JPH01227983A - Radiation dose measuring instrument - Google Patents

Radiation dose measuring instrument

Info

Publication number
JPH01227983A
JPH01227983A JP63053520A JP5352088A JPH01227983A JP H01227983 A JPH01227983 A JP H01227983A JP 63053520 A JP63053520 A JP 63053520A JP 5352088 A JP5352088 A JP 5352088A JP H01227983 A JPH01227983 A JP H01227983A
Authority
JP
Japan
Prior art keywords
energy
radiation
semiconductor
rays
atomic number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63053520A
Other languages
Japanese (ja)
Other versions
JPH0574029B2 (en
Inventor
Hiroshi Kitaguchi
博司 北口
Shigeru Izumi
出海 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63053520A priority Critical patent/JPH01227983A/en
Publication of JPH01227983A publication Critical patent/JPH01227983A/en
Publication of JPH0574029B2 publication Critical patent/JPH0574029B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To make characteristic X-rays <=20KeV so that influences of the X-rays to a semiconductor element can be eliminated and a precise energy compensating design can become possible by providing a material composed principally of an element of <=44 in atomic number adjacent to the detecting element. CONSTITUTION:A semiconductor detecting element 1 is mounted on a flat base material (conductor) 2 and an impressing electrode is drawn out through a bonding wire 3 and hermetic seal 4. A shielding material 5 of <=44 in atomic number, for example, alumina or aluminum is provided on the outside of the detecting element 1 and supported by a supporting pole 7. The entire body is housed in a probe case 6 of iron or stainless steel and a signal line 8 for fetching radiant ray signals is drawn out. When alumina is used as the shielding material 5, the characteristic X-rays can be made <=20keV and, as a result, influence of the X-rays to the semiconductor detecting element can be eliminated and, at the same time, a precise energy compensating design can become easier because the absorption factor of alumina is continuous.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体放射線検出素子を用いた放射線線量測
定器に係り、特に、検出器tに入射する光子エネルギー
に対応する照射線量感度や吸収線量感度の特性を高精度
に補償するのに好適な検出器構造に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a radiation dosimeter using a semiconductor radiation detection element, and in particular, to radiation dose sensitivity and absorption corresponding to the photon energy incident on the detector t. The present invention relates to a detector structure suitable for highly accurate compensation of dose sensitivity characteristics.

〔従来の技術〕[Conventional technology]

従来の半導体放射線検出素子の入射光子エネルギーに対
応する照射線量感度特性(以下エネルギー特性という)
は、特開昭59−214787 i)公報記載のように
、半導体検出素子の周囲を釦もしくは鉛を主成分とする
金属シールド材で包囲し、かつ、その金属シールド材に
所定開口率の開口を設ける構造で補償している。
Irradiation dose sensitivity characteristics (hereinafter referred to as energy characteristics) corresponding to the incident photon energy of conventional semiconductor radiation detection elements
As described in JP-A-59-214787 i), a semiconductor detection element is surrounded by a button or a metal shielding material containing lead as a main component, and an aperture with a predetermined aperture ratio is formed in the metal shielding material. This is compensated for by the structure provided.

このエネルギー特性の補償とは、照射線量計の場合、入
射光子エネルギーに対応する感度が一定になる様にする
処置をいう。また、特開昭60−42672号公報記載
のように、半導体放射線検出器子 ネータ等の外部回路で弁別し、各エネルギー特性に対応
した補正係数を付与する手段を設けて、その特性を補償
するものもある。この補正係数付与手段には、各パルス
毎、所定の基準発振信号と論埋積を取る方法、マイクロ
コンピュータで計算処理を行なう方法が取られている。
In the case of an irradiation dosimeter, compensation of this energy characteristic refers to a procedure for making the sensitivity corresponding to incident photon energy constant. In addition, as described in Japanese Patent Application Laid-open No. 60-42672, a means is provided to perform discrimination using an external circuit such as a semiconductor radiation detector generator and provide a correction coefficient corresponding to each energy characteristic to compensate for the characteristic. There are some things. This correction coefficient applying means includes a method of calculating a logical product with a predetermined reference oscillation signal for each pulse, and a method of performing calculation processing with a microcomputer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術で、鉛シールド材を用いて、その一部に開
口部を設けるエネルギー補償法は、シールド材そのもの
が、入射する放射線との相互作用で特性X線を放出する
ことの配慮がなされておらず、各種のエネルギー特性の
異なる半導体検出素子を任意の特性に補償することが難
しい。すなわち、鉛シールド材のしゃへい効果と開口率
から設計計算されるエネルギー特性と実測される特性を
一致させる事が難しいと云うことである。さらに。
In the above conventional technology, the energy compensation method using a lead shield material and having an opening in a part takes into account that the shield material itself emits characteristic X-rays when it interacts with incident radiation. Therefore, it is difficult to compensate various semiconductor detection elements having different energy characteristics to an arbitrary characteristic. In other words, it is difficult to match the energy characteristics designed and calculated from the shielding effect of the lead shielding material and the aperture ratio with the actually measured characteristics. moreover.

シールド材の鉛は、しやへい効果のパラメータとなる吸
収係数が90KeVのエネルギー範囲で不連続に変化し
、エネルギー補償の設計計算をきわめて難しいものとし
ている。上記、エネルギー補償法は古くからとられてい
るGM計数管のエネルギー補償法と同一であり、実測値
に基づいて開口率やしやへい材厚を試行選択しなければ
ならない問題が生じる。
The absorption coefficient of lead as a shield material, which is a parameter of the shielding effect, changes discontinuously in the energy range of 90 KeV, making design calculations for energy compensation extremely difficult. The energy compensation method described above is the same as the energy compensation method for GM counter tubes that has been used for a long time, and a problem arises in that the aperture ratio and the material thickness must be selected on a trial basis based on actual measured values.

また、放射線検出信号の波形弁別手段を論じる方法は、
検出器外部にマイクロコンピュータ等の補正係数付与手
段が必要となり、ハード、ソフトウェアを設けなければ
ならない問題が生じる。
Furthermore, the method for discussing waveform discrimination means for radiation detection signals is as follows:
A correction coefficient applying means such as a microcomputer is required outside the detector, which creates a problem in that hardware and software must be provided.

本発明の目的は、半導体検出素子に対し、もつとも単純
な原理で、かつ、高精度にエネルギー特性を補償し、検
出器の製作調整コストを大巾に低減することである。
An object of the present invention is to compensate the energy characteristics of a semiconductor detection element with a very simple principle and with high precision, and to significantly reduce the manufacturing and adjustment cost of the detector.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、半導体検出素子に隣接して設けるエネルギ
ー補償用のシールド材に、原子番号44以下の材料を用
いることにより、−挙に達成される。
The above object is achieved in particular by using a material with an atomic number of 44 or less for the energy compensation shield material provided adjacent to the semiconductor detection element.

〔作用〕[Effect]

半導体放射線検出素子の動作原理は放射線が半導体材料
に入射して光電効果やコンプトン散乱等の相互作用を起
こし、2次電子を生成する。この2次電子が検出素子内
の空乏層で電子−正孔対の電荷を作り、放射線の検出信
号となる。半導体検出素子の空乏層厚は100〜200
μm程度であり、入射する放射線のエネルギーによって
光電効果やコンプトン散乱による放射線の吸収量が大き
く異なる。低エネルギー(200KeV以下)では光電
効果を起こす割合が多く、高感度となる。
The operating principle of a semiconductor radiation detection element is that radiation enters a semiconductor material and causes interactions such as the photoelectric effect and Compton scattering to generate secondary electrons. These secondary electrons create charges of electron-hole pairs in a depletion layer within the detection element, which becomes a radiation detection signal. The depletion layer thickness of the semiconductor detection element is 100 to 200
The amount of radiation absorbed by the photoelectric effect and Compton scattering varies greatly depending on the energy of the incident radiation. At low energy (200 KeV or less), a high proportion of photoelectric effects occur, resulting in high sensitivity.

高エネルギーでは光電効果を起こす割合がきわめて小さ
く低感度となる。また、極低エネルギー(20K s 
V以下)では、検出素子P−n接合の電極(n十層、オ
ームコンタクトのAQ電極)に吸収され不感となる。こ
れらの現象に基づいて、各種半導体検出素子のエネルギ
ー特性が決まる。
At high energies, the proportion of photoelectric effects occurring is extremely small, resulting in low sensitivity. In addition, extremely low energy (20K s
(lower than V), it is absorbed by the electrode of the P-n junction of the detection element (n10 layer, ohmic contact AQ electrode) and becomes insensitive. Based on these phenomena, the energy characteristics of various semiconductor detection elements are determined.

一般に20KeV以下では不感となり、50〜60Ke
Vで感度がもつと高くなる。これ以上のエネルギーでは
徐々に感度が低下し、l M e V以上ではコンプト
ン散乱が主体でほぼ一定の感度となる。このようなエネ
ルギー特性を持つ半導体放射線検出素子を照射線量計に
用いるためには、入射する放射線のエネルギーに対応す
る検出感度を一定にしなければならない、照射線量計の
エリアモニタのJ、Is規格仕様では′80 K e 
V〜3MeVの範囲で、その感度差が±25%以下でな
ければならない、この特性を半導体検出素子に設定する
ためには検出素子の前面にしやへい体を設け、50〜6
0KeV近傍の高感度領域の感度を低下させることによ
って、エネルギーに依存しない特性を得ることができる
In general, it becomes insensitive below 20KeV, and at 50 to 60KeV
The sensitivity increases with V. At higher energies, the sensitivity gradually decreases, and at 1 M e V or higher, Compton scattering is the main component and the sensitivity remains almost constant. In order to use a semiconductor radiation detection element with such energy characteristics in an irradiation dosimeter, the detection sensitivity corresponding to the energy of the incident radiation must be constant, according to the J and Is standard specifications for area monitors of irradiation dosimeters. Then '80 Ke
In the range of V to 3 MeV, the difference in sensitivity must be ±25% or less.
Energy-independent characteristics can be obtained by reducing the sensitivity in the high sensitivity region near 0 KeV.

本発明の検出器構造は、検出素子に隣接して、原子番号
が44以下の元素を主成分とする材料を所定厚設ける。
In the detector structure of the present invention, a material whose main component is an element having an atomic number of 44 or less is provided with a predetermined thickness adjacent to the detection element.

従来の検出器では、加工性が良いと云う理由から、鉛(
原子番号82)を主体とする材料で、このエネルギー補
償を図っているのが実状である。この従来のエネルギー
補償法では、半導体検出素子が有感となるエネルギー領
域に、補償材そのものから放出する特性X線が大きく影
響する。
Conventional detectors use lead (lead) because it is easy to process.
The current situation is that this energy compensation is attempted using materials mainly consisting of atomic number 82). In this conventional energy compensation method, the characteristic X-rays emitted from the compensation material itself have a large influence on the energy range in which the semiconductor detection element is sensitive.

本発明で用いる原子番号44以下の材料から放出される
特性X線は20KeV以下であり、半導体検出素子への
影響を皆無にできる。また、この低原子番号の材料の吸
収係数は入射する放射線のエネルギーに対し不連続点が
なく、照射線量計のエネルギー特性仕様範囲である80
KeV〜3M eVのエネルギー補M設計(しゃへい効
果の計算)を精密に実行できる。
The characteristic X-ray emitted from the material having an atomic number of 44 or less used in the present invention is 20 KeV or less, and can have no effect on the semiconductor detection element. In addition, the absorption coefficient of this low atomic number material has no discontinuity with respect to the energy of the incident radiation, and is within the energy characteristic specification range of the irradiation dosimeter.
Energy complementary M design (calculation of shielding effect) for KeV to 3M eV can be performed precisely.

以上のように、本発明を用いることによって、照射線量
計や吸収線量訂に不可欠なエネルギー特性を任意に設計
実現することができる。
As described above, by using the present invention, energy characteristics essential for irradiation dosimeters and absorption dose correction can be arbitrarily designed and realized.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。半導
体検出素子1をフラットベース基材(導電体)2に装着
し、逆バイアスの印加電極をボンディングワイヤ3、ハ
ーメツクシール4を介して外部に引き出す。検出器7−
1の外側に原7一番号44以下のしゃへい材料5たとえ
ばアルミナ(A Q 203)やアルミニウム(AQ)
を設け、全体を鉄(Fe)やステンレス(STJS)の
プローブケース6に収納して検出器を構成する。第2図
に、その立体図を示す。検出素子1とじやへい材のアル
ミナ5を支持ポール7で支持し、プローブケース6の外
部に放射線検出(4号を取り出す信号線8を引き出す。
An embodiment of the present invention will be described below with reference to FIG. A semiconductor detection element 1 is attached to a flat base substrate (conductor) 2, and a reverse bias application electrode is led out via a bonding wire 3 and a hermetic seal 4. Detector 7-
On the outside of 1, put a shielding material 5 with a number 44 or less, such as alumina (AQ 203) or aluminum (AQ).
is provided, and the whole is housed in a probe case 6 made of iron (Fe) or stainless steel (STJS) to constitute a detector. Fig. 2 shows its three-dimensional view. The detection element 1 and the alumina 5 made of aluminum are supported by support poles 7, and a signal line 8 for radiation detection (No. 4) is drawn out to the outside of the probe case 6.

第3図には半導体検出素子1の断面図を示す。この半導
体検出素子は■)型シリコンを用いた素りat造である
。陽電極(アルミニウム)10に逆バイアスを印加する
とn+、1511の下部に、放射線有感部となる空乏層
12が広がる。陽電極アルミニウム10とni&11お
よび素子の表面保護膜(S」02等)は放射線の不感層
となる。これらの不感領域によって検出素子の放射線感
度は20KeV以下で急激に感度が劣化する。
FIG. 3 shows a cross-sectional view of the semiconductor detection element 1. This semiconductor detection element is made of a bare metal structure using type silicon. When a reverse bias is applied to the positive electrode (aluminum) 10, a depletion layer 12, which becomes a radiation sensitive part, expands below the n+ electrode 1511. The positive electrode aluminum 10 and ni&11 and the element surface protective film (S'02, etc.) serve as radiation insensitive layers. Due to these insensitive areas, the radiation sensitivity of the detection element rapidly deteriorates below 20 KeV.

エネルギー補償を図るじゃへい材から放出する特性X線
のエネルギーが20 K e V以下であれば、その影
響は全く無視できることになる。
If the energy of the characteristic X-rays emitted from the barrier material for energy compensation is 20 K e V or less, its influence can be completely ignored.

次に特性X線の発生機構について述へる。入射する放射
線との相互作用によって原子の軌道電−tが正規の位置
から外された場合、原子は励起状態となる。その後、単
時間(nspcかそれ以rの時間)で軌道電子の空孔を
その外側の軌道Fl pや自由′a子が埋めて、原子が
基底状態に戻る。このとき特性X線を放出する。このエ
ネルギーはに殻の軌道から放出するものが最大である。
Next, the generation mechanism of characteristic X-rays will be described. When the orbital charge of an atom is displaced from its normal position by interaction with the incident radiation, the atom becomes excited. Thereafter, in a single time (nspc or longer r time), the vacancies of the orbital electrons are filled by the outer orbitals Fl p and free 'a atoms, and the atom returns to the ground state. At this time, characteristic X-rays are emitted. The maximum amount of this energy is released from the orbit of the shell.

このエネルギーは元素の原子番号に依存し、規則的に増
大する。
This energy depends on the atomic number of the element and increases regularly.

第4図にに殻の特性X線エネルギーと原子番号の関係を
示す。この関係から、明らかなように特性X線のエネル
ギーが20KeV以下となる原子番号は44と云うこと
になる。
Figure 4 shows the relationship between the characteristic X-ray energy of the shell and the atomic number. From this relationship, it is clear that the atomic number at which the characteristic X-ray energy is 20 KeV or less is 44.

第5図には、シリコン検出器に、本発明を用いた照射線
量計のエネルギー特性を示す。この図中Aで示した実線
が第1図のしゃへい材(アルミナ)5とプローブケース
6がない場合のエネルギー補償前データである。同図に
Bで示した実験点が、プローブケース6の厚さが1.5
mm、シやへい材アルミナ5の厚さを1211nにした
ときのエネルギー特性である。この特性のエネルギー補
償性能は±15%であり、照射線量計のJIS規格を十
分満足するものである。このエネルギー補償法は検出器
を機械的な衝激から保護する目的のプローブケース6の
厚さや、検出素子そのものの特性に合わせて、任意に設
計できる。プローブケース6の厚さが1.5mより薄く
なる場合は、その吸収層の減少割合と同−分だけ、アル
ミナ材の厚さを厚くすることで同じ特性が得られる。こ
のときの設計基準は放射線のエネルギー(E)=80K
eVの線吸収係数μ(E)を用いたしゃへい計算が良く
一致する。すなオ]ち、プローブケース6の材料を鉄(
Fe)とし、その薄くした厚さをt (Fe)とすると
、放射線吸収の減 ときのアルミナ材厚の増分t(、’M))は−μ(A、
N・E)・t、(AQ、)   u(I’e−E)・t
(F’e)e                   
 =eから求ぬられる。アルミナとアルミニウムの実効
的な吸収係数は同等である。検出素子そのもの特性も若
干異なるがプローブケース厚1〜2mの場合、アルミナ
材の厚さは5〜15IInで第5図に示したエネルギー
補償性能が得られる。
FIG. 5 shows the energy characteristics of an irradiation dosimeter using the present invention in a silicon detector. The solid line indicated by A in this figure is the data before energy compensation when the shielding material (alumina) 5 and the probe case 6 shown in FIG. 1 are not provided. At the experimental point indicated by B in the figure, the thickness of the probe case 6 was 1.5 mm.
This is the energy characteristic when the thickness of the aluminum alumina 5 is 1211 nm. The energy compensation performance of this characteristic is ±15%, which fully satisfies the JIS standard for irradiation dosimeters. This energy compensation method can be arbitrarily designed according to the thickness of the probe case 6 intended to protect the detector from mechanical impact and the characteristics of the detection element itself. When the thickness of the probe case 6 becomes thinner than 1.5 m, the same characteristics can be obtained by increasing the thickness of the alumina material by the same amount as the reduction rate of the absorption layer. The design standard at this time is radiation energy (E) = 80K
Shielding calculations using the eV linear absorption coefficient μ(E) are in good agreement. ] The material of the probe case 6 is iron (
If the reduced thickness is t (Fe), then the increment t(,'M)) in the alumina material thickness when the radiation absorption decreases is -μ(A,
N・E)・t, (AQ,) u(I'e−E)・t
(F'e)e
= found from e. The effective absorption coefficients of alumina and aluminum are comparable. Although the characteristics of the detection element itself are slightly different, when the probe case thickness is 1 to 2 m, the energy compensation performance shown in FIG. 5 can be obtained when the alumina material has a thickness of 5 to 15 IIn.

以上のような精度の高いエネルギー補償が任意に設計で
きる理[i 1士、上記に述へた特性X線に対する配慮
のほか、エネルギー補償に用いる材料の吸収係数に不連
続点がなく、きわめて精度の高い設計計算が可能となる
ことによる。第6図の光子エネルギーを質量吸収係数の
関係を示す。この図から分かるように、P b + S
 r+等の原子番号の犬きい材料は100KeV (0
,1MeV)以下で極端に不連続となる点が存在する。
The reason why highly accurate energy compensation as described above can be arbitrarily designed [1] In addition to the above-mentioned considerations for characteristic This is due to the fact that high design calculations are possible. Figure 6 shows the relationship between photon energy and mass absorption coefficient. As can be seen from this figure, P b + S
A material with a high atomic number such as r+ has a voltage of 100 KeV (0
, 1 MeV), there is a point where it becomes extremely discontinuous.

このため、広いエネルギー範囲に渡って均一化するエネ
ルギー補償計算がきわめて難しくなる。低原子番号の材
料は、この問題が生じなく、正確なエネルギー補償設計
が可能となる。
For this reason, it becomes extremely difficult to calculate energy compensation to make it uniform over a wide energy range. Low atomic number materials do not suffer from this problem and allow for accurate energy compensation designs.

上記エネルギー補償例で、プローブケース6が全くない
場合も、同様の考え方からエネルギー特性を補償するこ
とが可能である。プローブケースが全くない場合は、ア
ルミナ材が1011II〜35m+の範囲で同一のエネ
ルギー補償性能を得ることができる。
In the above example of energy compensation, even if there is no probe case 6 at all, it is possible to compensate the energy characteristics based on the same idea. If there is no probe case at all, the same energy compensation performance can be obtained with alumina materials ranging from 1011II to 35m+.

次に吸収線量計のエネルギー特性について述べる。照射
線量計はレントゲン(R)単位に基づくものであり吸収
線量計は、レム(rem )あるいはシーベルト(Sv
)単位に基づくものである。吸収線量は吸収される材料
によって異なり、一般的にはエネルギー依存性を持つ吸
収線量換算係数を乗することによって求められる。これ
は、正確に個人被曝線量を評価する場合、重要な換算係
数となる。最近、国際委員会でこの換算係数が制定され
た(ICRU−39,ICRU: International  Co+m+aissi
on  Radio  logical  Units
and measure+1ents) *この換算係
数と同一のプロファイルを持つ、エネルギー特性を検出
器内で実現すれば、生体への吸収線量を換算なしで直接
測定することが可能となる。
Next, we will discuss the energy characteristics of absorption dosimeters. Irradiation dosimeters are based on roentgen (R) units, and absorption dosimeters are based on rem (rem) or sievert (Sv) units.
) is based on units. The absorbed dose varies depending on the material being absorbed, and is generally calculated by multiplying by an absorbed dose conversion coefficient that is energy dependent. This is an important conversion factor when accurately assessing individual exposure doses. Recently, this conversion factor was established by an international committee (ICRU-39, ICRU: International Co+m+aissi
on Radio logical units
and measurement+1ents) *If an energy characteristic with the same profile as this conversion factor is realized in the detector, it becomes possible to directly measure the absorbed dose to the living body without conversion.

本発明で、生体への吸収線量特性に合致したエネルギー
特性を設計し、その性能を実証した結果を第7図に示す
、第5図と同一の検出素子に対し、プローブケース厚を
1.5mm、アルミナ厚を7mmに設計した結果である
In the present invention, we have designed energy characteristics that match the absorbed dose characteristics to the living body, and the results of demonstrating its performance are shown in Figure 7.For the same detection element as in Figure 5, the probe case thickness was 1.5 mm. This is the result of designing the alumina thickness to 7 mm.

第8図には本発明の変形例を示す、この変形例は検出素
子1の背面にも、しやへい材20を設は無指向性を図っ
たものである。当然、フラットベース基材2の放射線吸
収を考慮し、検出素子1の背面のしゃへい材20は、前
面のしゃへい材5より薄く設計することになる。
FIG. 8 shows a modification of the present invention. In this modification, a stiffening material 20 is also provided on the back surface of the detection element 1 to achieve non-directivity. Naturally, considering the radiation absorption of the flat base substrate 2, the shielding material 20 on the back side of the detection element 1 is designed to be thinner than the shielding material 5 on the front side.

その他の変形例として、検出素子に隣接して設ける原子
番号44以下のしゃへい材の外側に原子番号44以上の
しやへい材を設ける構造でも、その高原子番号の材料か
ら放出する特性X線を検出素子に隣接して設ける原子番
号44以下の材料でじゃへいする効果があるので上記説
明と同様の線量計を実現することができる。
As another modification, a structure in which a shielding material with an atomic number of 44 or higher is provided outside of a shielding material with an atomic number of 44 or lower provided adjacent to the detection element may also prevent characteristic X-rays emitted from the material with a high atomic number. Since the material having an atomic number of 44 or less provided adjacent to the detection element has a blocking effect, it is possible to realize a dosimeter similar to that described above.

第9図に、他の変形例を示す、検出素子1を、エネルギ
ー補償を図るに必要な厚さのしゃへい材 15で完全に
包囲し、検出素子1に接続する検出信号線8をしやへい
材5の外部に引き出す。アルミナ5は絶縁材であり、検
出素子1と接触することによって問題は生じない。この
構造を取ることによってもつとも小型で無指向性の本発
明の線量計を実現できる。
FIG. 9 shows another modification in which the detection element 1 is completely surrounded by a shielding material 15 of a thickness necessary for energy compensation, and the detection signal line 8 connected to the detection element 1 is shielded. Pull out the material 5 to the outside. Alumina 5 is an insulating material, and contact with detection element 1 will not cause any problems. By adopting this structure, it is possible to realize a very compact and non-directional dosimeter of the present invention.

これは、個人被曝線量計等の携帯用検出器として実用価
値が高い。
This has high practical value as a portable detector such as a personal exposure dosimeter.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、任意のエネルギー特性を持つ半導体線
量計が可能となり、高精度の照射線量計や吸収線量計を
実現できる0本発明の検出器のエネルギー補償性能は、
エネルギー範囲80KeV〜3 M e Vに対し、従
来の±25%から±15%と40%向上させることがで
きる。また、従来の試行を繰り返えしてエネルギー特性
を調整することや、補償材に開口部を設けるなどの複雑
な処理を一切不要にすることができ、検出器の製作調整
コストが50%以上低減できる。
According to the present invention, a semiconductor dosimeter with arbitrary energy characteristics is possible, and a highly accurate irradiation dosimeter or absorption dosimeter can be realized.The energy compensation performance of the detector of the present invention is as follows:
For the energy range of 80 KeV to 3 M e V, it is possible to improve by 40% from the conventional ±25% to ±15%. In addition, it is possible to eliminate the need for complex processes such as repeating conventional trials to adjust the energy characteristics and creating openings in the compensation material, reducing the manufacturing and adjustment cost of the detector by more than 50%. Can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は本発明検
出器の立体図、第3図は半導体検出素子の断面図、第4
図は特性X線と原子番号の関係を示す図、第5図は照射
線量計のエネルギー特性を示す図、第6図は各種材料の
光子エネルギーと質量吸収係数の関係を示す図、第7図
は生体の吸収線量計のエネルギー特性を示す図、第8図
は本発明の変形例を示す図、第9図は他の変形例を示す
図である。 1・・・半導体検出素子、2・・・フラットベース基材
、3・・・ボンディングワイヤ、4°・・・シーメチツ
クシール、5・・・しやへい材、6・・・プローブケー
ス、7・・・検出器支持ポール、8・・・検出信号線、
10・・・陽電極、11− n十層、12 空乏層、2
0 し−やへい材。 キ1日 第′2−図 范3図 1]10 卒牟図 斤)奈号 第S図 と Vは工3.1しギー (Mev) 高6区 尤善工不ル矢−(MeV) 第9図 本8図
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a three-dimensional view of the detector of the present invention, FIG. 3 is a cross-sectional view of a semiconductor detection element, and FIG.
The figure shows the relationship between characteristic X-rays and atomic number, Figure 5 shows the energy characteristics of the irradiation dosimeter, Figure 6 shows the relationship between photon energy and mass absorption coefficient of various materials, and Figure 7 8 is a diagram showing energy characteristics of a living body absorption dosimeter, FIG. 8 is a diagram showing a modification of the present invention, and FIG. 9 is a diagram showing another modification. DESCRIPTION OF SYMBOLS 1... Semiconductor detection element, 2... Flat base base material, 3... Bonding wire, 4°... Seametic seal, 5... Shrinkage material, 6... Probe case, 7 ...Detector support pole, 8...Detection signal line,
10... positive electrode, 11-n ten layer, 12 depletion layer, 2
0 Shiyahei wood. Ki 1st day '2 - Figure 3 Figure 1] 10 Graduation map) Nagou No. S map and V are Engineering 3.1 Shigi (Mev) High school 6th ward Yoshiko Furuya - (MeV) No. 9 figure book 8 figure

Claims (1)

【特許請求の範囲】 1、半導体放射線検出素子を用いる放射線線量測定器に
おいて、検出素子にもつとも近い位置に、原子番号44
以下の元素を主成分とする材料を配置した放射線線量測
定器。 2、請求項1記載の線量測定器において、入射する光子
エネルギーに依存する線量検出感度が、生体の吸収線量
等量のエネルギー依存性に、相対的に一致する放射線線
量測定器。 3、半導体放射線検出素子を用いる放射線線量測定器に
おいて、エネルギ補償用のシールド材として原子番号4
4以下の元素を主成分とする材料を用いた放射線線量測
定器。
[Scope of Claims] 1. In a radiation dosimeter using a semiconductor radiation detection element, at a position closest to the detection element, atomic number 44
A radiation dosimeter equipped with materials containing the following elements as main components. 2. The radiation dosimeter according to claim 1, wherein the dose detection sensitivity depending on incident photon energy is relatively equal to the energy dependence of absorbed dose equivalent in a living body. 3. In radiation dosimeters using semiconductor radiation detection elements, atomic number 4 is used as a shielding material for energy compensation.
Radiation dosimeter using materials whose main components are 4 or less elements.
JP63053520A 1988-03-09 1988-03-09 Radiation dose measuring instrument Granted JPH01227983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053520A JPH01227983A (en) 1988-03-09 1988-03-09 Radiation dose measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053520A JPH01227983A (en) 1988-03-09 1988-03-09 Radiation dose measuring instrument

Publications (2)

Publication Number Publication Date
JPH01227983A true JPH01227983A (en) 1989-09-12
JPH0574029B2 JPH0574029B2 (en) 1993-10-15

Family

ID=12945097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053520A Granted JPH01227983A (en) 1988-03-09 1988-03-09 Radiation dose measuring instrument

Country Status (1)

Country Link
JP (1) JPH01227983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311272A (en) * 1994-05-17 1995-11-28 Aloka Co Ltd Radioactive ray detector
US6013916A (en) * 1997-07-23 2000-01-11 The Regents Of The University Of Michigan Flat panel dosimeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311272A (en) * 1994-05-17 1995-11-28 Aloka Co Ltd Radioactive ray detector
US6013916A (en) * 1997-07-23 2000-01-11 The Regents Of The University Of Michigan Flat panel dosimeter

Also Published As

Publication number Publication date
JPH0574029B2 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
JP3140052B2 (en) Neutron detector
Hanser et al. Design and calibration of the GOES-8 solar x-ray sensor: the XRS
Lennard et al. Nonlinear response of Si detectors for low-Z ions
Leake A spherical dose equivalent neutron detector
JP2901315B2 (en) Dosimeter
Antonuk et al. Development of hydrogenated amorphous silicon sensors for high energy photon radiotherapy imaging
Mitchell et al. The use of si surface barrier detectors for energy calibration of mev ion accelerators
Liebert et al. X-Ray Production by Protons of 2.5-12-MeV Energy
JPH01227983A (en) Radiation dose measuring instrument
East et al. Compton scattering by bound electrons
Ferri et al. The structure of lateral electromagnetic shower development in Si/W and Si/U calorimeters
Seguin et al. Radiation-hardened x-ray imaging for burning-plasma tokamaks
JP3358617B2 (en) Neutron dose rate meter
CN114518589A (en) Method for realizing energy calibration of gas proportional detector based on thick radioactive source
Faulk et al. Coincidence measurement of the fully differential cross section for atomic-field bremsstrahlung
Hollstein Response characteristics of a high-resolution Si (Li) photon spectrometer
Slapa et al. A new concept of dosimeter with silicon photodiodes
JPH07176777A (en) Neutron detector and neutron monitor
JPS6340244A (en) Neutron detector for atomic reactor
Kerur et al. X‐ray attenuation coefficients at 6.46 keV and the validity of the mixture rule for compounds
Day X-ray Calibration of Radiation Survey Meters: Pocket Chambers and Dosimeters
Mattox et al. Use of a tunable quasimonoenergetic gamma-ray beam for the calibration of the EGERT gamma-ray telescope in the range 20–24000 MeV
Young et al. Absolute calibration of a prompt gamma-ray detector for intense bursts of protons
Campanella et al. The effect of radiation on ion-implanted silicon detectors
JPH07131052A (en) Semiconductor radiation detecting element, gamma-ray neutron beam detector and dosimeter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 15