface of the monomolecular film horizontally, but in preparation for the second step, the surface of the substrate is tilted at a low angle θ (Q*<θ<15°). There is no practical problem in doing so. When the liquid phase is an aqueous phase, one layer of monomolecular film is coated in this step with the hydrophobic groups facing the substrate surface.

第2の工程は第1図Cおよびdに示すように、単分子膜
を接合した基板を液面から剥離する工程であり、この工
程は基板面を気−液界面に対し低い角度θ(0″′くθ
<15°)で傾斜させて行うことが必要である。この、
傾斜角は工II離の工程中一定に保ってもよいし、徐々
に変化させてもよい。
The second step, as shown in FIGS. 1C and d, is a step in which the substrate to which the monomolecular film is bonded is peeled off from the liquid surface, and this step involves setting the substrate surface at a low angle θ (0 ″′kuθ
<15°). this,
The angle of inclination may be kept constant during the process of separation, or may be gradually changed.

液相が水相の場合、この工程で単分子llりの2層目が
親水基を基板面へ向けて被覆される。この工程では剥離
の速度が重要であり、この速度は被覆される単分子膜の
分子密度が液面上のそれに比べ小さくならないように十
分に遅く制御されることが好ましい。このような速度は
液面上の単分子膜の分子の流動性に大きく依存すること
になり、流動性に乏しい膜はど遅くすることが必要であ
る。剥離の速度は、基板面の気−液界面に対する垂直方
向の移動速度として少くとも5層m/分より小さいこと
が好ましい。
When the liquid phase is an aqueous phase, a second layer of monomolecules is coated in this step with the hydrophilic groups directed toward the substrate surface. The speed of peeling is important in this step, and it is preferable that this speed be controlled to be sufficiently slow so that the molecular density of the coated monomolecular film does not become smaller than that at the liquid surface. Such a speed largely depends on the fluidity of molecules in the monomolecular film on the liquid surface, and a film with poor fluidity needs to be slowed down. The peeling speed is preferably lower than at least 5 layers m/min as a moving speed of the substrate surface in the direction perpendicular to the air-liquid interface.

第1図は水面上での被覆を行う場合の例であるが疎水性
の展開溶媒を用いる場合も同様の操作によって本発明の
目的を達成することができる。
Although FIG. 1 shows an example of coating on the water surface, the object of the present invention can be achieved by similar operations when a hydrophobic developing solvent is used.

被覆の工程において、液相上の単分子膜の表面圧力は十
分に高く保つことが好ましい。十分に高くとは、その単
分子膜の表面圧カー面41!(π−A)特性において、
破壊圧力(πC)より低くかつ圧力が顕著な立ち上りを
示すいわゆる凝固体膜もしくは固体膜の形成が開始する
圧力より高い領域である。
In the coating process, it is preferable to keep the surface pressure of the monomolecular film on the liquid phase sufficiently high. Sufficiently high means that the surface pressure of the monomolecular film is 41! In the (π-A) characteristic,
This is a region that is lower than the burst pressure (πC) and higher than the pressure at which the formation of a so-called coagulated film or solid film, which shows a remarkable rise in pressure, begins.

このような圧力は分子に依存するが一般に5dyne/
cmから60dyne/cmの範囲である。表面圧力は
特に基板の〃IMの工程で一定圧力に保持することが好
ましい、圧力の制御は表面圧力センサーの装着したトラ
フにおいて圧力のモニターと同時に圧力の変化に対応し
て膜のバリアーを連動させる方法で、一定値に制御する
ことができる。あるいは、落下される粒子の個数に対応
させてバリアーを連動させる手段でも制御することが可
能である。
Although this pressure depends on the molecule, it is generally 5 dyne/
The range is from cm to 60 dyne/cm. It is preferable to maintain the surface pressure at a constant pressure, especially during the IM process of the substrate.The pressure is controlled by monitoring the pressure in a trough equipped with a surface pressure sensor and at the same time interlocking the membrane barrier in response to changes in pressure. method, it can be controlled to a constant value. Alternatively, it is also possible to control by means of interlocking the barrier in accordance with the number of falling particles.

本発明の方法に用いる単分子膜製造用トラフとしては通
常用いられるトラフ(浮子型バリアー式、ベルトバリア
ー式のものなど)の他、特開昭60−183724号及
び同60−209245号に示されるような連続累積用
トラフや同60−196934号、同60−19720
8号に示されるような振動印加型トラフ、あるいは高粘
性の膜の被覆に適したムービングウオール式(宮田の方
法)によるトラフなど各種の改良型のトラフを用いるこ
とができる。
The trough for monolayer production used in the method of the present invention includes commonly used troughs (such as float type barrier type and belt barrier type), as well as those shown in JP-A-60-183724 and JP-A-60-209245. Continuous accumulation troughs such as No. 60-196934 and No. 60-19720
Various improved troughs can be used, such as a vibration application type trough as shown in No. 8, or a moving wall type (Miyata method) trough suitable for coating highly viscous films.

次に本発明を実施例をもって説明するが、本発明の方法
の応用はこれらに限られるものではない。
Next, the present invention will be explained with examples, but the application of the method of the present invention is not limited to these examples.

〔実施例1〕 スライドガラス(2,5X、7.5c+a)を熱硫酸水
溶液で処理し、水洗後乾燥し、トリメチルクロルシラン
の10%トルエン溶液に6時間浸漬した後、トルエンで
洗浄して表面を疎水性とした0表面の水に対する接触角
を測定したところおよそ90″であった。
[Example 1] A glass slide (2.5X, 7.5c+a) was treated with a hot sulfuric acid aqueous solution, washed with water, dried, immersed in a 10% toluene solution of trimethylchlorosilane for 6 hours, and then washed with toluene to remove the surface. The contact angle of the hydrophobic surface with water was measured and was approximately 90''.

単分子膜製造用トラフ中に2X10−’Mの塩化カドミ
ウムを含むpH5,3のホウ酸緩衝水溶液(10−3M
)を準備し、この水面上に常温下でアラキシン酸のクロ
ロホルムfI液(10−’M)を展開してアラキシン酸
とアラキシン酸カドミウムを含む単分子膜を形成した。
A boric acid buffer aqueous solution (10-3M) containing 2×10-'M cadmium chloride at pH 5.
) was prepared, and a chloroform fI solution of alaxic acid (10-'M) was spread on the water surface at room temperature to form a monomolecular film containing alaxic acid and cadmium alaxic acid.

単分子膜をペルトドイブ式バリアーで徐々に圧縮し表面
圧力を30dyne/cmに制御した。
The monomolecular film was gradually compressed using a pelt-dove barrier, and the surface pressure was controlled at 30 dyne/cm.

さきに処理したスライドガラス基板を基板支持具に基板
面の短軸を水平から3°傾斜させて固定し、水面上の単
分子膜上に第1図a、bのように移動させて、水平付着
を行った。次いで基板面を傾斜させたままの状態で水面
より垂直方向に初め20鶴/分の速度で引き上げ、基板
表面から水面の剥離が始まった時点で速度を2m/分に
速やかに落として徐々に剥離を続行した。このようにし
て、基板を上下に一往復させ、全工程約1分生をかけて
被覆操作を終了した。この操作の後、水面上の単分子膜
の面積減少と基板の被覆有効面積の比から累積比を求め
たところ、1回の操作当たり2.0の累積比となり、2
層の単分子膜がこの操作で被覆されたことがわかった。
Fix the previously treated slide glass substrate on a substrate support with the short axis of the substrate surface inclined by 3 degrees from the horizontal, move it onto the monomolecular film on the water surface as shown in Figure 1 a and b, and then horizontally Adhesion was carried out. Next, with the substrate surface tilted, it was first lifted vertically above the water surface at a speed of 20 m/min, and when the water surface began to peel off from the substrate surface, the speed was quickly reduced to 2 m/min and gradually peeled off. continued. In this way, the substrate was moved up and down once, and the entire process took about 1 minute to complete the coating operation. After this operation, the cumulative ratio was calculated from the ratio of the area reduction of the monomolecular film on the water surface to the effective area covered by the substrate, and the cumulative ratio was 2.0 per operation, which was 2.
It was found that a monolayer of layers was coated with this operation.

この操作を12回くり返し、最終的に24層の累積膜を
基板上に被覆することができた。この累積に要した全所
要時間は64分であった。比較として従来の垂直浸漬法
によって24層のL−B膜の形成を行った実験に要した
諸工程の所要時間の1例と本発明の方法による所要時間
を表−1に比較した。
This operation was repeated 12 times, and finally a cumulative film of 24 layers could be coated on the substrate. The total time required for this accumulation was 64 minutes. For comparison, Table 1 compares an example of the time required for various steps required in an experiment in which a 24-layer LB film was formed by the conventional vertical dipping method and the time required by the method of the present invention.

〔実施例2〕 固体基板としてスライドガラスの表面に下地としてクロ
ムを200人の厚さで真空蒸着し、さらにこの上に金を
厚さ1000人に真空蒸着した金被覆基板を用意した。
[Example 2] A gold-coated substrate was prepared by vacuum-depositing chromium as a base to a thickness of 200 mm on the surface of a slide glass as a solid substrate, and then vacuum-depositing gold to a thickness of 1000 mm on top of this.

この基板表面上にリン脂質の1種であるし一α−ジーバ
ルミトイルフオスファチジルコリン(D P P C)
の単分子膜を被覆することを試した。
On the surface of this substrate, α-divalmitoylphosphatidylcholine (DPPC), a type of phospholipid, is present.
We tried coating it with a monomolecular film.

DPPCとジクロルメタンのl O−”Mi液としてp
H6,8の中性リン酸緩衝液(10−3M)上に展開し
て単分子膜を作成し、表面圧力20dyn/csまで圧
縮を行った。この一定圧力下で金基板上に垂直浸漬法に
よって水面下から水面上に基板を引き上げることで単分
子膜の第1層を被覆した。累積比は1.0であった。基
板を常温で10分乾燥させた後、真空乾燥品中で1時間
引いて乾燥させた。この基板上にさらにDPPCの単分
子膜を累積する操作を行った。
DPPC and dichloromethane as lO-”Mi solution p
A monomolecular film was prepared by developing it on a H6,8 neutral phosphate buffer (10 −3 M) and compressed to a surface pressure of 20 dyn/cs. Under this constant pressure, the gold substrate was coated with the first layer of the monomolecular film by lifting the substrate from below the water surface to above the water surface using a vertical immersion method. The cumulative ratio was 1.0. The substrate was dried at room temperature for 10 minutes and then dried in a vacuum dryer for 1 hour. An operation was performed to further accumulate a monomolecular film of DPPC on this substrate.

実施例1の本発明の操作と基本的に同様な操作によって
水平式連続2層付着を繰り返した結果、9層のDPPC
が平均累積比0.95で金表面上に移し砲られた。一方
、比較として第2層目以上を垂直浸漬法で被覆を試たが
、第2Nの被覆の工程中に第1層の膜のはがれが生じて
しまい、その後累積を続けることは困難であった。
As a result of repeating horizontal continuous two-layer deposition by basically the same operation as that of the present invention in Example 1, nine layers of DPPC were obtained.
was transferred onto the gold surface with an average cumulative ratio of 0.95. On the other hand, as a comparison, we tried coating the second layer and above using the vertical dipping method, but the first layer peeled off during the 2nd N coating process, and it was difficult to continue the accumulation after that. .

〔実施例3〕 実施例2で用いたのと同じ金蒸着スライドガラスの金表
面上に、実施例1で用いたアラキシン酸カドミウムの単
分子膜を30dyn/cmの表面圧下で実施例2と同様
な操作によって251’i累積を行った。平均累積比は
1.1であった。
[Example 3] A monomolecular film of cadmium araxinate used in Example 1 was coated on the gold surface of the same gold-deposited slide glass as used in Example 2 under a surface pressure of 30 dyn/cm in the same manner as in Example 2. 251'i accumulation was carried out by this operation. The average cumulative ratio was 1.1.

このように形成したアラキシン酸カドミウム累積膜の分
子配向を調べる目的で、高感度反射−吸収法によるFT
−I Rスペクトルの測定を行った。
In order to investigate the molecular orientation of the cadmium araxinate film formed in this way, FT was performed using a high-sensitivity reflection-absorption method.
-IR spectrum was measured.

測定は日本電子JIR−106型FT−I Rに高感度
反射測定装置(日本電子IR−R3C20)を装着して
行った。測定条件は、分解能が4cm−’、積算回数1
000回、干渉計のミラーのスキャンスピードは、4 
win/sec 、光源は水冷式のグローズ、検出器は
、MCTを用い4000〜400(J −’の範囲で行
った。
The measurements were carried out using a JEOL JIR-106 model FT-IR equipped with a high-sensitivity reflectance measuring device (JEOL IR-R3C20). The measurement conditions were a resolution of 4 cm-' and a number of integrations of 1.
000 times, the scan speed of the mirror of the interferometer is 4
win/sec, a water-cooled glow light source was used, and an MCT was used as a detector.

また、高感度反射測定は、入射角806で測定した。In addition, high-sensitivity reflection measurements were performed at an incident angle of 806.

この結果得られたアラキシン酸カドミウム膜のIRスペ
クトルを、アラキシン酸固体粉末試料(bulk po
wder)を用いて測定した結果と比較した。
The IR spectrum of the resulting cadmium araxinate film was analyzed using an araxinate solid powder sample (bulk po
wder).

両者の間には著しい差異がみられ、本発明の方法で作成
した累積膜は粉末試料のスペクトルと比較し、カルボニ
ル基による対称伸縮振動の吸収(1430c*−’付近
)が大きく強化され逆にCHzによる伸縮振動の吸収(
29620II−’付近)が弱まっていた。この事実は
アルキル鎖の軸が基板表面に垂直の方向(すなわち測定
の入射光と反射光が作る電場の方向)に鋭く配向してい
ることを裏づけでおり、本発明の累積方法が分子配向を
形成する点においても優れていることを示している。
There is a significant difference between the two, and compared to the spectrum of the powder sample in the cumulative film prepared by the method of the present invention, the absorption of symmetrical stretching vibrations (near 1430c*-') by carbonyl groups is greatly enhanced; Absorption of stretching vibration by CHz (
29620II-') was weakening. This fact confirms that the axes of the alkyl chains are sharply oriented in the direction perpendicular to the substrate surface (i.e., the direction of the electric field created by the incident light and reflected light for measurement), and the cumulative method of the present invention can detect molecular orientation. It also shows that it is excellent in terms of formation.

さらに、同じ試料のX線回折スペクトルを測定した。測
定には理学電機型Ru−200型X線回折装置を用いC
u−にα線を用いて測定したところアラキシン酸カドミ
ウムは規則正しく配列していることがわかり、その層間
陥は55.3人と見積られた。
Furthermore, the X-ray diffraction spectrum of the same sample was measured. A Rigaku Ru-200 model X-ray diffractometer was used for measurement
Measurement using alpha rays for u- revealed that cadmium araxinate was regularly arranged, and the number of interlayer cavities was estimated to be 55.3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の累積膜形成方法の工程を説明する図面
である。第1図において1は固体基板を、2は単分子膜
を表わす。 第1図a、bは水平付着の工程(第1の工程)を示す、
第1図c、dはこれに続く水面がらの剥離の工程(第2
の工程)を示す。a、b、c、dの順に被覆工程が進行
する。矢印は基板の動作の方向を示す。 特許出願人 富士写真フィルム株式会社第1図 手続補正書
FIG. 1 is a drawing explaining the steps of the cumulative film forming method of the present invention. In FIG. 1, 1 represents a solid substrate, and 2 represents a monomolecular film. Figures 1a and b show the horizontal adhesion process (first process);
Figures 1c and d show the subsequent water surface peeling process (second step).
process). The coating process proceeds in the order of a, b, c, and d. Arrows indicate the direction of movement of the substrate. Patent applicant: Fuji Photo Film Co., Ltd. Figure 1 Procedural Amendment

Claims (1)

【特許請求の範囲】[Claims] (1)気体−液体界面に形成された両親媒性有機分子の
単分子膜を固体基板上の一平面上に被覆する工程におい
て、固体基板の該平面を液相上の単分子膜の膜面に対向
させながら気相中から移動して単分子膜の膜面に接触さ
せ、続いて基板表面を気体−液体界面に対し0°より大
きく15°より小さい角度で傾斜させた状態で液面から
剥離させることにより、基板表面上に単分子膜を被覆す
ることを特徴とする累積膜形成方法。
(1) In the step of coating a monomolecular film of amphiphilic organic molecules formed at the gas-liquid interface on one plane of a solid substrate, the plane of the solid substrate is the film surface of the monomolecular film on the liquid phase. The substrate was moved from the gas phase to contact with the film surface of the monomolecular film while facing the gas-liquid interface, and then the substrate surface was tilted at an angle greater than 0° and smaller than 15° with respect to the gas-liquid interface from the liquid surface. A cumulative film forming method characterized by coating a monomolecular film on a substrate surface by peeling.
JP63054680A 1988-03-08 1988-03-08 Formation of built-up film Pending JPH01228539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63054680A JPH01228539A (en) 1988-03-08 1988-03-08 Formation of built-up film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63054680A JPH01228539A (en) 1988-03-08 1988-03-08 Formation of built-up film

Publications (1)

Publication Number Publication Date
JPH01228539A true JPH01228539A (en) 1989-09-12

Family

ID=12977503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63054680A Pending JPH01228539A (en) 1988-03-08 1988-03-08 Formation of built-up film

Country Status (1)

Country Link
JP (1) JPH01228539A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242170A (en) * 1988-03-25 1989-09-27 Toshiba Corp Production of organic thin film
CN1300369C (en) * 2002-09-20 2007-02-14 中国科学技术大学 Method for preparing self-assenbling monomolecular film in vapor phase and vapor phase assembiling instrument
CN105833814A (en) * 2016-04-27 2016-08-10 浙江工业大学 Method for manufacturing liquid drop self-driven microreactor and microreactor manufactured through method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145228A (en) * 1984-12-18 1986-07-02 Nippon Soda Co Ltd Ultra thin synthetic polymer film and its production
JPS6322067A (en) * 1986-03-10 1988-01-29 Nippon Soda Co Ltd Lb film of pyrrole derivative and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145228A (en) * 1984-12-18 1986-07-02 Nippon Soda Co Ltd Ultra thin synthetic polymer film and its production
JPS6322067A (en) * 1986-03-10 1988-01-29 Nippon Soda Co Ltd Lb film of pyrrole derivative and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242170A (en) * 1988-03-25 1989-09-27 Toshiba Corp Production of organic thin film
CN1300369C (en) * 2002-09-20 2007-02-14 中国科学技术大学 Method for preparing self-assenbling monomolecular film in vapor phase and vapor phase assembiling instrument
CN105833814A (en) * 2016-04-27 2016-08-10 浙江工业大学 Method for manufacturing liquid drop self-driven microreactor and microreactor manufactured through method

Similar Documents

Publication Publication Date Title
Schmidt et al. Streptavidin binding to biotinylated lipid layers on solid supports. A neutron reflection and surface plasmon optical study
US6541071B1 (en) Method for fabricating supported bilayer-lipid membranes
Fadeev et al. Trialkylsilane monolayers covalently attached to silicon surfaces: wettability studies indicating that molecular topography contributes to contact angle hysteresis
Wang et al. Growth of ultrasmooth octadecyltrichlorosilane self-assembled monolayers on SiO2
US4560599A (en) Assembling multilayers of polymerizable surfactant on a surface of a solid material
JP5411339B2 (en) Laminated body
Cai et al. Large-scale fabrication of protein nanoarrays based on nanosphere lithography
Pan et al. Photochemical modification and patterning of polymer surfaces by surface adsorption of photoactive block copolymers
Kurth et al. Monomolecular layers and thin films of silane coupling agents by vapor-phase adsorption on oxidized aluminum
US20090257062A1 (en) Device and Method For Optical Localized Plasmon Sensing
Kraus-Ophir et al. Symmetrical thiol functionalized polyhedral oligomeric silsesquioxanes as building blocks for LB films
Yilmaz et al. Ambient, rapid and facile deposition of polymer brushes for immobilization of plasmonic nanoparticles
JPH01228539A (en) Formation of built-up film
Borozenko et al. Organophosphonic acids as viable linkers for the covalent attachment of polyelectrolyte brushes on silica and mica surfaces
CA1271670A (en) Process for forming a coating
JP4435708B2 (en) Biosensor
Park et al. Surface energies of borosilicate glass surfaces modified with n-alkyl silane coupling agents via dynamic contact angle measurements
JPH0683812B2 (en) Method for applying a multilayer assembly of polymerizable surfactant on the surface of a solid substrate
US8080279B2 (en) Method for double-dip substrate spin optimization of coated micro array supports
GB1582860A (en) Device
Seeboth et al. Spatial orientation of highly ordered self-assembled silane monolayers on glass surfaces
JPH0647859A (en) Lubricant film and its manufacture
JP2006266742A (en) Biosensor
JPH01228577A (en) Method for applying organic film
US6800370B2 (en) Photoresponsive surfaces