JPH01225904A - Optical waveguide enclosing side of stripe - Google Patents

Optical waveguide enclosing side of stripe

Info

Publication number
JPH01225904A
JPH01225904A JP5311388A JP5311388A JPH01225904A JP H01225904 A JPH01225904 A JP H01225904A JP 5311388 A JP5311388 A JP 5311388A JP 5311388 A JP5311388 A JP 5311388A JP H01225904 A JPH01225904 A JP H01225904A
Authority
JP
Japan
Prior art keywords
layer
waveguide
core layer
light
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5311388A
Other languages
Japanese (ja)
Other versions
JP2879849B2 (en
Inventor
Toshihiko Baba
俊彦 馬場
Yasuo Kokubu
泰雄 國分
Yasuhiko Mera
米良 康彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP63053113A priority Critical patent/JP2879849B2/en
Publication of JPH01225904A publication Critical patent/JPH01225904A/en
Application granted granted Critical
Publication of JP2879849B2 publication Critical patent/JP2879849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To enclose rays of light in the lateral direction without performing deep etching by providing thin intermediate layers having a low refractive index in a medium in the lateral direction of cores which become optical lines in the form of stripes. CONSTITUTION:A core layer 12 which guides rays of light, clad layers 11 and 14 which enclose the rays of light in the direction perpendicular to the surface of the core layer 12, and intermediate layer 13 which are formed in the core layer in the form of stripes are provided. Then the rays of light in the core layer 12 are enclosed in the direction parallel to the interfaces between the core layer 12 and clad layers 11 and 14 by making the refractive index of the intermediate layer 13 lower than that of the core layer 12. Therefore, even with a waveguide whose core layer 12 is as thick as the diameter of an optical fiber core, a difference in refractive index can easily be formed without performing any deep etching. Therefore, rays of light can easily be enclosed laterally and, since the unevenness on the surface of the waveguide is small, this waveguide can be applied to a laminated waveguide type optical integrated circuit.

Description

【発明の詳細な説明】 (概 要〕 基板上に形成される先導波路で、縦方向に光を閉じ込め
るコア層の一部分の中間に低屈折率中間層膜を挿入し、
光が感じる等価屈折率を制御して。
[Detailed Description of the Invention] (Summary) In a guiding waveguide formed on a substrate, a low refractive index intermediate layer film is inserted between a part of a core layer that confines light in the vertical direction,
By controlling the equivalent refractive index that light perceives.

中間層のある部分の等価屈折率を中間層のない部分の等
価屈折率よりも低くすることによって、光を横方向に閉
じ込めるようにした光導波路である。
This is an optical waveguide that confines light in the lateral direction by making the equivalent refractive index of a portion with an intermediate layer lower than the equivalent refractive index of a portion without an intermediate layer.

〔産業上の利用分野〕[Industrial application field]

本発明は、光導波路に関するものであり、特に先導波路
を多層化した三次元導波路構造を可能にするストライプ
横開じ込め光導波路に関するものである。
The present invention relates to an optical waveguide, and particularly to a striped horizontal recessed optical waveguide that enables a three-dimensional waveguide structure with multilayered guiding waveguides.

(従来の技術) −aに、半導体やガラスなど、ある特定の基板上に製作
する先導波路は、縦方向(膜厚方向)と横方向(基板面
に平行な方向)にそれぞれ何らかの光閉じ込め機構を設
けて、光を導波する。
(Prior art) -a. A guiding waveguide fabricated on a specific substrate such as a semiconductor or glass has some kind of optical confinement mechanism in the vertical direction (film thickness direction) and the horizontal direction (direction parallel to the substrate surface). is installed to guide the light.

縦方向には5例えばコア(光が通る層)とクラフトの間
の屈折率差による全反射を利用したものや、多wj膜ク
ラフトの干渉反射を利用したものが一般的であり、様々
な屈折率をもつ透明な材料を、  連続的に積層するこ
とで容易に製作できる。
In the vertical direction, for example, there are various types of refraction, such as those that utilize total internal reflection due to the difference in refractive index between the core (layer through which light passes) and the kraft, and those that utilize interference reflection of a multi-layer kraft. It can be easily manufactured by successively laminating transparent materials with a high density.

一方、横方向にはフォトリソグラフィとエツチング技術
を組み合わせた様々な光閉じ込め法が考案されている。
On the other hand, in the lateral direction, various optical confinement methods have been devised that combine photolithography and etching techniques.

第6図は、従来のりフジ型先導波路の例を示している。FIG. 6 shows an example of a conventional Nori-Fuji type leading waveguide.

図において、1は半導体などの基板であり、2は基板l
上に形成されたクラッド層、3はクラッド層2上に形成
されクラッド層2よりも屈折率が高いコア層、4はコア
層3を膜厚方向に段差を生じるようにエツチングして形
成したリッジ(うね部)、5はリッジ4に沿って設けら
れた光の線路である。
In the figure, 1 is a substrate such as a semiconductor, and 2 is a substrate l.
The cladding layer formed above, 3 is a core layer formed on the cladding layer 2 and has a higher refractive index than the cladding layer 2, and 4 is a ridge formed by etching the core layer 3 so as to create a step in the thickness direction. (ridge portion), 5 is a light path provided along the ridge 4.

第6図に示されたりフジ型先導波路では、コアN3の膜
厚を、リッジ4の部分とその周辺部分とで僅かに異なら
せたことにより9等価的な屈折率に差を生じさせて、横
方向の光閉じ込めを行っている。
In the Fuji-type leading waveguide shown in FIG. 6, the film thickness of the core N3 is slightly different between the ridge 4 portion and its surrounding portion, thereby causing a difference in the 9-equivalent refractive index. Performs lateral light confinement.

第7図は、従来の矩形埋込型光導波路の例を示している
。図において、1は半導体などの基板。
FIG. 7 shows an example of a conventional rectangular buried optical waveguide. In the figure, 1 is a substrate such as a semiconductor.

2はクラッド層、6はクラッド層2よりも高い屈折率を
もつコアである。
2 is a cladding layer; 6 is a core having a higher refractive index than the cladding layer 2;

コア6はクラッド層2上に形成した膜をストリップ状に
残してクラッド層2あるいは基板1までエツチングして
形成され、その後ストリップ状のコアを低屈折率媒質で
埋込むことにより横方向の光閉じ込めが行われている。
The core 6 is formed by etching the film formed on the cladding layer 2 in a strip shape to the cladding layer 2 or the substrate 1, and then burying the strip-shaped core with a low refractive index medium to achieve lateral optical confinement. is being carried out.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述したりフジ型先導波路や矩形埋込型光導波路は、従
来多く用いられていたが、これらは一般にコア径が10
μm近い単一モード光ファイバとの高効率結合を考慮し
たとき、光導波路のコアの大きさもそれと同等にする必
要があり、その場合光横開じ込めに必要なエツチング深
さも、数μmから108m以上に及んでしまう。
The aforementioned Fuji-type leading waveguide and rectangular buried optical waveguide have been widely used in the past, but these generally have a core diameter of 10
When considering high-efficiency coupling with a single mode optical fiber close to μm, the core size of the optical waveguide needs to be the same size, and in that case, the etching depth required for lateral optical embedding also ranges from several μm to 108 m. It goes beyond that.

これだけの厚さをエツチングするためには方向性をもた
ない化学エツチングは不可能であり、近年急速に進歩し
てきた反応性イオンビームエツチングなどの異方向性ド
ライエツチング技術を用いる必要があるが、それでも現
状では低損失な光導波路を得るためにかなりの精度と時
間を要している。
In order to etch such a thickness, non-directional chemical etching is impossible, and it is necessary to use anisotropic dry etching techniques such as reactive ion beam etching, which has rapidly progressed in recent years. Even so, it currently takes considerable precision and time to obtain a low-loss optical waveguide.

また今後は、光素子を高密度に集積化する上で。In the future, we will also focus on high-density integration of optical devices.

第8図に示すような複数の光線路を膜厚方向に積層し、
3次元的に光信号のやり取りを行う積層導波型光集積回
路の重要性が増大するものと考えられる。簡単に図につ
いて説明すると、30は半導体などの基板、31は光の
入射ポート、32は先導波路。
Layering multiple optical paths in the film thickness direction as shown in Figure 8,
It is believed that the importance of laminated waveguide type optical integrated circuits that exchange optical signals three-dimensionally will increase. To briefly explain the diagram, 30 is a substrate such as a semiconductor, 31 is a light input port, and 32 is a leading waveguide.

33は光の出射ボート、34は光合流・分岐回路、35
は上下方向の光結合回路、36は光検器である。しかし
前述したような光横開じ込め法では、光導波路形成後に
その凹凸が表面に残ってしまうため。
33 is a light output boat, 34 is a light merging/branching circuit, 35
36 is a vertical optical coupling circuit, and 36 is a photodetector. However, in the optical lateral folding method as described above, the unevenness remains on the surface after the optical waveguide is formed.

この方法で多段に積層した光集積回路を構成することは
不可能である。
It is impossible to construct a multi-layered optical integrated circuit using this method.

本発明は、コア厚の大きい先導波路を横閉じ込めすると
きに要求されるエツチング精度を緩和し。
The present invention alleviates the etching precision required when laterally confining a leading waveguide with a large core thickness.

従来の方法に比べて極めて容易に製作でき、かつ表面に
段差がほとんど残らない光横開じ込め光導波路を実現す
ることを目的とするものである。
The purpose of this invention is to realize a horizontally recessed optical waveguide that can be manufactured much more easily than conventional methods and leaves almost no steps on the surface.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、光の線路となるコアの横方向において媒質中
に低い屈折率をもつ薄い中間層をストライプ状に設ける
ことによって等価的に屈折率を低下させ、深いエツチン
グを行う必要なしに光の横方向閉じ込めを実現するもの
である。
The present invention effectively lowers the refractive index by providing a striped thin intermediate layer with a low refractive index in the medium in the lateral direction of the core, which serves as the optical path, and allows the light to pass through without the need for deep etching. This realizes lateral confinement.

第1図は1本発明によるストライプ横開じ込め先導波路
の原理説明図である。
FIG. 1 is a diagram illustrating the principle of a striped horizontally recessed leading waveguide according to the present invention.

図において、11はクラッド層、12は先導波路のコア
層、13はコア層12よりも屈折率が低い媒質の中間層
、14はクラッド層11に対向するクラッド層。
In the figure, 11 is a cladding layer, 12 is a core layer of a guiding waveguide, 13 is an intermediate layer of a medium whose refractive index is lower than that of the core layer 12, and 14 is a cladding layer opposite to the cladding layer 11.

15は光の線路となるコア部である。また、Aは中間層
が除去されている領域、Bは中間層が存在する領域であ
る。
Reference numeral 15 represents a core portion that serves as a light path. Further, A is a region where the intermediate layer is removed, and B is a region where the intermediate layer is present.

〔作 用〕[For production]

第1図により9本発明の詳細な説明する。 The present invention will be explained in detail with reference to FIG.

第1図の縦方向(膜厚方向)に積層した先導波路のコア
層12中には、領域Bに示されるような非常に薄い中間
層13が一層挟まれている。この中間FJ13は、コア
に用いられている材料よりも屈折率が低いため、光に作
用する等価屈折率をわずかに下げる働きをもつ。したが
って中間1113が除去されている領域Aとの間に横方
向に等価的な屈折率差が生じ1wi域AとBの境界で光
が全反射するため、光が領域Aの中に閉じ込められる。
A very thin intermediate layer 13 as shown in region B is sandwiched between the core layers 12 of the leading waveguide stacked in the vertical direction (thickness direction) in FIG. Since this intermediate FJ13 has a lower refractive index than the material used for the core, it has the function of slightly lowering the equivalent refractive index that acts on light. Therefore, an equivalent difference in refractive index occurs in the lateral direction with region A from which the intermediate 1113 is removed, and light is totally reflected at the boundary between 1wi regions A and B, so that light is confined in region A.

この横閉じ込め法は、コア材料の一部が低屈折率媒質に
置き換わっているという点において従来のりフジ型先導
波路における横閉じ込め法と同じであるが、その低屈折
率媒質をコア層の中間に置いたことで、薄い層でもその
効果を数倍から10倍以上に大きくしている。
This lateral confinement method is the same as the lateral confinement method in conventional Fuji-type leading waveguides in that part of the core material is replaced with a low refractive index medium, but the low refractive index medium is placed in the middle of the core layer. By placing it in place, even a thin layer can increase the effect from several times to more than 10 times.

したがって9本発明では、従来のりフジ型に比べてエツ
チング深さが1/10程度と小さくて済み。
Therefore, in the present invention, the etching depth can be reduced to about 1/10 of that of the conventional glue Fuji type.

化学エツチングで非常に手峠に線路パターンが形成でき
る。ここで形成されるパターンは他の横閉じ込めのよう
にはっきりした段差(ストリップ)が形成されることが
なく、2次元的なストライプ(しま)に近いため1本発
明ではこの横閉じ込め法をストライプ横開じ込めと呼ん
でいる。したがって、エツチングによる段差が小さいた
め、最終的に表面に残る段差を小さく抑えることができ
By chemical etching, it is possible to form track patterns in extremely rough areas. The pattern formed here does not have clear steps (strips) unlike other lateral confinement methods, and is close to two-dimensional stripes (stripes). It's called opening. Therefore, since the level difference caused by etching is small, the level difference that ultimately remains on the surface can be kept small.

積層導波路型光集積回路への応用が可能になる。Application to laminated waveguide type optical integrated circuits becomes possible.

〔実施例〕〔Example〕

本発明は、半導体、ガラスなどの基板上に形成されたあ
らゆる光導波路に適用可能であり、コアが単一モード光
ファイバと同程度に厚い場合に有効である。
The present invention is applicable to any optical waveguide formed on a substrate such as a semiconductor or glass, and is effective when the core is as thick as a single mode optical fiber.

特に、第2図に示す共振反射型光導波路(iffi称A
RROW)のように、単一モード導波路でありながらコ
ア内の光閉じ込めが強く、リッジなどの微小な外形変化
しか与えない加工では横方向の閉じ込め効果が得にくい
導波路に対しては、特に効果的と考えられる。このよう
な共振反射型光導波路で横閉じ込めを行った実施例を第
3図に示す。
In particular, the resonant reflective optical waveguide (iffi name A) shown in FIG.
This is especially true for waveguides such as single-mode waveguides (RROW), which have strong optical confinement within the core even though they are single-mode waveguides, and it is difficult to obtain a lateral confinement effect with processing that causes only minute external changes such as ridges. It is considered effective. FIG. 3 shows an example in which lateral confinement is performed using such a resonant reflection type optical waveguide.

第3図において、10は基板、llaは第1クラツド層
、llbは第2クラツド層、12はコア層、13は中間
層、15はコア部である。
In FIG. 3, 10 is a substrate, lla is a first cladding layer, llb is a second cladding layer, 12 is a core layer, 13 is an intermediate layer, and 15 is a core portion.

また各層の屈折率と厚さを次のように表す。In addition, the refractive index and thickness of each layer are expressed as follows.

1m−皿飯エ     ニー立 基板        ns       −第1クラッ
ド層   nl       dl第2クラッド層  
 n□      6837層       nc  
     dc中間層       n Ic    
   d Icここで、共振反射型先導波路(ARRO
W)の構造上の特性から、各層の屈折率間には1次のよ
うな関係が設定される。なおコア層の上部媒質(通常は
空気)の屈折率をnoとする。
1m-Dish rice eny vertical substrate ns-1st cladding layer nl dl2nd cladding layer
n□ 6837 layers nc
dc middle layer n Ic
d Ic Here, the resonant reflective guiding waveguide (ARRO
Due to the structural characteristics of W), a linear relationship is set between the refractive indices of each layer. Note that the refractive index of the upper medium (usually air) of the core layer is set to no.

nc   >n・ n、>n。nc         >n・ n,>n.

nl    >   nz n(≧  n= nl    <    n= さらに5本発明によるストライプ横開じ込めを行う条件
として nlc  <  nc にされる。
nl>nz n(≧n=nl<n=Furthermore, 5 conditions for performing the stripe lateral opening according to the present invention are nlc<nc.

これにより、第2図に矢印で示されているように、コア
層に入射した光は、第2クラッド層の厚さを適切に設定
することにより生じる干渉反射により縦方向に閉じ込め
られかつ横方向にも等価屈折率差による全反射により閉
し込められて伝播する。
As a result, as shown by the arrows in Figure 2, the light incident on the core layer is confined in the vertical direction and in the horizontal direction due to interference reflection caused by appropriately setting the thickness of the second cladding layer. It propagates while being confined by total internal reflection due to the difference in the equivalent refractive index.

第4図に、中間層の厚さdlcをパラメータとしたとき
、コア層の表面からの中間層の位IDと横方向等価屈折
率差ΔΩとの関係を示す。
FIG. 4 shows the relationship between the position ID of the intermediate layer from the surface of the core layer and the lateral equivalent refractive index difference ΔΩ when the thickness dlc of the intermediate layer is used as a parameter.

第3図の実施例による横閉じ込めの設計の具体例として
、波長0.633μmに対してコア層12の厚さdcを
4μmとし5コアFi12の材料に光導波路でよく用い
られるC 7059ガラス(nc =1.54)を仮定
したとき、第1クラフト層11aにT i Ox 。
As a specific example of the lateral confinement design according to the embodiment shown in FIG. = 1.54), T i Ox is applied to the first kraft layer 11a.

中間層13にS i 0x(nlc””1.46)を用
いれば、中間層13の厚さdlcが0.4μmと薄くて
も、横方向に0.25%の等価屈折率差が得られる。
If S i 0x (nlc""1.46) is used for the intermediate layer 13, an equivalent refractive index difference of 0.25% in the lateral direction can be obtained even if the thickness dlc of the intermediate layer 13 is as thin as 0.4 μm. .

なお、製作においては、クラッド層、コア層。In addition, in manufacturing, the clad layer and core layer.

中間層などの各層の成膜にスパッタ法を、コア部15 
(領域A)の中間層の除去にはBHF (緩衝フン酸)
エツチングを用いた。エツチングの深さは数1000人
程度でよいため、製作が容易である。
The sputtering method is used to form each layer such as the intermediate layer, and the core part 15 is
BHF (buffered hydrofluoric acid) is used to remove the intermediate layer in (area A).
Etching was used. Since the depth of etching only needs to be about several thousand layers, manufacturing is easy.

また1本発明に基づ(ストライプ横開じ込め光導波路に
よれば、先導波路形成後9表面に残る段差が非常に小さ
いので、基板上に1つの導波回路を形成した後、さらに
その上に分離層を挟んで別の導波回路を積層することが
可能である。第5図はその1例であり、上下の導波路が
重なる部分に光信号をやり取りする光結合部を設けるこ
とで。
In addition, based on the present invention (according to the striped horizontal recessed optical waveguide), the level difference remaining on the surface after forming the leading waveguide is very small, so after forming one waveguide circuit on the substrate, It is possible to stack another waveguide circuit with a separation layer in between. Figure 5 shows an example of this. By providing an optical coupling section for exchanging optical signals at the part where the upper and lower waveguides overlap .

3次元的な積層導波路型光集積回路が構成できる。A three-dimensional laminated waveguide type optical integrated circuit can be constructed.

第5図において、 16は基板、17は基板と導波路を
分離する干渉反射クラフト、 18は下部導波路。
In FIG. 5, 16 is a substrate, 17 is an interference reflection craft that separates the substrate and waveguide, and 18 is a lower waveguide.

19は上下の導波路を分離する干渉反射クラフト。19 is an interference reflection craft that separates the upper and lower waveguides.

20は上部導波路、21および22は中間層、23およ
び24はコア部、25は光スィッチや変調器などの光デ
バイスを示す。
20 is an upper waveguide, 21 and 22 are intermediate layers, 23 and 24 are core parts, and 25 is an optical device such as an optical switch or a modulator.

このようにして、任意複数の導波路を多層化して三次元
構造とすることができる。
In this way, an arbitrary plurality of waveguides can be multilayered to form a three-dimensional structure.

〔発明の効果〕〔Effect of the invention〕

本発明によって、コア層が光ファイバのコアと同程度の
厚い導波路でも、深いエツチングを行わずに容易に屈折
率差を形成することができるため。
According to the present invention, even in a waveguide whose core layer is as thick as the core of an optical fiber, a refractive index difference can be easily formed without deep etching.

光横開じ込めが極めて簡単に実現できる。また。Optical horizontal opening can be achieved extremely easily. Also.

導波路の表面の凹凸が小さいため、積層導波路型光集積
回路への応用が可能になる。
Since the surface of the waveguide has small irregularities, it can be applied to laminated waveguide type optical integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、第2図は本発明を用いた
場合に特に大きな効果が得られる共振反射型光導波路の
説明図、第3図は本発明の1実施例である共振反射型先
導波路の構造図、第4図は中間層と横方向等価屈折率差
の関係説明図、第5図は本発明の実施例による積層導波
路型光集積回路の構造図、第6図は従来のリッジ型先導
波路の例の構造図、第7図は従来の矩形埋込型光導波路
の例の構造図、第8図は従来の積層導波路型光集積回路
の例の説明図である。 第1図中。 11:クランド層 12:コア層 13:中間層 14:クランド層 15:コア部
Fig. 1 is an explanatory diagram of the principle of the present invention, Fig. 2 is an explanatory diagram of a resonant reflection type optical waveguide in which a particularly large effect can be obtained when the present invention is used, and Fig. 3 is an explanatory diagram of a resonant reflection type optical waveguide which is an embodiment of the present invention. FIG. 4 is a diagram illustrating the relationship between the intermediate layer and the lateral equivalent refractive index difference; FIG. 5 is a diagram showing the structure of a laminated waveguide type optical integrated circuit according to an embodiment of the present invention; FIG. 7 is a structural diagram of an example of a conventional ridge-type guided waveguide, FIG. 7 is a structural diagram of an example of a conventional rectangular buried optical waveguide, and FIG. 8 is an explanatory diagram of an example of a conventional laminated waveguide type optical integrated circuit. be. In Figure 1. 11: Land layer 12: Core layer 13: Intermediate layer 14: Land layer 15: Core part

Claims (1)

【特許請求の範囲】 光を導波するコア層(12)と、コア層(12)内の光
をコア層(12)の面に垂直な方向に閉じ込めるクラッ
ド層(11、14)と、コア層(12)中にストライプ
状に設けた中間層(13)とを有し、 中間層(13)の屈折率をコア層(12)の屈折率より
も低くして、コア層(12)内の光をコア層(12)と
クラッド層(11、14)との境界面に平行な方向に閉
じ込めることを特徴とするストライプ横閉じ込め光導波
路。
[Claims] A core layer (12) that guides light, a cladding layer (11, 14) that confines light within the core layer (12) in a direction perpendicular to the plane of the core layer (12), and a core layer (12) that guides light; The layer (12) has an intermediate layer (13) provided in a stripe shape, and the refractive index of the intermediate layer (13) is lower than the refractive index of the core layer (12). A striped lateral confinement optical waveguide characterized by confining light in a direction parallel to the interface between a core layer (12) and cladding layers (11, 14).
JP63053113A 1988-03-07 1988-03-07 Striped laterally confined optical waveguide Expired - Fee Related JP2879849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053113A JP2879849B2 (en) 1988-03-07 1988-03-07 Striped laterally confined optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053113A JP2879849B2 (en) 1988-03-07 1988-03-07 Striped laterally confined optical waveguide

Publications (2)

Publication Number Publication Date
JPH01225904A true JPH01225904A (en) 1989-09-08
JP2879849B2 JP2879849B2 (en) 1999-04-05

Family

ID=12933742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053113A Expired - Fee Related JP2879849B2 (en) 1988-03-07 1988-03-07 Striped laterally confined optical waveguide

Country Status (1)

Country Link
JP (1) JP2879849B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924452A (en) * 1972-06-28 1974-03-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924452A (en) * 1972-06-28 1974-03-04

Also Published As

Publication number Publication date
JP2879849B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
US7546007B2 (en) Broadband optical via
CN112269224B (en) Silicon-silicon nitride integrated polarization beam splitter based on vertical coupling structure
US20050152648A1 (en) Method and apparatus for compactly coupling an optical fiber and a planar optical waveguide
WO2004099834A2 (en) Low-loss optical waveguide crossovers using an out-of-plane waveguide
JP3903606B2 (en) Optical signal transmission system and manufacturing method thereof
JPS6060042B2 (en) Method and device for creating a grating in an optical waveguide
JP4146788B2 (en) Optical waveguide connection module and method for fabricating the same
US20230280524A1 (en) Optical Waveguide Device and Method for Manufacturing the Same
JPH01225904A (en) Optical waveguide enclosing side of stripe
JPH0634838A (en) Optical coupling structure between optical waveguides
CN114690310A (en) Edge coupler including a grooved film
CN100356213C (en) Wavelength insensitive integrated optic polarization splitter
JP2004309807A (en) Laminated optical waveguide
JPS63191106A (en) Optical branching circuits
JPS6360410A (en) Optical device
US20220413220A1 (en) Optical waveguides and methods for producing
JPS6363006A (en) Laminated optical waveguide
JPH11264912A (en) Optical wiring
KR100819309B1 (en) Apparatus for Wavelength Division Multiplexing filter
EP1496378A1 (en) Optical coupling device
JPH01225905A (en) Optical waveguide
JPH0643328A (en) Multilayered optical waveguide and its production
CN116819678A (en) Slot waveguide including metamaterial structures
JP2005202073A (en) Optical directional coupler element
WO2023215456A1 (en) Optically efficient silicon nitride edge couplers in photonic integrated circuits

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees