JPH01227365A - Polymer solid electrolyte and polymer solid electrolyte storage battery - Google Patents

Polymer solid electrolyte and polymer solid electrolyte storage battery

Info

Publication number
JPH01227365A
JPH01227365A JP63052933A JP5293388A JPH01227365A JP H01227365 A JPH01227365 A JP H01227365A JP 63052933 A JP63052933 A JP 63052933A JP 5293388 A JP5293388 A JP 5293388A JP H01227365 A JPH01227365 A JP H01227365A
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymer solid
movement
amount
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63052933A
Other languages
Japanese (ja)
Inventor
Tomohiko Noda
智彦 野田
Hiroyoshi Yoshihisa
吉久 洋悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP63052933A priority Critical patent/JPH01227365A/en
Priority to DE3852152T priority patent/DE3852152T2/en
Priority to EP88304649A priority patent/EP0297717B1/en
Priority to EP93201935A priority patent/EP0572099A3/en
Priority to US07/197,968 priority patent/US4844995A/en
Priority to CA000567941A priority patent/CA1304444C/en
Publication of JPH01227365A publication Critical patent/JPH01227365A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent the deterioration of battery capacity owing to the repeating charge and discharge of a storage battery using a polymer solid electrolyte by adding a specific times of amount of substance including at least one radical of specific four radicals to an inorganic support salt. CONSTITUTION:Together with an inorganic support salt such as lithium perchloride, a substance of a large molecular form including at least one radical selected from -SO3M, -COOM, -PO(OM)2, and -PR(O) (OM) in the structure is added at 0.5-10times of amount in the Mole number. In the formula, M is an element of group I of periodic table. The added substance suppresses the movement of anions moving reversely to the movement of cations dissociated mainly in the polymer solid electrolyte, to raise the cation transference number. As a result, the deterioration of capacity of the storage battery following the repeating charge and discharge can be suppressed. In this case, the addition less than 0.5times cannot suppress the movement of the anion source, and the addition more than 10 times cannot maintain the solid condition of the electrolyte.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はポリマー固体電解質及びこれを用いた電池に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a polymer solid electrolyte and a battery using the same.

従来技術とその問題点 近年、ポリエチレンオ午Vド等に代表されるポリマーを
電解質材料に用いた高分子固体電解質の研究が盛んにお
こなわれている。
BACKGROUND OF THE INVENTION In recent years, research has been actively conducted on solid polymer electrolytes using polymers such as polyethylene oxide and the like as electrolyte materials.

この固体電解質を用いた電池は、無漏液であり、高エネ
ルギー密度を有し、容易に積層構造とすることができる
等の利点がある。最も広く試験に供されている材料は、
直鎖型ボリエーテ〜を用いた系であるが、この系は融点
(60℃)を持ち、且つ融点以下の温度では充分なイオ
ン伝導度が得られないという欠点があった。
A battery using this solid electrolyte has advantages such as being leak-free, having a high energy density, and being easily formed into a laminated structure. The most widely tested materials are:
Although this system uses linear polyether, this system has a melting point (60° C.) and has the disadvantage that sufficient ionic conductivity cannot be obtained at temperatures below the melting point.

この改良としてポリエーテル架橋体を用いた系が提案さ
れている。この系は融点を持たず、室温付近でも比較的
良好なイオン伝導度が得られるという利点がある。この
系は、ボリエーテua       !1   υ 橋剤の基稈部分の構造によって異なり、例えば架橋剤と
してヘキサメチレンジイソVアナートを用いた場合には
R−40Hzkである。)の構造を有している。又、無
機支持塩は、LiCIO4。
As an improvement on this, a system using a crosslinked polyether has been proposed. This system has the advantage that it has no melting point and relatively good ionic conductivity can be obtained even near room temperature. This system is Boliete ua! 1 υ It varies depending on the structure of the base portion of the crosslinking agent, and for example, when hexamethylene diiso V anate is used as the crosslinking agent, it is R-40Hzk. ) has the structure. Moreover, the inorganic supporting salt is LiCIO4.

Li0F3SO3、LiBF6等多くの物質が提案さレ
テいる。
Many substances such as Li0F3SO3 and LiBF6 have been proposed.

しかしながら、正極にリチウムインターカレー$/、ン
型金属化合物を用い、負極に金属リチウム又はリチウム
合金を用いた一般的な電池系にポリマー固体電解質を応
用し、充放電を繰返した場合、上記のいずれの系を用い
た場合においても充放電サイク〜に伴う電池容量が大き
く低下するという問題点があった。
However, when a polymer solid electrolyte is applied to a general battery system that uses a lithium intercalated metal compound for the positive electrode and metallic lithium or a lithium alloy for the negative electrode, and is repeatedly charged and discharged, none of the above occurs. Even when the above system was used, there was a problem in that the battery capacity decreased significantly with the charge/discharge cycle.

これはこの種のポリマー固体電解質がアニオン、カチオ
ン両種のイオンが移動する双イオン移動性であるため、
電池を放電した際に移動したアニオンが負極近傍で分極
するが、次に電池が充電される際、分極したアニオンが
カチオンの移動を阻止するバリヤーとして作用するため
充電における容量低下をもたらすと考えられる。
This is because this type of polymer solid electrolyte is zwitterionic, in which both anion and cation types of ions move.
When the battery is discharged, the anions that migrate become polarized near the negative electrode, but when the battery is next charged, the polarized anions act as a barrier to prevent the movement of cations, leading to a decrease in charging capacity. .

発明の目的 本発明は上記従来の問題点に鑑みなされたものであり、
充放電の繰返しに伴なう電池容量の低下を抑えたポリマ
ー固体電解質及びこれを用いた電池を提供することを目
的とする。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems.
An object of the present invention is to provide a polymer solid electrolyte that suppresses a decrease in battery capacity due to repeated charging and discharging, and a battery using the same.

即ち、充放電の際、カチオンの移動を優先的に起こさせ
て、アニオンの移動をで診るだけ抑えることによって、
繰返し充放電に伴う容量低下を防止するものである。そ
こで、ポリマー固体電解質におけるアニオンの移動を抑
えるために、無機支持塩と共に、分子形状の大館いアニ
オンを共存させることしこより、アニオンのバリヤーを
形成し、これによってアニオンの移動を抑える。
In other words, by preferentially causing the movement of cations during charging and discharging, and suppressing the movement of anions as much as possible,
This prevents the capacity from decreasing due to repeated charging and discharging. Therefore, in order to suppress the movement of anions in the polymer solid electrolyte, an anion with a large molecular shape is allowed to coexist with the inorganic supporting salt to form an anion barrier, thereby suppressing the movement of anions.

発明の構成 本発明は、過塩素酸リチウムの如き無機支持mと共に一
303M、−000M、−PO(OM)2゜−P)I 
(0) (OM)の中から選ばれた少くとも一つの基を
その構造中に含む分子形状の大きい物質が毫ル数として
0.5倍乃至10倍量添加されていることを特徴とする
ポリマー固体電解質及びこれを用いたポリマー固体電解
質電池である。
Structure of the Invention The present invention provides an inorganic support m such as lithium perchlorate.
(0) A substance with a large molecular shape containing at least one group selected from (OM) in its structure is added in an amount of 0.5 to 10 times the number of molecules. A polymer solid electrolyte and a polymer solid electrolyte battery using the same.

実施例 以下、本発明の詳細について実施例により説明する。Example Hereinafter, the details of the present invention will be explained with reference to Examples.

あらかじめ9wt%の過塩素酸リチウムを溶解させたト
リオ−〃型三官能性ボリエーテ/I/(分子量3000
) 5部、当量のへキサメチレンジイソシアナート、C
1門H25(OH,20H20)4803 Liで表さ
れる有機材料2部、ジメチμアセトアミド2部及び微量
のDi−n−ブチル錫ジアセテートを加え、ポリデロビ
レン不縁布に塗布し80℃不活性ガス中にてポリエーテ
〜を架橋させた。
Trio-type trifunctional bolyate/I/(molecular weight 3000
) 5 parts equivalent of hexamethylene diisocyanate, C
Add 2 parts of an organic material represented by 1 H25 (OH, 20H20) 4803 Li, 2 parts of dimethymu acetamide, and a trace amount of Di-n-butyltin diacetate, apply it on a polyderobylene non-woven cloth, and heat at 80°C with an inert gas. Polyether was crosslinked inside.

次にアモ〃フ7ス五酸化バナジウム4部、アセチレンブ
チツク1部、あらかじめ9vt%の過塩素酸リチウムを
溶解させたトリオ−〃型三官能性ポリエーテル5部、ジ
メチルアセトアミド1部、当量のヘキサメチレンジイソ
νアナーF及び微量のDi−n−ブチル錫ジアセテート
をよく練り合わせたものを前述のシートの上面に塗布し
、80℃の不活性ガス中にて固化させた。該シートを乾
燥後、金属リチウムを取り付け、コイン型電槽に収納し
電池を作成した。
Next, add 4 parts of Amof7 vanadium pentoxide, 1 part of acetylene butic, 5 parts of trio-type trifunctional polyether in which 9vt% lithium perchlorate has been dissolved in advance, 1 part of dimethylacetamide, and an equivalent amount of A well-kneaded mixture of hexamethylene diiso ν-anor F and a trace amount of Di-n-butyltin diacetate was applied to the upper surface of the sheet and solidified in an inert gas at 80°C. After drying the sheet, metal lithium was attached and stored in a coin-shaped battery case to prepare a battery.

第1図に本発明の電池と従来品電池との温度80℃にお
ける充放電特性比較を示した。0.1mム/dの電流で
4vから2vの間で繰返し充放電試験を行なった。従来
品電池は、本発明の電解質を用いないポリマー固体電解
質電池である。
FIG. 1 shows a comparison of the charging and discharging characteristics of the battery of the present invention and a conventional battery at a temperature of 80°C. A repeated charging/discharging test was conducted between 4v and 2v at a current of 0.1 mm/d. The conventional battery is a polymer solid electrolyte battery that does not use the electrolyte of the present invention.

このように、本発明の電池は数サイクμ目以降の放電容
量がほぼ一定に保たれ容量低下が抑えられ良好な繰返し
充放電性能が得られることがわかる。
In this manner, it can be seen that in the battery of the present invention, the discharge capacity after several μth cycles is kept almost constant, capacity reduction is suppressed, and good repeated charge/discharge performance can be obtained.

こ\で特許請求の範囲にあげたー505Mあるいは一〇
〇〇Mの基は一般にイオン交換膜又はイオン交換樹脂の
交換基として知られているものであり、又0nH2n+
1 (CiH20H20)* so、Mは一般に界面活
性剤として供されているものと類似の構造である。
The -505M or 1000M group listed in the claims here is generally known as an exchange group for ion exchange membranes or ion exchange resins, and 0nH2n+
1 (CiH20H20)*so, M has a structure similar to that commonly used as a surfactant.

本発明における添加された該物質の働きは、主にポリマ
ー固体電解質中tこ解離しているア二オンとカチオン(
例えば塩として過m!酸リチウムを用いた場合において
はL1+カチオンとalo4−アニオン)のうち、アニ
オンの動キヲ抑えることにある。即ち、本実施例におい
ては添加物の基幹部分0nH21+1 (CH20H2
0)nSO3−の静電度発力により電池の充放電時にポ
リマー固体電解質中でのカチオンの動きと反対方向に移
動しようとするアニオンの動きを抑制するものであり、
カチオン交換膜において一般にみられる働きと同じであ
る。この結果、ポリマー固体電解質中のカチオン輸率が
上昇するため、電池の繰返し充放電に伴う容量低下を抑
えることができる。ポリマー固体電解質に添加する本発
明の量は、アニオンの動きを抑制する効果を示すに充分
な量でなければならないし、且つ電解質自体が固体状態
を保ち得る量を超えないことが必要である。
The function of the added substance in the present invention is mainly to form anions and cations dissociated in the polymer solid electrolyte (
For example, salt is too much! When lithium oxide is used, the purpose is to suppress the movement of the anion (L1+ cation and alo4- anion). That is, in this example, the basic part of the additive 0nH21+1 (CH20H2
0) The electrostatic force of nSO3- suppresses the movement of anions that try to move in the opposite direction to the movement of cations in the polymer solid electrolyte during charging and discharging of batteries,
This is the same function commonly seen in cation exchange membranes. As a result, the cation transfer number in the polymer solid electrolyte increases, so it is possible to suppress a decrease in capacity due to repeated charging and discharging of the battery. The amount of the present invention added to the polymer solid electrolyte must be sufficient to exhibit the effect of suppressing the movement of anions, and must not exceed the amount that allows the electrolyte itself to maintain its solid state.

添加量がセル数として、無機支持塩の0.5倍量を下回
ると、無機支持塩に依るアニオン穐の動きを抑制し、繰
返し充放電に伴う容量低下を抑えることができない。
If the amount added is less than 0.5 times the amount of the inorganic supporting salt in terms of the number of cells, it is impossible to suppress the movement of the anion stent due to the inorganic supporting salt and to suppress the decrease in capacity due to repeated charging and discharging.

又、無機支持塩の適切量は、電解質に対して約10重量
パーセント内外である。しかし、無機支持塩量な1とし
た時、添加量がセル数にして10倍量を超えると、電解
質自体が固体状態を保つことが困難になる。
Also, a suitable amount of inorganic supporting salt is about 10 weight percent or less relative to the electrolyte. However, when the amount of inorganic supporting salt is 1, if the amount added exceeds 10 times the number of cells, it becomes difficult for the electrolyte itself to maintain its solid state.

ポリマー固体電解質に添加する本発明の物質の基幹部分
は上記に限定されるものではなく、7yキル基やポリエ
ーテル基を含まない有機材料を用いることが出来る。又
、ある種の無機材料を基幹部分に用いた物質も同様の効
果を持つものとして用いることが出来る。
The core part of the substance of the present invention added to the polymer solid electrolyte is not limited to the above, and an organic material that does not contain a 7y kill group or a polyether group can be used. Further, substances using a certain type of inorganic material as the backbone part can also be used as having the same effect.

発明の効果 上述した如く、本発明は充放電の繰返しに伴なう電池容
量の低下を抑えたポリマー固体電解質及びこれを用いた
電池を提供することが出来るので、その工業的価値は極
めて大である。
Effects of the Invention As mentioned above, the present invention can provide a polymer solid electrolyte that suppresses the decrease in battery capacity due to repeated charging and discharging, and a battery using the same, so its industrial value is extremely large. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電池と従来品の電池の繰返し充放電に
おける性能を比較した図である。
FIG. 1 is a diagram comparing the performance of the battery of the present invention and a conventional battery in repeated charging and discharging.

Claims (2)

【特許請求の範囲】[Claims] (1)無機支持塩と共に−SO_3M、−COOM、−
PO(OM)_2、−PH(O)(OM)(以下、Mは
周期律表 I 族の元素)の中から選ばれた少くとも一つ
の基をその構造中に含む分子形状の大きい物質が、モル
数として無機支持塩の0.5倍乃至10倍量添加されて
いることを特徴とするポリマー固体電解質。
(1) -SO_3M, -COOM, - with inorganic supporting salt
A substance with a large molecular shape that contains at least one group selected from PO(OM)_2, -PH(O)(OM) (hereinafter M is an element of group I of the periodic table) in its structure. , a polymer solid electrolyte characterized in that an amount of 0.5 to 10 times the amount of an inorganic supporting salt is added in terms of mole number.
(2)無機支持塩と共に電解質として、−SO_3M、
−COOM、−PO(OM)_2、−PH(O)(OM
)の中から選ばれた少くとも一つの基をその構造中に含
む分子形状の大きい物質がモル数として無機支持塩の0
.5倍乃至10倍量添加されたポリマー固体電解質を用
いたことを特徴とするポリマー固体電解質電池。
(2) -SO_3M as an electrolyte together with an inorganic supporting salt;
-COOM, -PO(OM)_2, -PH(O)(OM
) A substance with a large molecular shape containing at least one group selected from
.. A polymer solid electrolyte battery characterized by using a polymer solid electrolyte added in an amount of 5 to 10 times.
JP63052933A 1987-06-30 1988-03-07 Polymer solid electrolyte and polymer solid electrolyte storage battery Pending JPH01227365A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63052933A JPH01227365A (en) 1988-03-07 1988-03-07 Polymer solid electrolyte and polymer solid electrolyte storage battery
DE3852152T DE3852152T2 (en) 1987-06-30 1988-05-23 Solid polymer electrolyte and battery with solid polymer electrolytes.
EP88304649A EP0297717B1 (en) 1987-06-30 1988-05-23 Polymer solid electrolyte and a polymer solid electrolyte battery
EP93201935A EP0572099A3 (en) 1987-06-30 1988-05-23 Polymer solid electrolyte and polymer solid electrolyte battery
US07/197,968 US4844995A (en) 1987-06-30 1988-05-24 Polymer solid electrolyte and a polymer solid electrolyte battery
CA000567941A CA1304444C (en) 1987-06-30 1988-05-27 Polymer solid electrolyte and a polymer solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63052933A JPH01227365A (en) 1988-03-07 1988-03-07 Polymer solid electrolyte and polymer solid electrolyte storage battery

Publications (1)

Publication Number Publication Date
JPH01227365A true JPH01227365A (en) 1989-09-11

Family

ID=12928654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63052933A Pending JPH01227365A (en) 1987-06-30 1988-03-07 Polymer solid electrolyte and polymer solid electrolyte storage battery

Country Status (1)

Country Link
JP (1) JPH01227365A (en)

Similar Documents

Publication Publication Date Title
US5541019A (en) Metal hydride electrochemical cell having a polymer electrolyte
ES2638067T3 (en) Polyurethane-based electrolytic systems for electrochemical cells
US20050135045A1 (en) Proton-conducting electric double layer capacitor using electrolytic solution
JP2017208343A (en) Separation membrane for secondary battery and lithium secondary battery including the same
US6517969B1 (en) Negative plate element for a lead acid battery containing efficiency improving additives
JPS63187578A (en) Ion conductive material
US8592072B2 (en) Battery separator and method for producing the same, and lithium ion secondary battery and method of producing the same
EP0161318B1 (en) Iodine cell
EP0297717B1 (en) Polymer solid electrolyte and a polymer solid electrolyte battery
US6099989A (en) Polymer secondary batteries
US11637291B2 (en) Lithium-protecting polymer layer for an anode-less lithium metal secondary battery and manufacturing method
JPH01227365A (en) Polymer solid electrolyte and polymer solid electrolyte storage battery
CN111477964A (en) Electrolyte and electrochemical device
JP7333301B2 (en) secondary battery
JPS58163188A (en) Organic electrolyte secondary cell
JPH01189872A (en) Polymer solid electrolyte secondary cell
JPS62119875A (en) Lead storage battery
JPS61179061A (en) Enclosed type lead storage battery
JPH02172157A (en) Conductive polymer positive electrode battery
JP2739363B2 (en) Manganese dry cell
JP2739359B2 (en) Manganese dry cell
JPS60262355A (en) Secondary battery
JPH0574194B2 (en)
JPH04112460A (en) Lithium secondary battery
JPH04118853A (en) Separator for lead storage battery