JPH01227916A - Three-dimensional optical distance sensor - Google Patents

Three-dimensional optical distance sensor

Info

Publication number
JPH01227916A
JPH01227916A JP5517488A JP5517488A JPH01227916A JP H01227916 A JPH01227916 A JP H01227916A JP 5517488 A JP5517488 A JP 5517488A JP 5517488 A JP5517488 A JP 5517488A JP H01227916 A JPH01227916 A JP H01227916A
Authority
JP
Japan
Prior art keywords
semiconductor laser
light emission
light
wavelength
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5517488A
Other languages
Japanese (ja)
Other versions
JPH07113549B2 (en
Inventor
Kanji Nishii
西井 完治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5517488A priority Critical patent/JPH07113549B2/en
Publication of JPH01227916A publication Critical patent/JPH01227916A/en
Publication of JPH07113549B2 publication Critical patent/JPH07113549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To measure the surface of a body to be measured speedily in fine steps by varying the light emission wavelength of a semiconductor laser by utilizing the wavelength dispersibility of an optical device. CONSTITUTION:When a variable reference voltage generating means 19 varies the reference voltage of an APC (Automatic Power Control) circuit 18, the output of the APC circuit 18, i.e. the injecting current to a semiconductor laser 11 varies until the output voltage of a light emission power detector 17 becomes equal to the reference voltage, so that the light emission power of the semiconductor 11 varies. The light emission wavelength of the semiconductor laser 11 has light emission power dependency, so the light emission power also varies. The variation in the light emission wavelength causes variation in the projection angle of slit projection light from a shaping prism 13. Consequently, slit luminous flux is scanned at a high speed in fine steps without using a polarizing mirror nor a rotary encoder.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光を用いて物体表面の段差を非接触で測定す
る三次元光距離センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a three-dimensional optical distance sensor that non-contactly measures steps on the surface of an object using light.

従来の技術 従来の光距離センサの構成を図面に基づいて以下に説明
する。第5図は従来の光距離センサの構成図である。l
はレーザ、2は図中のX方向にビームを走査する第一の
偏向ミラー、3は図中のX方向にビームを走査する第二
の偏向ミラー、4は被測定物体、5は被測定物体4から
の反射光を集光する集光レンズ、6は集光レンズの後方
に配置された二次元アレイ光検出器である。
2. Description of the Related Art The structure of a conventional optical distance sensor will be described below with reference to the drawings. FIG. 5 is a configuration diagram of a conventional optical distance sensor. l
is a laser, 2 is a first deflection mirror that scans the beam in the X direction in the figure, 3 is a second deflection mirror that scans the beam in the X direction in the figure, 4 is the object to be measured, and 5 is the object to be measured A condensing lens condenses the reflected light from 4, and 6 a two-dimensional array photodetector placed behind the condensing lens.

次にこの従来例の光距離センサの原理を第6図を用いて
説明する。第6図でSを集光レンズ5の中心、Lをレー
ザlからの出射ビームの中心、0を被測定物体4上の点
、θ及びφを各4点Oからの反射ビーム、レーザlから
の出射ビームが基線LSと成す角度とし、Dを基線LS
の長さと置けば点Oまでの距離りは式(1)で表される
h=Dtanθtanφ(tanθ+tanφ)・Φ・
式(1)。
Next, the principle of this conventional optical distance sensor will be explained with reference to FIG. In Fig. 6, S is the center of the condenser lens 5, L is the center of the beam emitted from the laser l, 0 is a point on the object to be measured 4, θ and φ are the reflected beams from each of the four points O, and the beam from the laser l is Let D be the angle that the outgoing beam of
If we set it as the length of , then the distance to point O is expressed by equation (1):
Formula (1).

ここて角度eは集光レンズ5のに軸の向きであり式(2
)で与えられる tane=f/d       ・・式(2)f:集光
レンズ5の焦点距離 d:集光レンズ5の中心と、二次元アレイ光検出器上の
ビーム検出点の距離 従って、第−及び第一の偏向ミラー2.3(によりX方
向及びX方向にレーザビームを走査し、 二次元アレイ
光検出器6上ζこ集光させ二次)[アレイ光検出器上の
ビーム検出点Sと出射ビームの中心り及び被測定物体4
上の点Oの間て式(1)、式(2)を三次元に拡張する
事で被測定物体4との三次元的距離計測が可能となる。
Here, the angle e is the direction of the axis of the condenser lens 5, and is expressed by the formula (2
tane=f/d given by (2) f: Focal length of the condenser lens 5 d: Distance between the center of the condenser lens 5 and the beam detection point on the two-dimensional array photodetector. - and the first deflection mirror 2.3 (by which the laser beam is scanned in the X direction and the S, the center of the output beam, and the object to be measured 4
By extending equations (1) and (2) three-dimensionally between the point O above, three-dimensional distance measurement to the object to be measured 4 becomes possible.

発明が解決しようとする課題 しかしながら上記の様な構成では、レーザビームをX、
  X方向に走査するのに偏向ミラーを用いる必要が有
り、これらの偏向ミラーの回転1i’1i3Wのための
角度検出を行う検出器としてロータリエンコーダが用い
られているが、このようなロータリエンコーダでは分解
能が0.01度程度のオーダにずぎずまた、(r−向ミ
ラーの応答周波数も数K H2のオーダにすぎない。従
って、被測定物体の表面を高速にしかも微小ステップで
測定することは困難であった。
Problems to be Solved by the Invention However, in the above configuration, the laser beam is
It is necessary to use deflection mirrors to scan in the X direction, and a rotary encoder is used as a detector to detect the angle for rotation 1i'1i3W of these deflection mirrors. is not only on the order of 0.01 degree, but also the response frequency of the r-direction mirror is on the order of only a few KH2. Therefore, it is difficult to measure the surface of the object to be measured at high speed and in minute steps. Met.

本発明は、かかる問題点に鑑み光学素子の波長分散性を
利用し、半導体レーザの発光波長を変化する手段を用い
ることで、被測定物体の表面を高速にかつ微小ステップ
で測定可能な三次元光距離センサを提供することを目的
とする。
In view of these problems, the present invention makes use of the wavelength dispersion properties of optical elements and uses a means for changing the emission wavelength of a semiconductor laser, thereby making it possible to measure the surface of an object in three dimensions at high speed and in minute steps. The purpose is to provide an optical distance sensor.

課題を解決するための手段 本発明は、゛V導体レーザと、この゛V導体レーザから
の光を集光し平行光とする集光手段と、この集光された
レーザ光をスリット状光東にビーl、形状を変換するビ
ーム整形手段と、このビーム整形1段を経た光を反射ま
たは透過する波長分散性を有する光学素子と、この波長
分散性を有する光学素子と略同一平面内に配された二次
元光検出器と、゛V導体レーザの発光波長可変手段とを
備えたことを特徴とする三次元光距離センサである。
Means for Solving the Problems The present invention provides a V-conductor laser, a condensing means for condensing light from the V-conductor laser into parallel light, and a slit-shaped light beam for directing the condensed laser light. A beam shaping means for converting the beam shape, an optical element having a wavelength dispersion property for reflecting or transmitting the light that has passed through one stage of beam shaping, and an optical element having a wavelength dispersion property arranged substantially in the same plane as the optical element having the wavelength dispersion property. This is a three-dimensional optical distance sensor characterized by being equipped with a two-dimensional photodetector and a means for changing the emission wavelength of a V-conductor laser.

作用 本発明は、上記した構成によりまずビーム整形手段によ
り半導体レーザの楕円発光ビーム細長いスリット状とし
、さらに半導体レーザの発光波長を可変化させ波長分散
性を有する光学素子への入射光の波長を変化させ波長分
散によりスリット状出射光の出射角度を変化させること
で被測定物体の表面を面として走査可能となり微小ステ
ップ送り、高速走査型の三次元光距離センサを提供でき
る。
Effect of the present invention With the above-described configuration, first, the elliptical emission beam of the semiconductor laser is made into a long and narrow slit shape by the beam shaping means, and then the emission wavelength of the semiconductor laser is varied to change the wavelength of the incident light to the optical element having wavelength dispersion. By changing the emission angle of the slit-shaped emitted light by wavelength dispersion, it is possible to scan the surface of the object to be measured as a plane, and it is possible to provide a three-dimensional optical distance sensor of fine step feeding and high-speed scanning type.

実施例 第1図は本発明の第一の実施例の平面図である。Example FIG. 1 is a plan view of a first embodiment of the invention.

11は半導体レーザ、12は半導体レーザがらの出射光
を集光して平行光とするコリメータレンズ、13はコリ
メータレンズから出射した楕円ビームの短軸方向を縮小
し細長いスリット状光にビーム整形する整形プリズム、
14は整形プリズムからの出射光が投射される被測定物
体、15は被測定物体14からの反射光を集光する集光
レンズ、16は整形プリズムの出射面と略同一平面内に
配されかつ、集光レンズ15により集光されたビー11
を検出する二次元アレイ光検出器、17は半導体レーザ
11の発光パワーを半導体レーザ11の裏面から検出す
る発光パワー検出器、18は発光パワー検出の出力すな
わち半導体レーザ110発光パワーを、可変基準電圧発
生手段19により一定に制御するAPC(Automa
tic  Power C0ntrO1)回路である。
11 is a semiconductor laser, 12 is a collimator lens that condenses the emitted light from the semiconductor laser into parallel light, and 13 is a shaper that reduces the short axis direction of the elliptical beam emitted from the collimator lens and shapes the beam into an elongated slit-shaped light. prism,
14 is an object to be measured onto which the light emitted from the shaping prism is projected, 15 is a condenser lens that collects the reflected light from the object to be measured 14, and 16 is arranged in substantially the same plane as the exit surface of the shaping prism. , the beam 11 focused by the focusing lens 15
17 is a light emission power detector that detects the light emission power of the semiconductor laser 11 from the back surface of the semiconductor laser 11; 18 is a light emission power detector that detects the light emission power of the semiconductor laser 110, and a variable reference voltage; The APC (Automatic Control) is constantly controlled by the generating means 19.
tic Power C0ntrO1) circuit.

発光波長可変手段20は、上記の発光パワー検出器17
、APC回路18、可変基準電圧発生手段19からなる
The emission wavelength variable means 20 includes the emission power detector 17 described above.
, an APC circuit 18, and a variable reference voltage generating means 19.

以上のように、構成された本発明の第一の実施例につい
て、第1図および第2図を用いてその動作を以下に説明
する。可変基準電圧発生手段19により、APC回路1
8の基準電圧を変化させると、発光パワー検出器17の
出力電圧がこの基準電圧に等しくなるまで、APC回路
18の出力すなわち半導体レーザ11への注入電流が変
化し、半導体レーザ110発光パワーが変化する。半導
体レーザ11の発光波長は発光パワー依存性を持ってい
るので、発光パワーも変化する。
The operation of the first embodiment of the present invention constructed as described above will be described below with reference to FIGS. 1 and 2. The variable reference voltage generating means 19 causes the APC circuit 1 to
When the reference voltage 8 is changed, the output of the APC circuit 18, that is, the current injected into the semiconductor laser 11, changes until the output voltage of the emission power detector 17 becomes equal to this reference voltage, and the emission power of the semiconductor laser 110 changes. do. Since the emission wavelength of the semiconductor laser 11 is dependent on the emission power, the emission power also changes.

次に、この発光波長の変化による整形プリズム13から
の出射光の出射角度変化を第2図を用いて説明する。整
形プリズム13の頂角をα、プリズム入射面への入射角
をβ、そこでの屈折角をγ、プリズムからの出射角をδ
、プリズム硝子材の屈折率をnとする。入射面、出射面
のおのおのでスネルの法則が成り立つ 入射面:sinβ=1sin7  ”・式(3)出射面
: n5in(y + a )=sinδ  ・・・式
(4)ここで、硝子材の波長分散を考え式(3)、(4
)の微分を取ると式(3)より o=ci  n  S  i  n7+n  COS 
 7d7−””式(5)式(4)より dnsin(r + a )+ncos(r + a 
)dr =cosδdδ・・・・式(6) 式(5)、(6)より dδ=1/CoSδ(dnsin(r + a ) −
ncos(r + a )dnsinδ/ncosδ) = 1/cosδ(sin(7+ a )−cos(7
+ a )tan7 )dn)         ””
式(7)%式% と書けるので結局、半導体レーザUの発光波長変化とプ
リズム硝子材の分散による出射角の変化はdδ=sin
adn/(cosδcosy)  ””式(8)一方、
整形プリズムの縮小率Mは、 M=cosδcos 1 /(cosβcos(γ+α
)+1Φφ式(9)%式% 例えばここで、整形プリズム13の硝子材として5FI
Iを選ぶと なので 整形プリズム13の頂角α=20度、 入射角β=25度とすると、 γ= 14.77度 M崎0.4倍 δ= 72.02
度dδ’、o、os度(入: 800na+−>830
naw)となる。
Next, a change in the angle of emission of the light emitted from the shaping prism 13 due to a change in the emission wavelength will be explained using FIG. 2. The apex angle of the shaping prism 13 is α, the angle of incidence on the prism incidence surface is β, the refraction angle there is γ, and the exit angle from the prism is δ.
, the refractive index of the prism glass material is n. Snell's law holds true for each of the entrance and exit surfaces.Incidence surface: sinβ=1sin7''・Formula (3) Output surface: n5in(y+a)=sinδ...Formula (4) Here, the wavelength of the glass material Considering the variance, formulas (3) and (4
), then from equation (3), o=ci n S i n7+n COS
7d7-”” From equation (5) and equation (4), dnsin(r + a )+ncos(r + a
)dr = cosδdδ...Equation (6) From Equations (5) and (6), dδ=1/CoSδ(dnsin(r + a) −
ncos(r+a)dnsinδ/ncosδ) = 1/cosδ(sin(7+a)−cos(7
+a)tan7)dn)””
Equation (7) can be written as %Equation % Therefore, in the end, the change in the emission angle due to the change in the emission wavelength of the semiconductor laser U and the dispersion of the prism glass material is dδ=sin
adn/(cosδcosy) “”Formula (8) On the other hand,
The reduction rate M of the shaping prism is M=cosδcos 1 /(cosβcos(γ+α
) + 1Φφ formula (9)% formula % For example, here, 5FI is used as the glass material of the shaping prism 13.
If you choose I, then if the apex angle of the shaping prism 13 is α = 20 degrees and the incident angle β = 25 degrees, then γ = 14.77 degrees M 0.4 times δ = 72.02
degree dδ', o, os degree (input: 800na+->830
naw).

一般に半導体レーザの遠視野像の楕円率は2〜3程度な
ので、整形プリズム出射光の楕円率は5〜7.5となり
、スリット状の光束とする事が可能となる。
Generally, the ellipticity of the far-field pattern of a semiconductor laser is about 2 to 3, so the ellipticity of the light emitted from the shaping prism is 5 to 7.5, making it possible to form a slit-shaped light beam.

また、発光波長可変手段20により半導体レーザ11の
発光波長を30nm変化させればプリズム硝子材の分散
による出射角の変化は、dδ=0゜08度となるので、
例えば、整形プリズム13の出射面と被測定物体面の距
離を1mとすると略l。
Furthermore, if the emission wavelength of the semiconductor laser 11 is changed by 30 nm by the emission wavelength variable means 20, the change in the emission angle due to the dispersion of the prism glass material will be dδ=0°08 degrees.
For example, if the distance between the exit surface of the shaping prism 13 and the surface of the object to be measured is 1 m, then approximately l.

4mmスリット状の光束をY方向に走査できる。A 4mm slit-shaped light beam can be scanned in the Y direction.

すなわち半導体レーザ11の発光波長の変化Inm当た
りo−oot度程度の微小ステップ送りが可能でかつ、
数mm程度の走査範囲が容易に得られることになる。
That is, it is possible to perform minute step feeding of about o-oot degrees per Inm of change in the emission wavelength of the semiconductor laser 11, and
A scanning range of several mm can be easily obtained.

従って、上記の様な構成の発光波長可変手段20、整形
プリズム13を用いれば、X、  Y二方向に光ビーム
を偏向するための偏向ミラー、その回転角を検出するた
めのロータリーエンコダーを用いること無く、スリット
状の光束を0.001度程程度微小ステップで、高速に
走査することが可能となる。
Therefore, if the light emission wavelength variable means 20 and the shaping prism 13 configured as described above are used, a deflection mirror for deflecting the light beam in two directions, X and Y, and a rotary encoder for detecting the rotation angle thereof can be used. It becomes possible to scan the slit-shaped light beam in minute steps of about 0.001 degree at high speed without any problems.

次に本発明の第二の実施例を第3図を用いて説明する。Next, a second embodiment of the present invention will be described using FIG. 3.

図中の番号11〜16は、第1図のものと同じものを示
している。21は電流によって冷却あるいは加熱を行う
ペルチェ素子であり半導体レーザ11に固着されている
。22は温度検出器であり半導体レーザ11の温度を検
出する。23はA T C(Auton+atic T
empreture Control)回路で有り可変
基準電圧発生手段24から供給される電圧により、温度
検出器22の出力すなち半導体レーザ11の温度が一定
波長となるようペルチェ素子駆動電流を制御する0発光
波長可変手段20は、温度検出器22、ペルチェ素子2
1、ATC回路23及び可変可変基準電圧発生手段24
により構成されている。
Numbers 11 to 16 in the figure indicate the same parts as in FIG. Reference numeral 21 denotes a Peltier element that performs cooling or heating using an electric current, and is fixed to the semiconductor laser 11. A temperature detector 22 detects the temperature of the semiconductor laser 11. 23 is AT C (Auto+atic T
0 emission wavelength variable control circuit that controls the Peltier element drive current so that the output of the temperature detector 22, that is, the temperature of the semiconductor laser 11, becomes a constant wavelength by the voltage supplied from the variable reference voltage generation means 24. The means 20 includes a temperature detector 22 and a Peltier element 2.
1. ATC circuit 23 and variable reference voltage generation means 24
It is made up of.

次に、本発明の第二の実施例の動作を第3図を用いて説
明する。半導体レーザの発光波長は温度により変化する
。従って、可変基準電圧発生手段24によりATC回E
23の基i(i電圧を設定して、ベルチェ素子21の駆
動電流を制御すれは半導体レーザ11の温度を任意に設
定し、発光波長をu7変化できる。
Next, the operation of the second embodiment of the present invention will be explained using FIG. The emission wavelength of a semiconductor laser changes depending on the temperature. Therefore, the variable reference voltage generating means 24
By setting the base i (i voltage of 23) to control the driving current of the Bertier element 21, the temperature of the semiconductor laser 11 can be arbitrarily set, and the emission wavelength can be changed u7.

従って、前述の本発明の第一の実施例と同様に、整形プ
リズム130波長分散性を利用して、出射光の出射角を
、微小ステップで走査でき、本発明の第一の実施例と同
様の効果を得ることができ、さらに本発明の第一の実施
例とは異なり、半導体レーザ11の発光パワーを一定に
できるので発光パワーに伴う光量変化補正手段を要さな
いという利点も有している。
Therefore, similarly to the first embodiment of the present invention described above, the emission angle of the emitted light can be scanned in minute steps by utilizing the wavelength dispersion of the shaping prism 130. In addition, unlike the first embodiment of the present invention, since the light emitting power of the semiconductor laser 11 can be kept constant, there is also the advantage that there is no need for a means for correcting changes in the amount of light accompanying the light emitting power. There is.

次に、本発明の第二の実施例を第4図を用いて説明する
。第4図は分布反射型レーザ(DBRレーザ)と呼ばれ
る、半導体レーザ内部に回折格子を有する先導波路型レ
ーザの構成図である。
Next, a second embodiment of the present invention will be described using FIG. 4. FIG. 4 is a configuration diagram of a guided waveguide laser called a distributed reflection laser (DBR laser) that has a diffraction grating inside a semiconductor laser.

DBR領域の反射率rと位相φlは r =−jに5inhγLバγcoshγL+(α+ 
j AB)sinh7L) =1γl exp (jΦ1)  ・・・・式(10)
%式%) A :回折格子の周期 に :光と回折格子の結合定数 α :I)BR領領域損失 β :伝搬定数 一方発光領域の位相φ2は φ2=βaLa       ””式(11)β31発
光領域の伝搬定数 [、a:発光領域の長さ この様な光導波路型レーザは、レーザ発振の位相整合条
件 φ1−φ2+2mπ    ・・・式(12)を満足す
る必要が有る。すなわちこの条件を満足する波長で発光
する。
The reflectance r and phase φl of the DBR region are 5inhγL and γcoshγL+(α+
j AB) sinh7L) =1γl exp (jΦ1) ...Formula (10)
% Formula %) A : Period of the diffraction grating : Coupling constant between light and diffraction grating α : I) BR region loss β : Propagation constant On the other hand, the phase φ2 of the light emitting region is φ2 = βaLa ``'' Equation (11) β31 Light emitting region Propagation constant [, a: length of light emitting region Such an optical waveguide laser needs to satisfy the phase matching condition for laser oscillation φ1−φ2+2mπ...Equation (12). That is, it emits light at a wavelength that satisfies this condition.

ところが、DBR領域に電流を注入すると、電子やキャ
リヤが光導波層に蓄えられる。キャリヤが蓄積されると
プラズマ効果により等価屈折率neqが減少する。従っ
て、式く10)てΔβ=(2π/λ)neq−π/Aが
変化し、φ1も変化する。
However, when current is injected into the DBR region, electrons and carriers are stored in the optical waveguide layer. When carriers are accumulated, the equivalent refractive index neq decreases due to the plasma effect. Therefore, according to the equation (10), Δβ=(2π/λ)neq−π/A changes, and φ1 also changes.

よって式(12)の位相整合条件から、発光波長が変わ
る。
Therefore, the emission wavelength changes based on the phase matching condition of equation (12).

従って、発光波長可変手段20を、その内部に回折格子
を有する光導波路型半導体レーザと、内部回折格子領域
への注入電流制御手段とにより構成すれば、前述の本発
明の第一および第二の実施例と同様の効果をうろことが
できる。
Therefore, if the emission wavelength variable means 20 is constituted by an optical waveguide type semiconductor laser having a diffraction grating therein and a means for controlling the injection current into the internal diffraction grating region, the above-mentioned first and second aspects of the present invention can be achieved. You can enjoy the same effects as in the example.

また本実施例によれば、半導体レーザの発光パワーを一
体化できかつ、ベルチェ素子21、温度検出器22が不
要となるばかりで無くペルチェ素子21駆動のための電
力と比較して、大幅な低消費電力化が可能となるといっ
た利点を有している。
Furthermore, according to this embodiment, it is possible to integrate the emission power of the semiconductor laser, and not only eliminates the need for the Beltier element 21 and the temperature detector 22, but also significantly reduces the power required to drive the Peltier element 21. This has the advantage that power consumption can be reduced.

上記の実施例においては、スリット状ビームに変換する
手段として三角プリズムを使用したが、これに限定され
ることなく例えばスリット状の開口を用いてもよい、ま
た波長分散性を持つ光学素子として反射型あるいは透過
型の回折格子を用いても同様の効果かえられる。
In the above embodiment, a triangular prism was used as a means for converting the beam into a slit-shaped beam, but the present invention is not limited to this, and for example, a slit-shaped aperture may be used, and an optical element having wavelength dispersion may be used to reflect the beam. A similar effect can be obtained by using a type or transmission type diffraction grating.

発明の効果 本発明の三次元売距離センサは、半導体レーザと、半導
体レーザの楕円状遠視野像の短軸方向のビーム幅を縮小
するビーム整形プリズムと、この整形プリズムの出射面
と略同一平面内に配された二次元光検出器と、半導体レ
ーザの発光波長可変手段とを設けることにより、偏向ミ
ラー等を用いずにスリット状の光束を微小ステップで、
高速に被測定物体の表面を高速に走査する三次元売距離
センサを提供できる。
Effects of the Invention The three-dimensional sales distance sensor of the present invention includes a semiconductor laser, a beam shaping prism that reduces the beam width in the short axis direction of the elliptical far-field pattern of the semiconductor laser, and a beam shaping prism that is substantially coplanar with the exit surface of the shaping prism. By providing a two-dimensional photodetector placed inside the interior and a means for varying the emission wavelength of the semiconductor laser, a slit-shaped light beam can be transmitted in minute steps without using a deflection mirror or the like.
It is possible to provide a three-dimensional distance sensor that scans the surface of an object to be measured at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例の平面図、第2図は本発
明の第一の実施例の動作説明図、第3図は本発明の第二
の実施例の平面図、第4図は本発明の第三の実施例の先
導波路型レーザの構成図、第5図は従来例の構成図、第
6図は従来例の動作説明図である。 11・・・半導体レーザ、12・・・コリメートレンズ
、13・・・整形プリズム、14・・・被測定物体、1
5・・・集光レンズ、16・・・二次元アレイ光検出器
、20・・・半導体レーザの発光波長可変手段。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 20兆九湿町赴R 第2図 第3図 発光ス長で芙手段 第5図
FIG. 1 is a plan view of the first embodiment of the present invention, FIG. 2 is an explanatory diagram of the operation of the first embodiment of the present invention, and FIG. 3 is a plan view of the second embodiment of the present invention. FIG. 4 is a block diagram of a guided waveguide type laser according to a third embodiment of the present invention, FIG. 5 is a block diagram of a conventional example, and FIG. 6 is an explanatory diagram of the operation of the conventional example. DESCRIPTION OF SYMBOLS 11... Semiconductor laser, 12... Collimating lens, 13... Shaping prism, 14... Measured object, 1
5... Condenser lens, 16... Two-dimensional array photodetector, 20... Semiconductor laser emission wavelength variable means. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 1: 20 trillion Kuyu-cho location Figure 2: Figure 3: Head of light source Figure 5:

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザと、この半導体レーザからの光を集
光し平行光とする集光手段と、この集光されたレーザ光
をスリット状光束にビーム形状を変換するビーム整形手
段と、このビーム整形手段を経た光を反射または透過す
る波長分散性を有する光学素子と、この波長分散性を有
する光学素子と、略同一平面内に配された二次元光検出
器と、前記半導体レーザの発光波長可変手段とを備えた
ことを特徴とする三次元光距離センサ。
(1) A semiconductor laser, a condensing means for condensing the light from the semiconductor laser into parallel light, a beam shaping means for converting the beam shape of the condensed laser light into a slit-shaped beam, and this beam an optical element having wavelength dispersion that reflects or transmits the light that has passed through the shaping means; a two-dimensional photodetector disposed substantially in the same plane; and an emission wavelength of the semiconductor laser. A three-dimensional optical distance sensor comprising variable means.
(2)ビーム整形手段と、波長分散性を有する光学素子
とを、レーザ光の楕円状遠視野像の短軸方向のビーム幅
を縮小するビーム整形プリズムにより構成したことを特
徴とする請求項1に記載の三次元光距離センサ。
(2) Claim 1 characterized in that the beam shaping means and the optical element having wavelength dispersion are constituted by a beam shaping prism that reduces the beam width in the minor axis direction of the elliptical far-field image of the laser beam. The three-dimensional optical distance sensor described in .
JP5517488A 1988-03-09 1988-03-09 3D optical distance sensor Expired - Fee Related JPH07113549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5517488A JPH07113549B2 (en) 1988-03-09 1988-03-09 3D optical distance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5517488A JPH07113549B2 (en) 1988-03-09 1988-03-09 3D optical distance sensor

Publications (2)

Publication Number Publication Date
JPH01227916A true JPH01227916A (en) 1989-09-12
JPH07113549B2 JPH07113549B2 (en) 1995-12-06

Family

ID=12991361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5517488A Expired - Fee Related JPH07113549B2 (en) 1988-03-09 1988-03-09 3D optical distance sensor

Country Status (1)

Country Link
JP (1) JPH07113549B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171609A (en) * 1988-12-26 1990-07-03 Tsuguo Kono Optical type displacement measurement using laser beam
JPH09113753A (en) * 1995-10-20 1997-05-02 Fujikura Ltd Observation device for multiple optical fiber
JP2002243409A (en) * 2001-02-22 2002-08-28 Yokogawa Electric Corp Laser interferometer
JP2009222616A (en) * 2008-03-18 2009-10-01 Toyota Central R&D Labs Inc Method and apparatus for measuring azimuth
CN102313866A (en) * 2011-07-29 2012-01-11 杰群电子科技(东莞)有限公司 Method for carrying out scanning test on minimum output voltage drop by two step lengths
JP2015010928A (en) * 2013-06-28 2015-01-19 三菱重工業株式会社 Laser scanner, laser scan system and laser scan method
JP2018105685A (en) * 2016-12-26 2018-07-05 浜松ホトニクス株式会社 Distance measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110411336A (en) * 2018-04-27 2019-11-05 昆山汉鼎精密金属有限公司 Multi-angle dimension measurement device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171609A (en) * 1988-12-26 1990-07-03 Tsuguo Kono Optical type displacement measurement using laser beam
JPH09113753A (en) * 1995-10-20 1997-05-02 Fujikura Ltd Observation device for multiple optical fiber
JP2002243409A (en) * 2001-02-22 2002-08-28 Yokogawa Electric Corp Laser interferometer
JP2009222616A (en) * 2008-03-18 2009-10-01 Toyota Central R&D Labs Inc Method and apparatus for measuring azimuth
CN102313866A (en) * 2011-07-29 2012-01-11 杰群电子科技(东莞)有限公司 Method for carrying out scanning test on minimum output voltage drop by two step lengths
JP2015010928A (en) * 2013-06-28 2015-01-19 三菱重工業株式会社 Laser scanner, laser scan system and laser scan method
JP2018105685A (en) * 2016-12-26 2018-07-05 浜松ホトニクス株式会社 Distance measuring device

Also Published As

Publication number Publication date
JPH07113549B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
US8416818B2 (en) Process and apparatus for a wavelength tuning source
JP2002040350A (en) Optical scanner
JP5121150B2 (en) Tunable laser light source
JPH01227916A (en) Three-dimensional optical distance sensor
JPH07105327B2 (en) Surface position detector
JPS625677A (en) Frequency-stabilized semiconductor laser element
US6034761A (en) Displacement information measuring apparatus
US6340448B1 (en) Surface plasmon sensor
US5508805A (en) Interferometer, optical scanning type tunneling microscope and optical probe
JP3428067B2 (en) Displacement measuring method and displacement measuring device used therefor
JPH04146681A (en) Semiconductor laser device
US5373360A (en) Method and apparatus for reducing rotational bias in a ring laser
JP3044865B2 (en) Displacement information detection device and speedometer
JPH04230885A (en) Speedometer
JP2990891B2 (en) Displacement information detection device and speedometer
US5256885A (en) Doppler velocimeter having a diffraction grating and dual lens groups with identical focal distances
JPH05323403A (en) Higher harmonic generator
JP3844688B2 (en) Sensor using total reflection attenuation
JPH0131167B2 (en)
US7282729B2 (en) Fabry-Perot resonator apparatus and method for observing low reflectivity surfaces
JPS6138922A (en) Optical beam scanning device
JPH04131710A (en) Scanning type probe microscope
EP0458274A2 (en) Apparatus and method for detecting an information of the displacement of an object.
JP2001326415A (en) Optical module and light source device
JPS63273826A (en) Laser beam scanning system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees