JPH01225786A - Method for electrolyzing iron - Google Patents

Method for electrolyzing iron

Info

Publication number
JPH01225786A
JPH01225786A JP63051119A JP5111988A JPH01225786A JP H01225786 A JPH01225786 A JP H01225786A JP 63051119 A JP63051119 A JP 63051119A JP 5111988 A JP5111988 A JP 5111988A JP H01225786 A JPH01225786 A JP H01225786A
Authority
JP
Japan
Prior art keywords
electrodes
seawater
current density
electrolysis
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63051119A
Other languages
Japanese (ja)
Inventor
Tetsuo Sawazaki
沢崎 哲夫
Tadao Kamiyama
上山 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63051119A priority Critical patent/JPH01225786A/en
Publication of JPH01225786A publication Critical patent/JPH01225786A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To prevent the clogging between electrodes and a decrease in the current density by stopping electrolysis for specified hours in the method wherein the electrolytic current density on the electrode is enhanced, and the polarity of the electrodes is changed at regular time intervals to generate iron ion in seawater. CONSTITUTION:Seawater is introduced into an electrolytic cell 5 from a seawater inlet 7, and discharged from a seawater outlet 7. The parallel electrodes 3 and 4 are vertically set at some distance in the cell 5, and connected to a power source through conductive rods 1 and 2. The density of the current flowing through the electrodes 3 and 4 is controlled to a high current density of >=4A/dm<2>, the polarity of the electrodes 3 and 4 is changed at regular time intervals, and electrolysis is stopped for a surplus time spent for holding a high current density. Iron ion is generated in the seawater in the cell 5, discharged from an outlet 6, and utilized for preventing the corrosion of the condenser tubes, etc., of a thermal power plant. The deposition of scales on the electrode is prevented by this method, and the cell can be operated under low- load conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、火力発電所の復水器チューブ等の防食のため
の、鉄イオンを冷却海水中に注入する低負荷鉄電解方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low-load iron electrolysis method in which iron ions are injected into cooling seawater for corrosion prevention of condenser tubes and the like in thermal power plants.

〔従来の技術〕[Conventional technology]

従来の鉄電解方法は、海水中に鉄陽極と鉄陰極を設けて
電気分解を行って鉄イオンを海水中に生成させていた。
In the conventional iron electrolysis method, iron anodes and iron cathodes are placed in seawater and electrolysis is performed to generate iron ions in seawater.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の鉄電解方法では、電極の極性を切り換えない
で電解を行っていたので、電極面にz  F e OO
H2M? (OH)を等のスケール、が付着して経時的
にFe  イオンについての電流効率低下が発生し、ま
た、電極間の閉塞が起こり、復水器チューブの防食が不
完全になる恐れがあった。
In the conventional iron electrolysis method described above, electrolysis was performed without switching the polarity of the electrode, so z F e OO
H2M? (OH) and other scales adhered to the surface, causing a decrease in current efficiency for Fe ions over time, and clogging between electrodes, which could result in incomplete corrosion protection of the condenser tube. .

そこで本発明に先立ち、特願昭62−206222号で
r海中に配置された鉄陽電極と鉄陰電極によって電気分
解を行って海水中に鉄イオンを発生せる鉄電解方法にお
いて、電解電流密度を4A/drr?以上とし、かつ、
一定時間毎に電極の極性を切り換えることを特徴とする
鉄電解方法」を提案した上記発明では、電極における電
解電流密度を4A/drr?以上と高電流密度とし、か
つ一定時間毎に電極の極性を変えることによって、陽極
になったときに電極面に付着したFeやM−f化合物等
のスケ−ルが剥離され、電極面へのスケールの堆積が減
少する。このために、鉄電解の電流効率低下及びスケー
ルによる電極間の閉塞を防ぐことができるようになった
が、更に電極面へのスケールの堆積を減少させ、鉄電解
の電流効率を向上させることにより、低負荷運転ができ
る鉄電解方法が求められている。そこで。
Therefore, prior to the present invention, Japanese Patent Application No. 62-206222 proposed an iron electrolysis method in which iron ions are generated in seawater by electrolysis using an iron positive electrode and an iron negative electrode placed in the sea, and the electrolytic current density was 4A/drr? The above, and
In the above-mentioned invention, which proposes an "iron electrolysis method characterized by switching the polarity of the electrode at regular intervals," the electrolytic current density at the electrode is set to 4A/drr? By using the above high current density and changing the polarity of the electrode at regular intervals, scales such as Fe and M-f compounds attached to the electrode surface are peeled off when it becomes an anode, and the scales are removed from the electrode surface. Scale build-up is reduced. For this reason, it has become possible to prevent a decrease in the current efficiency of iron electrolysis and blockage between electrodes due to scale, but it is also possible to reduce the accumulation of scale on the electrode surface and improve the current efficiency of iron electrolysis. There is a need for an iron electrolysis method that allows for low-load operation. Therefore.

負荷を低げるため電流密度を低げると、電極へスケール
が付着し、電解が停止してしまう。
If the current density is lowered to reduce the load, scale will adhere to the electrodes and electrolysis will stop.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は、鉄電極の表面にスケールを堆積させないため
に、電極における電解電流密度を4A/d靜以上で電解
し、一定時間毎に陽極と陰極の極性を切り換え、かつ一
定時間電気分解を停止するようにした。
In order to prevent scale from being deposited on the surface of the iron electrode, the present invention performs electrolysis at an electrolytic current density of 4 A/d or higher, switches the polarity of the anode and cathode at fixed intervals, and stops electrolysis for a fixed period of time. I decided to do so.

〔作 用〕[For production]

画電極の極性を切換えると共に、高電流密度に保持した
ことによる余分な一定時間、電解を停止することにより
、電極へのスケール付着を防止し、低負荷運転が可能と
なった。
By switching the polarity of the picture electrode and stopping electrolysis for an extra certain period of time due to maintaining the current density at a high current density, scale adhesion to the electrodes was prevented and low-load operation became possible.

〔実施例〕〔Example〕

本発明の方法を実施する場合に使用される電解装置の1
例を第1図に示す。
1 of the electrolyzer used when carrying out the method of the present invention
An example is shown in FIG.

電解槽5には上部に海水人ロア及び下部に海水出口6が
設けられ、海水は図中矢印に示すように海水人ロアから
電解槽5に入シ、海水出口6から流出する。
The electrolytic cell 5 is provided with a seawater lower part at the top and a seawater outlet 6 at the lower part, and seawater enters the electrolytic cell 5 from the seawater lower part and flows out from the seawater outlet 6 as shown by the arrow in the figure.

3.4はそれぞれ電解槽5内に互いに平行に間隔をおい
て垂直に設けられた鉄製の電極であって2通電棒1,2
を介して電源に接続されている。
Reference numerals 3 and 4 denote iron electrodes vertically provided in the electrolytic cell 5 in parallel with each other at intervals, and two current-carrying rods 1 and 2 are connected to each other.
Connected to power via.

図示の場合は、電極3が陽電極、電極4が陰電極となっ
ているが9図示しない切換え装置によって1両電極3.
4の極性を一定時間毎に切換え、かつ高電流密度に保持
したことによる余分な時間、電解を停止することができ
るようになっている。
In the case shown in the figure, electrode 3 is a positive electrode and electrode 4 is a negative electrode, but a switching device (not shown) makes it possible to switch between two electrodes 3 and 4.
By switching the polarity of 4 at regular intervals and maintaining the high current density, electrolysis can be stopped for an extra period of time.

本装置においては、電解によって電解槽5内の海水中に
鉄イオンを発生させ、これを海水出口から流出させて火
力発電所の復水器チューブ等の防食に利用する。
In this device, iron ions are generated in the seawater in the electrolytic cell 5 by electrolysis, flowed out from the seawater outlet, and used for corrosion protection of condenser tubes, etc. of thermal power plants.

本発明は、上記のような電解装置を用いて鉄イオンを発
生させる場合に、電極3,4を流れる電流密度を4 A
 / d m2以上の高電流密度とし、一定時間毎に電
極3,4の極性を変え、かつ高電流密度に保持した余分
な時間だけ電解を停止するようにした。
In the present invention, when iron ions are generated using the electrolytic device as described above, the current density flowing through the electrodes 3 and 4 is reduced to 4 A.
The current density was set at a high current density of /d m2 or more, the polarity of the electrodes 3 and 4 was changed at regular intervals, and the electrolysis was stopped only for the extra time when the current density was maintained at the high current density.

本発明の効果を確認するために、第1図に示す装置を用
いて行った試験の結果を表1に示す。
Table 1 shows the results of a test conducted using the apparatus shown in FIG. 1 in order to confirm the effects of the present invention.

本試験を行った場合の条件は表1に示す通りであるが、
電極面積は50mmX300朋のものを採用した。
The conditions under which this test was conducted are shown in Table 1.
The electrode area was 50 mm x 300 mm.

表中(1)〜(3)は電極の極性の切換えを行わない従
来方法、 (4)、 (5)は電極の切換えを行なった
先の発明方法で、(6)〜(10)は本発明方法、 (
11)′  は電極の極性の切換えを行い電流密度を3
.5A/d−とした比較例をそれぞれ示す。
In the table, (1) to (3) are the conventional methods that do not switch the polarity of the electrodes, (4) and (5) are the previously invented methods that switch the electrodes, and (6) to (10) are the methods of the present invention. Invention method, (
11)' changes the polarity of the electrode and increases the current density by 3.
.. Comparative examples with 5A/d- are shown.

表     1 畳は電解停止時間(h)を示す。Table 1 The tatami indicates the electrolysis stop time (h).

表1より明らかなように9本発明の方法によれば、1ケ
月経過後のスケール付着量は従来方法に比して1/10
〜7/lO程度に減少し、また、鉄電解の電流効率も格
段に上昇し、90チ以上に維持できることが判明した。
As is clear from Table 1, according to the method of the present invention, the amount of scale deposited after one month is 1/10 that of the conventional method.
It was found that the current efficiency of iron electrolysis was significantly increased and could be maintained at 90% or higher.

また、比較例旧)は上記の通り電流密度を3.5A/d
m”としたものであるが、1ケ月経過後のスケール付着
量が本発明の方法の電流密度4A/diの場合に比して
約1.06倍であり、電流密度4A/dy#以上の場合
においては、スケールの付着量が更に低減することが判
明した。
In addition, for the comparative example (old), the current density was 3.5 A/d as described above.
The amount of scale deposited after one month is approximately 1.06 times that of the method of the present invention at a current density of 4 A/di, and when the current density is 4 A/dy or more, In some cases, it has been found that the amount of scale deposits is further reduced.

また、上記試験結果によれば、電解を停止する時間とし
ては、1時間程度で充分に効果を達することができるが
、3時間以上にした方が更に好結果を得られることが判
明した。
Further, according to the above test results, it was found that although sufficient effects can be achieved by stopping the electrolysis for about 1 hour, even better results can be obtained by stopping the electrolysis for 3 hours or more.

〔発明の効果〕〔Effect of the invention〕

本発明は9以上の通り電解電流密度を4A/d−以上と
し、かつ鉄電極の極性を一定時間毎に変換し、更に高電
流密度に保持した余分な時間だけ電解を停止することに
より、電極が陽極になったときに電極面に付着したFe
やM1化合物等のスケールが効果的に剥離され、1ケ月
後のスケール付着量は従来方法の場合に比して1/10
〜7/lOと減少し、 また鉄電解の電流効率も90%
以上に維持することができる。
As described above, the present invention sets the electrolytic current density to 4 A/d- or more, changes the polarity of the iron electrode at regular intervals, and further stops electrolysis for an extra period of time while maintaining the high current density. Fe attached to the electrode surface when it becomes an anode
Scales such as and M1 compounds are effectively removed, and the amount of scale attached after one month is 1/10 compared to the conventional method.
The current efficiency of iron electrolysis is also 90%.
can be maintained above.

従って2本発明では電極間の閉塞を防止することができ
、また鉄電解の電流効率の低下も防ぐことができる効果
を挙げることができる。
Therefore, in the present invention, it is possible to prevent the blockage between the electrodes, and the current efficiency of iron electrolysis can also be prevented from decreasing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は9本発明を実施する場合に使用される電解装置
の1例の説明図である。 1.2・・・通電棒、3,4・・・鉄電極、5・・・電
解槽、6・・・海水出口、7・・・海水入口。
FIG. 1 is an explanatory diagram of an example of an electrolytic device used in carrying out the present invention. 1.2... Current-carrying rod, 3, 4... Iron electrode, 5... Electrolytic tank, 6... Seawater outlet, 7... Seawater inlet.

Claims (1)

【特許請求の範囲】[Claims] 海中に配置された鉄陽電極と鉄陰電極によつて電気分解
を行って海水中に鉄イオンを発生させる鉄電解方法にお
いて、電解電流密度を4A/dm^2以上とし、一定時
間毎に電極の極性を切り換え、かつ一定時間電気分解を
停止することを特徴とする鉄電解方法。
In the iron electrolysis method, in which iron ions are generated in seawater by electrolysis using iron positive electrodes and iron negative electrodes placed underwater, the electrolytic current density is set to 4A/dm^2 or more, and the electrodes are removed at regular intervals. An iron electrolysis method characterized by switching the polarity of the iron and stopping electrolysis for a certain period of time.
JP63051119A 1988-03-04 1988-03-04 Method for electrolyzing iron Pending JPH01225786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051119A JPH01225786A (en) 1988-03-04 1988-03-04 Method for electrolyzing iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051119A JPH01225786A (en) 1988-03-04 1988-03-04 Method for electrolyzing iron

Publications (1)

Publication Number Publication Date
JPH01225786A true JPH01225786A (en) 1989-09-08

Family

ID=12877920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051119A Pending JPH01225786A (en) 1988-03-04 1988-03-04 Method for electrolyzing iron

Country Status (1)

Country Link
JP (1) JPH01225786A (en)

Similar Documents

Publication Publication Date Title
US4088550A (en) Periodic removal of cathodic deposits by intermittent reversal of the polarity of the cathodes
US4468305A (en) Method for the electrolytic regeneration of etchants for metals
CN101580949B (en) Method for improving stability of aluminum electrolytic bath
US4906340A (en) Process for electroplating metals
GB506590A (en) Improvements in the electrolytic manufacture and production of zinc dust
US3915817A (en) Method of maintaining cathodes of an electrolytic cell free of deposits
CN110747490B (en) Zinc electrodeposition method
JPS5767184A (en) Stabilizing method for metallic bed of aluminum in electrolytic cell for aluminum
USRE34191E (en) Process for electroplating metals
JPH01225786A (en) Method for electrolyzing iron
US3425920A (en) Electrolytic method of regenerating organic acid cleaning solution for ferrous metals
CN111094632B (en) Method for electrolytically depositing a zinc-nickel alloy layer on at least one substrate to be treated
CN111621810A (en) Method for reducing cobalt dendrite growth in high-purity cobalt electrolytic refining process
KR101297953B1 (en) Method for electrowinning of cobalt
CN101906644B (en) Method for recycling copper from copper nitrate waste water
CN110170634A (en) A kind of casting connection method of aluminium electrolysis prebaked anode carbon block and steel pawl
JP3202375B2 (en) Method for producing potassium dicyanoaurate
US4310395A (en) Process for electrolytic recovery of nickel from solution
JPS622036B2 (en)
JPH06322575A (en) Production of sulfer-containing electrolytic nickel
FI59124C (en) ELEKTROLYTISK PROSESS FOER ELEKTROLYTISK UTFAELLNING AV METALLER
JP2007162050A (en) Metal winning method
Hardee et al. Application of titanium mesh-on-lead technology to metal electrowinning systems
JPS5524924A (en) Adjustment of metal ion concentration in nickel plating liquor
CN204251730U (en) A kind of hermetically sealed selectivity powder electrolyzer