JPH01226846A - Production of fluoroketone - Google Patents

Production of fluoroketone

Info

Publication number
JPH01226846A
JPH01226846A JP63052570A JP5257088A JPH01226846A JP H01226846 A JPH01226846 A JP H01226846A JP 63052570 A JP63052570 A JP 63052570A JP 5257088 A JP5257088 A JP 5257088A JP H01226846 A JPH01226846 A JP H01226846A
Authority
JP
Japan
Prior art keywords
fluorine
solvent
acid fluoride
reaction
fluoroolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63052570A
Other languages
Japanese (ja)
Other versions
JPH082828B2 (en
Inventor
Akihiko Nakahara
昭彦 中原
Yuji Izeki
祐二 井関
Junichiro Nakajima
淳一郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP63052570A priority Critical patent/JPH082828B2/en
Publication of JPH01226846A publication Critical patent/JPH01226846A/en
Publication of JPH082828B2 publication Critical patent/JPH082828B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the title compound under low pressure in high yield, by using a mixture of a nonfluorine and aprotic polar solvent and a fluorine- containing solvent and reacting a fluorocarboxylic acid fluoride wit a fluoroolefin in the presence of a catalyst. CONSTITUTION:A fluorocarboxylic acid fluoride (e.g. perfluoropropionic acid fluoride) is reacted with a fluoroolefin (e.g. tetrafluoroethylene) in the presence of a catalyst by using a mixture of a nonfluorine and aprotic polar solvent such diglyme, acetonitrile or dimethylformamide and a fluorine-containing solvent such as perfluoroethane or tetrafluoroethylene as an inert solvent to give a fluoroketone (e.g. perfluorotriethylcarbinol). The reaction can be carried out under low pressure of about 3-15kg/cm<2> and a small amount of by-products is produced.

Description

【発明の詳細な説明】 (竜業上の利用分野) 本発明は、フルオロカルボン酸フルオライドとフルオロ
オレフィンとを触媒の存在下に不活性溶媒中で反応させ
るフルオロケトンの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a fluoroketone, which involves reacting a fluorocarboxylic acid fluoride and a fluoroolefin in an inert solvent in the presence of a catalyst.

(従来技術) フルオロカルボン酸フルオライドとフルオロオレフィン
をノブライム、トリグライム、アセトニトリル等の非プ
ロトン性極性溶媒中でCsF 、 KF。
(Prior art) Fluorocarboxylic acid fluoride and fluoroolefin are prepared in an aprotic polar solvent such as noblime, triglyme, acetonitrile, etc. as CsF, KF.

RbF 、 AgF等のフッ素アニオンを発生させるこ
とのできる触媒の存在下に反応させ、フルオロケトン及
びフルオロアルコールを製造することは公知である。例
えば、ジャーナル・オブ・アメリカン・ケミカル・ソサ
イエテ4− (J、Am、Chem、Soc、)第84
巻第4285〜4288頁(1968年)には、カルボ
ニルフルオライド、トリフルオロアセチルフルオライド
等のフルオロアミルフルオライドとヘキサフルオロプロ
ピレンとfCsFを触媒としてアセトニトリル中で反応
させ、インプロピル基を有するフルオロケトンを合成す
る方法が示されている。然しなから、実験例によると数
十kl?/c1PL2の高圧下で高々60%の転化率で
しか目的物が得られていない。又、イギリス特許1.1
31.206号明細書には、パーフルオロカルデン醒フ
ルオライドと金属フッ化物とから得たパーフルオロアル
キル基を有するアルコキサイド、例えば、セシウムノ譬
−フルオロプトキサイドとフルオロオレフィンであるテ
トラフルオロエチレンをアセトニトリル中で反応させて
ノセーフルオロケトンではなく、さらに反応が進んだ・
ぐ−フルオロジエチルブチルカルビノールを得ている。
It is known to produce fluoroketones and fluoroalcohols by reacting them in the presence of catalysts capable of generating fluorine anions, such as RbF and AgF. For example, Journal of the American Chemical Society 4-(J, Am, Chem, Soc,) No. 84
Vol. 4285-4288 (1968) describes the reaction of carbonyl fluoride, fluoroamyl fluoride such as trifluoroacetyl fluoride, hexafluoropropylene, and fCsF in acetonitrile as a catalyst to produce a fluoroketone having an inpropyl group. A method for synthesizing is shown. However, according to experimental examples, it is several tens of kiloliters? The desired product was obtained at a conversion rate of at most 60% under a high pressure of /c1PL2. Also, British Patent 1.1
No. 31.206 discloses that an alkoxide having a perfluoroalkyl group obtained from a perfluorocardene-arized fluoride and a metal fluoride, for example, cesium fluoroptoxide and tetrafluoroethylene, which is a fluoroolefin, is treated with acetonitrile. The reaction progressed further, instead of producing nosafe fluoroketone.
-Fluorodiethylbutyl carbinol is obtained.

又、ジャーナル・オブ・オーガニック・ケミストリー(
J 、Org 、Chem−)第31巻第955〜95
7頁(1966年)には、ジグライム中でCsF存在下
にテトラフルオロエチレンの重合反応を行い、テトラフ
ルオロエチレンの数量体よりなる混合物を得ている。以
上の報告例からも判るようにフルオロオレフィンとフル
オロカルメン酸フルオライドとを非プロトン性極性溶媒
中でCsF 、 KF 、 RbF 、 AgF等を触
媒として用いてフルオロケトンを合成する従来の方法は
、非常に高圧を必要とし、又収率も低く、且つ副生物が
多く生成するものであっ几。
Also, Journal of Organic Chemistry (
J, Org, Chem-) Volume 31, Nos. 955-95
7 (1966), a polymerization reaction of tetrafluoroethylene was carried out in diglyme in the presence of CsF to obtain a mixture consisting of tetrafluoroethylene oligomers. As can be seen from the above reported examples, the conventional method of synthesizing fluoroketones using a fluoroolefin and fluorocarmenic acid fluoride in an aprotic polar solvent using CsF, KF, RbF, AgF, etc. as a catalyst is extremely difficult. It requires high pressure, has a low yield, and produces many by-products.

(解決しようとする問題点) 上記した従来技術の問題点に鑑み、本発明は出来るだけ
低い圧力下で収率よく、且つできるだけ副生物の生成を
押えたフルオロケトンの合成方法を確立することを目的
とする。
(Problems to be Solved) In view of the above-mentioned problems of the prior art, the present invention aims to establish a method for synthesizing fluoroketones under as low a pressure as possible, in a high yield, and that suppresses the production of by-products as much as possible. purpose.

(問題を解決するための手段) 本発明者らは、フルオロカルメン酸フルオライドとフル
オロオレフィンとを反応させてフルオロケトンを製造す
るにあたり、特定の混合溶媒を使用することによって上
記の目的が達成し得ることを見い出し、本発明を完成さ
せるに至った。
(Means for Solving the Problem) The present inventors have discovered that the above object can be achieved by using a specific mixed solvent when producing a fluoroketone by reacting fluorocarmenic acid fluoride with a fluoroolefin. This discovery led to the completion of the present invention.

即ち、本発明は、フルオロカルメン酸フルオライドとフ
ルオロオレフィンとを触媒の存在下に不活性溶媒中で反
応させてフルオロケトンを製造する方法に於いて、該不
活性溶媒として非フッ素系且つ非プロトン性の極性溶媒
と含フッ素系溶媒との混合物を用いることを特徴とする
フルオロケトンの製造方法である。
That is, the present invention provides a method for producing a fluoroketone by reacting a fluorocarmenic acid fluoride and a fluoroolefin in an inert solvent in the presence of a catalyst, in which a non-fluorine and aprotic solvent is used as the inert solvent. This is a method for producing a fluoroketone, characterized by using a mixture of a polar solvent and a fluorine-containing solvent.

本発明で用いられるフルオロカルメン酸フルオライドi
/:t 、フルオロカルブニル基のフッ素原子以外に分
子中に少なく共力ルビニル基が結合した炭素原子にフッ
素原子を結合して有する公知の化合物が何ら制限なく採
用される。フルオロカルブニル基の数に応じて、モノカ
ルボン酸フルオライド、ジカルボン酸フルオライド、ト
リカルメン酸フルオライド、テトラカルrン酸フルオラ
イド等が挙げられ、これらすべてが本発明で使用できる
Fluorocarmenic acid fluoride i used in the present invention
/:t, a known compound having a fluorine atom bonded to a carbon atom to which a small number of synergistic rubinyl groups are bonded in the molecule in addition to the fluorine atom of the fluorocarbunyl group may be employed without any restriction. Depending on the number of fluorocarbyl groups, monocarboxylic acid fluoride, dicarboxylic acid fluoride, tricarmenic acid fluoride, tetracarboxylic acid fluoride, etc. may be mentioned, all of which can be used in the present invention.

就中、モノカルボン酸フルオライド及びジカルボン酸フ
ルオライドは、本発明の効果が顕著であるために好適に
用いられる。
Among these, monocarboxylic acid fluoride and dicarboxylic acid fluoride are preferably used because the effects of the present invention are remarkable.

本発明で使用されるフルオロカルボン酸フルオライドは
、炭素原子に結合し几水素原子がすべてフッ素原子に置
換されている・j−フルオロ化合物であることが好まし
い。また、フルオロカルブニル基に隣接し次炭素原子以
外の炭素原子にフッ素原子以外のハロゲン原子や水素原
子が結合し次化合物も好適に使用することができる。
The fluorocarboxylic acid fluoride used in the present invention is preferably a j-fluoro compound bonded to a carbon atom and having all fluorine atoms substituted with fluorine atoms. Further, the following compounds in which a halogen atom other than a fluorine atom or a hydrogen atom is bonded to a carbon atom other than the next carbon atom adjacent to the fluorocarbunyl group can also be suitably used.

本発明に於いて好適に使用し得るフルオロカルがン酸フ
ルオライドを示すと、下記一般式で表わされる化合物で
ある。
The fluorocarboxylic acid fluoride that can be suitably used in the present invention is a compound represented by the following general formula.

XCF2(CF2)nCOF’ 。XCF2(CF2)nCOF'.

FOC(CF2)nCOF 又は F’0CCF′Y(、OCF’2−CFY’0)x(C
F2)、(OCF’2・CFY’)、CFY#COF’
具体的には、次のような化合物を挙げることができる。
FOC(CF2)nCOF or F'0CCF'Y(,OCF'2-CFY'0)x(C
F2), (OCF'2・CFY'), CFY#COF'
Specifically, the following compounds can be mentioned.

CF 、COF 、CF3CF2C0F 、CF3(C
F2) 2COF 、 CF3(CF2)4COF 。
CF, COF, CF3CF2C0F, CF3(C
F2) 2COF, CF3(CF2)4COF.

0F3(CF2)5COF、CF3(CF2)6COF
’、CF、(CF2)、COF。
0F3(CF2)5COF, CF3(CF2)6COF
', CF, (CF2), COF.

FICF2CF2COF、C1CF2CF2C0F、I
CF2CF2CF2C0F。
FICF2CF2COF, C1CF2CF2C0F, I
CF2CF2CF2C0F.

H(CF2CF2)2COF 、 H(CF2CF2)
3COF’ 。
H(CF2CF2)2COF, H(CF2CF2)
3COF'.

FOCCOF 、 FOCCF2COF 、 FOC(
CF2)2COF 。
FOCCOF, FOCCF2COF, FOC(
CF2)2COF.

FOC(CF2)3COF、FOC(CF2)4COF
、FOC(CF2)5COFFOCCF 0CF2CF
 0CF20F20CF COF等の化合物である。
FOC(CF2)3COF, FOC(CF2)4COF
,FOC(CF2)5COFFOCCF 0CF2CF
It is a compound such as 0CF20F20CF COF.

次に、フルオロオレフィンとしては、公知の化合物が何
ら制限なく採用される。具体的には、テトラフルオロエ
チレン、ヘキサフルオロプロピレン等の炭素数2〜5の
・ンーフルオロ化合物が好適であるが、フッ素原子の一
部が他のハロrン原子で置換され念化合物、例えば、ク
ロロトリフルオロエチレン等も使用することができる。
Next, as the fluoroolefin, known compounds can be employed without any restrictions. Specifically, fluoro compounds having 2 to 5 carbon atoms such as tetrafluoroethylene and hexafluoropropylene are preferred, but compounds in which a part of the fluorine atoms are substituted with other halo atoms, such as chloro Trifluoroethylene and the like can also be used.

次に、触媒としては、フルオロカルモノ醸フルオライド
とフルオロオレフィンとの反応で使用される公知の触媒
が何ら制限なく採用し得る。一般によく使用される触媒
は、反応条件下に於いてフッ素アニオンを発生する化合
物である。このような化合物としては、具体的には、K
F 、 CsF 、 RbF。
Next, as the catalyst, any known catalyst used in the reaction between a fluorocarbon monofluoride and a fluoroolefin can be employed without any limitations. Commonly used catalysts are compounds that generate fluorine anions under reaction conditions. Specifically, such compounds include K
F, CsF, RbF.

AgF及びNH2F (但し、Rfl水素原子又はアル
キル基である。)等を挙げることができる。触媒の使用
量は、広い範囲から採用され、通常はフルオロカルボン
酸フルオライドに対してモル比で0.1以上使用される
。高い反応速度を得るためには0.5〜2.0の範囲か
ら選択することが好ましい。
Examples include AgF and NH2F (where Rfl is a hydrogen atom or an alkyl group). The amount of catalyst to be used can be selected from a wide range, and is usually used in a molar ratio of 0.1 or more to the fluorocarboxylic acid fluoride. In order to obtain a high reaction rate, it is preferable to select from the range of 0.5 to 2.0.

本発明の最大の特徴は、前記のフルオロカルボン酸フル
オライドとフルオロオレフィンとの反応を、非フッ素系
且つ非プロトン性の極性溶媒と含フッ素系溶媒との混合
物中で行なうことである。
The most important feature of the present invention is that the reaction between the fluorocarboxylic acid fluoride and the fluoroolefin is carried out in a mixture of a fluorine-free and aprotic polar solvent and a fluorine-containing solvent.

非フッ素系且つ非プロトン性の極性溶媒としては、分子
中にフッ素原子を含まず、反応系中でプロトン供与体と
ならない極性溶媒であれば、公知の溶媒が何ら制限なく
使用し得る。例えば、ジグライム、トリグライム、テト
ラグライム等のエーテル類ニアセトニトリル;ジメチル
ホルムアミド等のジアルキルホルムアミド等が好適に用
いられる。
As the fluorine-free and aprotic polar solvent, any known solvent can be used without any restriction as long as it does not contain a fluorine atom in its molecule and does not act as a proton donor in the reaction system. For example, ethers such as diglyme, triglyme, and tetraglyme, niacetonitrile; dialkylformamides such as dimethylformamide, and the like are preferably used.

また、一方の含フッ素系溶媒としては、分子中にフッ素
原子を有する溶媒が何ら制限ミ<使用し得る。特に、上
記した非フッ素系且つ非プロトン性の極性溶媒に実質的
に溶解しなh含フッ素系溶媒が好適である。本発明で好
適に使用し得る含フッ素系溶媒を具体的に例示すると、
例えば、パーフルオロへブタン、ノ9−フルオロオクタ
ン、パーフルオロノナン、及び/?−フルオロデカン等
の炭素数が7以上のノぐ一フルオロノ卆うフイン類;ノ
ーフルオロトリプロピルアミン、ノ平−フルオロトリブ
チルアミン、ノぐ一フルオロトリアミルアミン等のノや
一フルオロトリアルキルアミン;テトラフルオロエチレ
ン又ハクロロトリフルオロエチレンのオリゴマーよりな
るオイル、例えば、グイフロイル(商品名:ダイキン工
業■竪);テトラフルオロエチレン又ハヘキサフルオロ
デロピレンのエポキサイドから得られるパーフルオロポ
リエーテル系のオイル、例えば、クライトックス(商品
名:デュポン社製)、フォンプリン油(商品名:モンテ
フロス社規)等を用いることができる。
Further, as one of the fluorine-containing solvents, a solvent having a fluorine atom in the molecule can be used with no limitations. In particular, fluorine-containing solvents that are substantially insoluble in the above-mentioned fluorine-free and aprotic polar solvents are preferred. Specific examples of fluorine-containing solvents that can be suitably used in the present invention include:
For example, perfluorohbutane, 9-fluorooctane, perfluorononane, and/or? - monofluoronofluorinated fins having 7 or more carbon atoms such as fluorodecane; monofluorotrialkylamines such as nonfluorotripropylamine, monofluorotributylamine, and monofluorotriamylamine; Oils consisting of oligomers of tetrafluoroethylene or hachlorotrifluoroethylene, such as guifuroyl (trade name: Daikin Industries, Ltd.); perfluoropolyether oils obtained from epoxides of tetrafluoroethylene or hahexafluorodelopyrene; For example, Krytox (trade name: manufactured by DuPont), Fontlin oil (trade name: Montefloss Corporation), etc. can be used.

上記した非フッ素系且つ非プロトン性の極性溶媒に実質
的に不溶な含フッ素系溶媒としては、用いる溶媒の組合
せにもよるが、例えば、ジグライム、トリグライム、テ
トラグラム等のエーテル類に対しては、ノ卆−フルオロ
トリアルキルアミンが、また、アセトニトリルに対して
はグイフロイルが好適に使用し得る。
The fluorine-containing solvent that is substantially insoluble in the non-fluorine-containing and aprotic polar solvent mentioned above depends on the combination of solvents used, but for example, it is suitable for ethers such as diglyme, triglyme, and tetragram. For acetonitrile, guifuroyl can be suitably used.

これらの非フッ素系且つ非プロトン性の極性溶媒と含フ
ッ素系溶媒は、勿論、フルオロカルボン酸フルオライド
とフルオロオレフィンとの反応に不活性でなければなら
ないことは言うまでもない。
Needless to say, these non-fluorine-based aprotic polar solvents and fluorine-containing solvents must be inert to the reaction between the fluorocarboxylic acid fluoride and the fluoroolefin.

非フッ素系且つ非プロトン性の極性溶媒と含フッ素系溶
媒との混合比率は特に制限されないが、本発明の効果が
十分に発揮されるためには、これら両溶媒のうち一方の
他方に対する容量比で0.1〜0.9、さらに0.3〜
0.7の範囲であることが好ましい。
Although the mixing ratio of the non-fluorine-based aprotic polar solvent and the fluorine-containing solvent is not particularly limited, in order to fully exhibit the effects of the present invention, the volume ratio of one of these two solvents to the other must be adjusted. 0.1~0.9, further 0.3~
The range is preferably 0.7.

次に具体的に本発明の詳細な説明する。前記し次非フッ
素系且つ非プロトン性の極性溶媒は有極性であるため、
通常少量の水を含んでいる。水は本反応を阻害するため
出来る限り除いて用いたほうが好ましい。脱水方法は吸
着による方法、化学的に行う方法等、いづれでもよいが
、モレキュラーシープのカラムを通したり、脱水すべき
溶媒にモレキュラーシープを添加し、その後FAまたは
デカンテーションで溶媒を分離する方法が簡便で好まし
い。一方、含フッ素系溶媒は吸水性が殆んどない九め、
市販されているものをそのまま用いることができる。
Next, the present invention will be specifically explained in detail. As mentioned above, since the non-fluorine and aprotic polar solvent is polar,
Usually contains a small amount of water. Since water inhibits this reaction, it is preferable to exclude it as much as possible. The dehydration method may be adsorption or chemical, but methods include passing it through a Molecular Sheep column or adding Molecular Sheep to the solvent to be dehydrated, and then separating the solvent by FA or decantation. It is convenient and preferable. On the other hand, fluorine-containing solvents have almost no water absorption,
Commercially available products can be used as they are.

触媒は、一般に吸湿性が強い念め、用いる前に加熱等の
手段により脱水して使用することが望ましい。
Since catalysts are generally highly hygroscopic, it is desirable to dehydrate them by heating or other means before use.

上記した不活性溶媒及び触媒を攪拌機を有した耐圧反応
容器内に加え、次にフルオロカルボン酸フルオライドを
加える。加える割合は不活性溶媒に対し、容量比で一般
的に0.1〜0.6位が好ましい。勿論、反応−回当り
の生成f#を増やすためこれ以上加えてもよい。その後
、反応容器内を充分フルオロオレフィンで置換し念後、
所定の温度と所定のフルオロオレフィンの圧力に昇温、
昇圧する。反応温度は50℃〜150℃又フルオロオレ
フィンの圧力は従来の方法よりも低い圧力で反応が進行
し、3 kg /cm2〜15kl?/cm2もあれば
よい。これ以上の圧力でも反応は進行するが、反応設備
が高価になったり、又従来の方法と同様、副性物の生成
量が増えてくる場合がある。フルオロオレフィンノ吸収
号ハ、フルオロカルボン酸フルオライドに対しモル比で
1〜1.5あれば充分目的とするフルオロケトンが生成
する。
The inert solvent and catalyst described above are added to a pressure-resistant reaction vessel equipped with a stirrer, and then the fluorocarboxylic acid fluoride is added. The addition ratio is generally preferably 0.1 to 0.6 in terms of volume ratio to the inert solvent. Of course, more may be added to increase the f# produced per reaction. After that, after thoroughly replacing the inside of the reaction vessel with fluoroolefin,
Raising the temperature to a predetermined temperature and pressure of a predetermined fluoroolefin,
Boost the pressure. The reaction temperature is 50°C to 150°C, and the fluoroolefin pressure is lower than that of the conventional method, and the reaction proceeds at a pressure of 3 kg/cm2 to 15 kl? /cm2 is also sufficient. Although the reaction proceeds at higher pressures, the reaction equipment may become expensive, and the amount of by-products produced may increase, as in conventional methods. If the molar ratio of the fluoroolefin absorption number C to the fluorocarboxylic acid fluoride is 1 to 1.5, the desired fluoroketone is sufficiently produced.

反応時間は反応@度、触媒奇、フルオロオレフィンの圧
力等により一概に決定できないが、数時間〜数十時間あ
れば本発明は達成される。この外、助触媒としてクラウ
ンエーテル類、ホリエーテル系の界面活性剤を反応を促
進する九めに少量添加してもよい。
Although the reaction time cannot be absolutely determined depending on the degree of reaction, catalyst pressure, pressure of fluoroolefin, etc., the present invention can be achieved in several hours to several tens of hours. In addition, a small amount of a crown ether or polyether surfactant may be added as a co-catalyst to promote the reaction.

(効果) 本発明の方法により、フルオロカルゼン酸フルオリドと
フルオロオレフィンとの反応に於いて、低圧で、且つ副
生物の生成を押えて目的とするフルオロケトンを高収率
で得ることができる。
(Effects) According to the method of the present invention, the desired fluoroketone can be obtained in high yield at low pressure and by suppressing the formation of by-products in the reaction between fluorocarzenic acid fluoride and fluoroolefin.

(実施例) 以下に本発明を具体的に説明するために実施例及び比較
例を掲げるが、本発明はこれらの実施例に限定されるも
のではない。
(Examples) Examples and comparative examples are listed below to specifically explain the present invention, but the present invention is not limited to these examples.

実施例1 攪拌機を備えた容量500111Jの耐圧ガラス容器に
モレキュラーシーブで脱水したジグライム100m1.
含フッ素系溶媒として・!−フルオロトリアミルアミン
10(11/及び300℃で減圧下に乾俺したCsF 
229及びノニオン系界面活性剤H3210(日本油脂
類>29を加え念。その後内容物をドライアイスメタノ
ールで冷却し、気相部全真空ポンプで脱気後、319の
・ぐ−フルオロゾロピオン酸フルオライドを導入した。
Example 1 100 ml of diglyme dehydrated with a molecular sieve was placed in a pressure-resistant glass container with a capacity of 500,111 J and equipped with a stirrer.
As a fluorine-containing solvent! - Fluorotriamylamine 10 (11/ and CsF dried under reduced pressure at 300°C)
229 and a nonionic surfactant H3210 (NOF > 29) were added. After that, the contents were cooled with dry ice methanol, and after degassing the gas phase with a total vacuum pump, 319's .g-fluorozolopionic acid fluoride was added. introduced.

次いで、テトラフルオロエチレンを大気圧まで導入した
。反応器の温度をあげ、100℃とした。さらにテトラ
フルオロエチレンの圧力を7.0 kg/cm2とし、
20時間反応を続けた。その後温度を室温に下げ反応器
内の圧力を抜いた。次に反応器の温度を80℃とし、減
圧下に留出してくるi4−フルオロジエチルケトン及び
ジグライムを捕集し九。ジグライム金分液して約39.
9の殆んど純粋なパーフルオロソエチルケトンが収率的
80%で得られ九。さらに反応器の温度をあげ、残存す
るジグライムと・臂−フルオロトリアミルアミンを殆ど
留出させ、反応器内容物を乾固し次。乾固物を別のフラ
スコに入れ乾固物が充分浸る穆濃硫酸を加え、蒸留を行
った。
Tetrafluoroethylene was then introduced to atmospheric pressure. The temperature of the reactor was raised to 100°C. Furthermore, the pressure of tetrafluoroethylene was set to 7.0 kg/cm2,
The reaction continued for 20 hours. Thereafter, the temperature was lowered to room temperature and the pressure inside the reactor was released. Next, the temperature of the reactor was set to 80°C, and the i4-fluorodiethyl ketone and diglyme distilled out under reduced pressure were collected. Approximately 39.
Almost pure perfluorosoethyl ketone of 9 was obtained in 80% yield. Furthermore, the temperature of the reactor was raised to distill off most of the remaining diglyme and fluorotriamylamine, and the contents of the reactor were dried. The dried product was placed in another flask, concentrated sulfuric acid was added to sufficiently soak the dried product, and distillation was performed.

約3gの液体が留出し念がF−核磁気共鳴スペクトル及
び赤外吸収スペクトルの分析結果から・千−フルオロト
リエチルカルビノールであることが判った。
Approximately 3 g of liquid was distilled out and was found to be 1,000-fluorotriethyl carbinol based on F-nuclear magnetic resonance spectrum and infrared absorption spectrum analysis.

比較例1 〕卆−フルオロトリアミルアミンを加えなかった以外は
実施例1と同じ装置、組成、条件で実験2行った。20
時間経過してもテトラフルオロエチレンの吸収層は実施
例1の1/15程度であり、さらに反応時間を100時
間としても実施例1の1/4程度しか吸収しなかつ念。
Comparative Example 1] Experiment 2 was conducted using the same apparatus, composition, and conditions as in Example 1, except that fluorotriamylamine was not added. 20
Even after the passage of time, the absorption layer of tetrafluoroethylene was about 1/15 of that of Example 1, and even if the reaction time was 100 hours, the absorption layer of tetrafluoroethylene was only about 1/4 of that of Example 1.

この時間で反応を止め、実施例1と同様の処理を行った
ところ約49の・セーフルオロジエチルケトンと、約1
gの・−一フルオロトリエチルカルビノールが得られた
The reaction was stopped at this time and the same treatment as in Example 1 was carried out, resulting in approximately 49 -safe fluorodiethyl ketones and approximately 1
g of .-monofluorotriethylcarbinol were obtained.

実施例2 実施例1の反応装置1に用いてトリフルオロアセチルフ
ルオライドについて次の実験2行った。
Example 2 The following experiment 2 was conducted on trifluoroacetyl fluoride using the reactor 1 of Example 1.

極性溶媒としてアセトニトリル150cc含フッ素溶媒
としてグイ70イル◆1(ダイキン■!y3)50eC
−i用いた。実施例1と同じ操作でトリフルオロアセチ
ルフルオライド23g、又触媒としてKF209.18
−クラウン−629全加えた。反応温度を80℃テトラ
フルオロエチレンの圧を10に9/Crnとして30時
間反応したところ、・ぐ−フルオロメチルエチルケトン
が30g(収率70例)得られた。又、ノ母−フルオロ
メチルジエチルカルビノールは29得られ念。
Acetonitrile 150cc as a polar solvent Gui 70yl ◆1 (Daikin ■!y3) 50eC as a fluorine-containing solvent
-i was used. In the same manner as in Example 1, 23 g of trifluoroacetyl fluoride and 209.18 KF as a catalyst were added.
-Crown-629 all added. When the reaction temperature was set to 80° C. and the pressure of tetrafluoroethylene was adjusted to 10:9/Crn for 30 hours, 30 g of .g-fluoromethylethyl ketone was obtained (yield: 70 examples). In addition, 29 fluoromethyl diethyl carbinol was obtained.

実施例3 実施例1の反応装置を用いてω−H−ドデカフルオロへ
ブタノイルフルオライドについて次の実噴を行っ念。
Example 3 Using the reactor of Example 1, the following injection was carried out for ω-H-dodecafluorobutanoyl fluoride.

反応容器、操作は実験1と同様とした。The reaction vessel and operation were the same as in Experiment 1.

混合溶媒としてテトラグライム150eeと7オンプリ
ンYOI (モンテフロス社の登e商m:)z−フルオ
ロポリエーテル)5Qccを用いた。この場合、混合溶
媒は均一に混った。ω−H−ドデカフルオロヘプタノイ
ルフルオライド359とAgF 159? 加L 、反
応温度100℃へキサフルオロプロピレンの圧力を6に
& /cm  で15時間反応させた。実施例1と同様
の操作でケトンを留出したところ約60%の収率でω−
H−ドデカフルオロヘキサフルオロイソプロピルケトン
が得られた。
Tetraglyme 150ee and 7-onpurine YOI (trade name: Z-fluoropolyether) 5Qcc (trade name, manufactured by Monteflos) were used as a mixed solvent. In this case, the mixed solvent was mixed uniformly. ω-H-dodecafluoroheptanoyl fluoride 359 and AgF 159? The mixture was reacted for 15 hours at a reaction temperature of 100° C. and a pressure of 6 cm2/cm2. When the ketone was distilled in the same manner as in Example 1, ω-
H-dodecafluorohexafluoroisopropyl ketone was obtained.

実施例4 実施例1の反応装置t用いて、・ぐ−フルオロブタノイ
ルフルオライド259.KF’lOp及び溶媒としてト
リグライム80m1、オクタデカフルオロオクタン60
ゴ用いて、テトラフルオロエチレンの圧力を10 !’
、9/σ2とし、15時間、90℃で反応した。その結
果、249(収率65%)の・ぐ−フルオロエチルデロ
ビルケトンが得られた。
Example 4 Using the reactor of Example 1, .g-fluorobutanoyl fluoride 259. KF'lOp and triglyme 80ml as solvent, octadecafluorooctane 60ml
The pressure of tetrafluoroethylene was increased to 10! '
, 9/σ2, and the reaction was carried out at 90° C. for 15 hours. As a result, 249 (yield: 65%) of .g-fluoroethyl derovir ketone was obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)フルオロカルボン酸フルオライドとフルオロオレ
フィンとを触媒の存在下に不活性溶媒中で反応させてフ
ルオロケトンを製造する方法に於いて、該不活性溶媒と
して非フッ素系且つ非プロトン性の極性溶媒と含フッ素
系溶媒との混合物を用いることを特徴とするフルオロケ
トンの製造方法。
(1) In a method for producing a fluoroketone by reacting a fluorocarboxylic acid fluoride and a fluoroolefin in an inert solvent in the presence of a catalyst, a non-fluorine-based and aprotic polar solvent is used as the inert solvent. A method for producing a fluoroketone, the method comprising using a mixture of a fluorine-containing solvent and a fluorine-containing solvent.
JP63052570A 1988-03-08 1988-03-08 Method for producing fluoroketone Expired - Lifetime JPH082828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63052570A JPH082828B2 (en) 1988-03-08 1988-03-08 Method for producing fluoroketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63052570A JPH082828B2 (en) 1988-03-08 1988-03-08 Method for producing fluoroketone

Publications (2)

Publication Number Publication Date
JPH01226846A true JPH01226846A (en) 1989-09-11
JPH082828B2 JPH082828B2 (en) 1996-01-17

Family

ID=12918468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63052570A Expired - Lifetime JPH082828B2 (en) 1988-03-08 1988-03-08 Method for producing fluoroketone

Country Status (1)

Country Link
JP (1) JPH082828B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081287A1 (en) * 2000-04-21 2001-11-01 Daikin Industries, Ltd. Process for the preparation of perfluoroalkanones

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081287A1 (en) * 2000-04-21 2001-11-01 Daikin Industries, Ltd. Process for the preparation of perfluoroalkanones
US6689917B2 (en) 2000-04-21 2004-02-10 Daikin Industries, Ltd. Process for the preparation of perfluoroalkanones
JP4765238B2 (en) * 2000-04-21 2011-09-07 ダイキン工業株式会社 Method for producing perfluoroalkanones

Also Published As

Publication number Publication date
JPH082828B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
EP1931614B1 (en) Hydrofluoroether compounds and processes for their preparation and use
Johri et al. Comparison of the reactivity of CF3OX (X= Cl, F) with some simple alkenes
EP1572616B1 (en) Selective reaction of hexafluoropropylene oxide with perfluoroacyl fluorides
EP2027100B1 (en) Cyclic hydrofluoroether compounds and processes for their preparation and use
KR20050085696A (en) Preparation of perfluorinated vinyl ethers having a sulfonyl fluoride end-group
KR840001979B1 (en) Process for the preparation of acid fluorides and resulting monomers
US4136121A (en) Process for the preparation of fluorine-containing ketones
WO2000056694A1 (en) Process for producing fluorine compound through liquid-phase fluorination
CA1339538C (en) Process for the preparation of fluorohalogenated ethers starting from fluorooxy-compounds and halogenated olefins
CN109574812B (en) Method for preparing perfluoroolefin with high selectivity
US7393961B2 (en) Polyhalogenated ethers
EP1375469B1 (en) A process for preparing acylfluorides
JP4033907B2 (en) Simultaneous production of perfluoromethyl perfluorovinyl ether and perfluoroethyl perfluorovinyl ether
JPH069474A (en) Production of fluorinated vinyl ether
WO2009083451A1 (en) Addition reaction to fluoroallylfluorosulfate
US4898991A (en) New perfluoropolyethers
JPH01226846A (en) Production of fluoroketone
JP2794520B2 (en) Method for producing perfluorocarboxylic acid fluoride compound
KR101125167B1 (en) Process for preparing fluorohalogenethers
JPH06128189A (en) Preparation of perfluoroether carboxylic acid
EP1440993B1 (en) A process for the preparation of (per)fluorinated mono-functional carboxyl compounds
KR950004893B1 (en) Fluorination of orthocarbonates and polyalkoxy propanes
US3751469A (en) Method of preparing fluoroperhaloazaolefins
WO2004094365A1 (en) Method for producing fluorine-containing sulfonyl fluoride compound
JP2022070150A (en) Method for producing fluorinated di-salt compound and method for producing fluorinated vinyl compound