JPH01225686A - Chemical heat storage material and its manufacture - Google Patents

Chemical heat storage material and its manufacture

Info

Publication number
JPH01225686A
JPH01225686A JP63049521A JP4952188A JPH01225686A JP H01225686 A JPH01225686 A JP H01225686A JP 63049521 A JP63049521 A JP 63049521A JP 4952188 A JP4952188 A JP 4952188A JP H01225686 A JPH01225686 A JP H01225686A
Authority
JP
Japan
Prior art keywords
heat storage
quicklime
chemical heat
limestone
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63049521A
Other languages
Japanese (ja)
Other versions
JP2539480B2 (en
Inventor
Michio Yanatori
梁取 美智雄
Masanobu Katani
昌信 架谷
Kimitatsu Matsuda
仁樹 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4952188A priority Critical patent/JP2539480B2/en
Publication of JPH01225686A publication Critical patent/JPH01225686A/en
Application granted granted Critical
Publication of JP2539480B2 publication Critical patent/JP2539480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a chemical heat storage material which has excellent thermal shock resistance and heat cycle resistance, and can be used repeatedly over a long period of time, by heating a crystalline limestone having a specified particle diameter at a high temperature, and then at a lower temperature to form a number of pores on the surface communicating with the inside of the particles. CONSTITUTION:A crystalline limestone 3 having a particle diameter of 0.3-4mm is put in flat vessels 8, such as porcelain dishes, so as to be in a layer of, e.g., 20mm or less in thickness. These vessels 8 are then placed on a conveyor 9 driven by rollers 10 and 10' in an electric furnace or muffle furnace to heat the limestone 3 at 850-1,100 deg.C for 2-7hr and then at 500-600 deg.C for 1hr or longer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化学蓄熱装置に用いる化学蓄熱材、特に生石灰
を主体とした化学蓄熱材及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a chemical heat storage material used in a chemical heat storage device, particularly to a chemical heat storage material mainly composed of quicklime, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

化学蓄熱装置は、第11図に示すように1反応材すなわ
ち化学蓄熱材(たとえば生石灰)3を収納した第1容器
1、被反応材(たとえば水)4を収納した第2容器2、
それらを結ぶバイブ5、バイブ5の途中に設けたバルブ
6から構成されている。そして被反応材4の蒸気をバイ
ブ5を介して第1容器1内に導入して化学蓄熱材3と反
応させて発熱させ、この熱を取出して給湯、暖房、プロ
セス加熱等に利用するものである。この化学蓄熱装置に
おいて、最も重要なことは、化学蓄熱材3が常に安定に
動作し、くり返し使えることができるということである
。生石灰を生体とした化学蓄熱材3に関する公知例とし
ては、特開昭61−199822号、特開昭62−30
181′号なるものがあるが、くり返して何回も使用す
ることを目的としたものではない、また生石灰に関連す
る他の公知例として特開昭58−83198号があるが
、これは500℃以下でも水酸化カルシウムが熱分解し
て元の酸化カルシウム(生石灰)に再生でき、その再生
率を上げるための添加剤に関する発明である。
As shown in FIG. 11, the chemical heat storage device includes a first container 1 containing a reactant, that is, a chemical heat storage material (e.g. quicklime) 3, a second container 2 containing a reactant material (e.g. water) 4,
It consists of a vibrator 5 that connects them, and a valve 6 provided in the middle of the vibrator 5. Then, the steam of the reacted material 4 is introduced into the first container 1 via the vibrator 5 and reacts with the chemical heat storage material 3 to generate heat, and this heat is extracted and used for hot water supply, space heating, process heating, etc. be. In this chemical heat storage device, the most important thing is that the chemical heat storage material 3 always operates stably and can be used repeatedly. Known examples of the chemical heat storage material 3 using quicklime as a living body include JP-A-61-199822 and JP-A-62-30.
There is a product called No. 181', but it is not intended to be used repeatedly. Another known example related to quicklime is JP-A No. 58-83198, which is not intended for repeated use over and over again. In the following, calcium hydroxide can be thermally decomposed and regenerated into the original calcium oxide (quicklime), and the invention relates to an additive for increasing the regeneration rate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術においては、生石灰(酸化力ルシラム)を
化学蓄熱材として、くり返して長期にわたって使用でき
るように改質するための技術に関しては開示されていな
い。
The above-mentioned prior art does not disclose a technique for modifying quicklime (oxidized luciram) so that it can be used repeatedly over a long period of time as a chemical heat storage material.

ナ 本発明の目的は、長期にわたってくり返し使残ることの
できる化学蓄熱材及びその製造方法を得ることにある。
An object of the present invention is to obtain a chemical heat storage material that can be used repeatedly over a long period of time, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

従来用いていた非晶質生石灰に対し、本発明では特に粒
径が0.3〜4mmの範囲の結晶質の生石灰を用いる。
In contrast to the conventionally used amorphous quicklime, the present invention uses crystalline quicklime having a particle size in the range of 0.3 to 4 mm.

結晶質生石灰を作る原料として結晶質の石灰石(炭酸カ
ルシウム)を用い、これを所定の方法で焼きながら生石
灰に変える。この過程において、生石灰の表面からその
内部にわたって、多数の穴(気孔)が生成される。この
ようにして多孔質状の生石灰が得られ、二オレを主体と
した化学蓄熱材を得ることができる。
Crystalline limestone (calcium carbonate) is used as the raw material for making crystalline quicklime, and is converted into quicklime by burning it using a prescribed method. In this process, many holes (pores) are generated from the surface of quicklime to its interior. In this way, porous quicklime can be obtained, and a chemical heat storage material mainly composed of diolet can be obtained.

上記結晶質石灰石の加熱過程において、加熱温度は85
0℃〜1100℃の範囲に加熱することにより、穴径0
.1μm〜0,5μmの範囲の気孔を作ることができる
In the heating process of the crystalline limestone mentioned above, the heating temperature is 85
By heating in the range of 0°C to 1100°C, the hole diameter can be reduced to 0.
.. Pores in the range of 1 μm to 0.5 μm can be created.

さらに、前記多孔質状の生石灰に粒径1〜10mの範囲
の結晶質の石灰石を5〜30重量%添加して製造した化
学蓄熱材も有効である。
Furthermore, a chemical heat storage material manufactured by adding 5 to 30% by weight of crystalline limestone with a particle size of 1 to 10 m to the porous quicklime is also effective.

〔作用〕[Effect]

生石灰の表面から内部に生じた穴(気孔)は。 Holes (pores) are formed inside the surface of quicklime.

化学蓄熱装置内にて被反応材である水蒸気と反応する際
の蒸気通路となる。水蒸気は容易にこの穴を通りながら
、生石灰内部に浸入して反応し、高温度の熱を発生する
。穴(気孔)の無い、従来の化学蓄熱材は、生石灰の表
面から水蒸気との水和反応が始まり、徐々に内部の反応
面が移動していくので、反応速度が遅く、また穴(気孔
)のような余剰空間が全くないので、生石灰(酸化カル
シウム)から消石炭(水酸化カルシウム)に変化する過
程における体積膨張を吸収する場所が無く。
It becomes a steam passage when reacting with water vapor, which is a reactant material, in a chemical heat storage device. Water vapor easily passes through these holes, penetrates inside the quicklime, reacts, and generates high-temperature heat. In conventional chemical heat storage materials, which have no holes (pores), the hydration reaction with water vapor starts from the surface of quicklime, and the reaction surface inside gradually moves, so the reaction rate is slow and there are no holes (pores). Since there is no surplus space, there is no place to absorb the volume expansion during the process of changing from quicklime (calcium oxide) to slaked coal (calcium hydroxide).

生石灰の粒子が破壊し、最後には粉化し、使用に耐えな
くなる。これに対して、本発明の化学蓄熱材は、多数の
気孔を有するので生石灰粒子の破壊が無く、長期間にわ
たって使用できる・〔実施例〕 以下1本発明の実施例について説明する1本発明の化学
蓄熱材の原料としては、結晶質の石灰石(寒水など)を
用いる0石灰石より生石灰を作る方法として、従来は立
がま、ロータリーキリン。
The quicklime particles break down and eventually turn into powder, making it unusable. In contrast, the chemical heat storage material of the present invention has a large number of pores, so there is no destruction of quicklime particles, and it can be used for a long period of time. As a raw material for chemical heat storage materials, crystalline limestone (such as cold water) is used to make quicklime from limestone.

流動式乾燥器、カルシマチック焼成がま等を用い。Using a fluidized dryer, calcimatic kiln, etc.

コークス、石炭、ガス等を燃焼し、その燃焼ガスを石灰
石中に吹込んで、それを焼きながら生石灰を得るという
方法をとっていた。このような方法では多孔質状の生石
灰を作ることはできない。
The method used was to burn coke, coal, gas, etc., blow the combustion gas into limestone, and burn it to obtain quicklime. Porous quicklime cannot be made using this method.

第1図を用いて、本発明の化学蓄熱材としての生石灰を
得る方法について説明する。炉<m気炉。
A method for obtaining quicklime as a chemical heat storage material of the present invention will be explained with reference to FIG. Furnace < m air furnace.

マツクル炉)7中に平形の皿8(たとえば磁製皿。A flat dish 8 (for example, a porcelain dish) is placed in a Matsukuru furnace 7.

素焼き皿)を設け、この上に原料としての石灰石3を乗
せる1石灰石3の粒径としては0.3〜4Iの範囲のも
のを選定し、これを皿8に乗せた時の層厚さは20■以
下と薄くする。炉7の内壁から石灰石3への伝熱は、主
として輻射伝熱によって行なわれるが、内部に存在する
気体(主として空気)の対流伝熱も、それに加わる9本
発明では、従来用いていた不純物質を含む燃焼ガスの強
制対流伝熱は、全く利用しない、炉7により1石灰石3
を850℃〜1100℃の温度範囲で、2時間から7時
間(好ましくは3〜5時間)にわたって加熱する。その
後温度を下げ、500℃から600℃の温度範囲で1時
間以上(好ましくは2〜4時間)加熱する。そして、好
ましくはこの温度に加熱された原料を、そのまま真空容
器内または五酸化リン等の強力乾燥材が入っている。大
形容器内に移して徐冷する。このような過程を経て、本
目的とする化学蓄熱材(生石灰)が得られる。炉7によ
る原料(石灰石3)を850℃から1100℃の高温度
で加熱する時間は、炉7の長さと、ローラー10によっ
て駆動されるコンベヤー9の速度によって決定される。
1. The particle size of the limestone 3 is selected to be in the range of 0.3 to 4I, and the layer thickness when placed on the plate 8 is as follows: Make it thinner than 20cm. Heat transfer from the inner wall of the furnace 7 to the limestone 3 is mainly carried out by radiation heat transfer, but convective heat transfer from the gas (mainly air) existing inside is also added. The forced convection heat transfer of the combustion gases containing
is heated at a temperature range of 850°C to 1100°C for 2 to 7 hours (preferably 3 to 5 hours). Thereafter, the temperature is lowered and the mixture is heated in a temperature range of 500°C to 600°C for 1 hour or more (preferably 2 to 4 hours). Preferably, the raw material heated to this temperature is placed in a vacuum container or in a strong drying material such as phosphorus pentoxide. Transfer to a large container and cool slowly. Through such a process, the desired chemical heat storage material (quicklime) is obtained. The time for heating the raw material (limestone 3) by the furnace 7 at a high temperature of 850° C. to 1100° C. is determined by the length of the furnace 7 and the speed of the conveyor 9 driven by the rollers 10.

そして炉7から原料3が出た後、大気中にて放冷される
過程において、500℃〜600℃の低温度範囲で保持
される時間帯がある。保持時間を長くするためには、ト
ンネル状の断熱カバーでコンベヤー9の周りを囲うのが
よい、この実施例において、磁製皿8を連続的気孔を有
する素焼き皿にすると石灰石3より炭酸ガスが抜は易く
、加熱時間を短かくできる。素焼き皿を金網また焼結金
属皿にしても同様の効果が得られる。
After the raw material 3 comes out of the furnace 7, there is a period of time during which the raw material 3 is kept in a low temperature range of 500°C to 600°C in the process of being left to cool in the atmosphere. In order to extend the holding time, it is better to surround the conveyor 9 with a tunnel-shaped heat insulating cover. In this embodiment, if the porcelain plate 8 is an unglazed plate with continuous pores, carbon dioxide gas is absorbed more than the limestone 3. It is easy to remove and the heating time can be shortened. A similar effect can be obtained by replacing the clay plate with a wire mesh or sintered metal plate.

第2図は別の製造方法を示す図である。前記方法では原
料を500℃から600℃の低温度範囲で1時間から3
時間加熱する工程を十分うまく行なえない場合がある。
FIG. 2 is a diagram showing another manufacturing method. In the above method, raw materials are heated in a low temperature range of 500°C to 600°C for 1 to 3 hours.
In some cases, the time heating step may not be carried out well enough.

第2図の方法では、炉7の隣りに別の低温度に加熱する
ための炉11を設け。
In the method shown in FIG. 2, a separate furnace 11 for heating to a low temperature is provided next to the furnace 7.

前記低温度範囲での加熱工程を十分うまく行なえるよう
にしたものである。加熱時間は炉11の長さを変えて調
整する。炉7と炉11との間に、空間部(非加熱部)1
2を設ければ、高温度から低温度へ下げることが容易に
行なえる。しかしながら、原料の温度の下げ方は、原料
そのものに熱衝撃を与えて亀裂が入らない範囲で行なわ
ねばならない。
The heating process in the low temperature range can be carried out satisfactorily. The heating time is adjusted by changing the length of the furnace 11. Between the furnace 7 and the furnace 11, a space part (non-heating part) 1
2, the temperature can be easily lowered from a high temperature to a low temperature. However, the temperature of the raw material must be lowered within a range that does not cause thermal shock to the raw material itself and cause cracks.

原料を高温度から低温度に下げる方法として。As a method of lowering raw materials from high temperature to low temperature.

バッチ処理法を用いてもよい、すなわち第2図において
コンベヤー9を除去し、炉7中にて原料を高温度(85
0℃〜1100℃)に保持した後、炉7への入力を下げ
、炉7そのものを低温度(500℃〜600℃)にする
ものである。第3図は、このバッチ処理法を、さらに発
展させたものである。
A batch processing method may also be used, ie conveyor 9 is removed in FIG. 2 and the raw material is brought to a high temperature (85
After maintaining the temperature at 0° C. to 1100° C., the input to the furnace 7 is lowered to bring the temperature of the furnace 7 itself to a low temperature (500° C. to 600° C.). FIG. 3 shows a further development of this batch processing method.

台14とベルジャ13によって構成される真空容器内の
回転テーブル15上に複数個の皿8を乗せ、その内部に
原料としての石灰石3を入れておく。
A plurality of plates 8 are placed on a rotary table 15 in a vacuum container constituted by a table 14 and a bell jar 13, and limestone 3 as a raw material is placed inside the rotary table 15.

皿8の上部に高温加熱体7と低温加熱体11を設けて、
回転テーブル15を回転させることにより高温加熱をし
た後低温加熱を行う。7′と11′は加熱体7と11を
加熱するヒーターであるが、面状発熱体を利用してもよ
い。石灰石3から発生する炭酸ガスはバルブ16を開い
て、パイプ17を介して真空排気すれば効率よく生石灰
が得られる。全加熱作業が終了すれば、このまま真空ベ
ルジャ13内で放冷する。
A high temperature heating element 7 and a low temperature heating element 11 are provided on the upper part of the dish 8,
By rotating the rotary table 15, high temperature heating is performed and then low temperature heating is performed. 7' and 11' are heaters that heat the heating elements 7 and 11, but sheet heating elements may also be used. By opening the valve 16 and evacuating the carbon dioxide gas generated from the limestone 3 through the pipe 17, quicklime can be efficiently obtained. When all the heating work is completed, it is left to cool in the vacuum bell jar 13 as it is.

第4図は本発明に用いる原料すなわち結晶質の石灰石(
寒水)を走査形電子顕微鏡で撮影した写真(5000倍
)であり1表面は独特の光沢を帯びている。第5図は前
述した本発明の焼成法で石灰石を焼いて生石灰を作り、
これを同様の方法で撮影した写真である。多数の黒い点
は1表面から内部に向って生じた気孔で、その大きさは
0.1μmから0.5  μmの範囲にある。
Figure 4 shows the raw material used in the present invention, namely crystalline limestone (
This is a photograph (5,000x magnification) of cold water) taken with a scanning electron microscope, and the surface has a unique luster. Figure 5 shows how limestone is burned to produce quicklime using the above-described baking method of the present invention.
This photo was taken using the same method. A large number of black dots are pores generated from one surface toward the inside, and the size thereof is in the range of 0.1 μm to 0.5 μm.

第6図は従来の方法で作った非晶質生石灰を走査形電子
顕微鏡で1000倍に拡大した写真であり、第7図はそ
れを5ooo倍に拡大した写真である。表面は光沢がな
く、火山灰のように荒れていて、第5図に見られるよう
な気孔は全くない。
Figure 6 is a photograph of amorphous quicklime made by the conventional method, magnified 1000 times with a scanning electron microscope, and Figure 7 is a photograph magnified 500 times. The surface is matte and rough, resembling volcanic ash, and there are no pores as seen in Figure 5.

また従来の方法で結晶質の石灰石を焼いても、第5図に
見られるような気孔は生じない。
Furthermore, even when crystalline limestone is fired using conventional methods, pores as seen in FIG. 5 do not occur.

第8図は、本発明に用いる結晶質の石灰石の粘径dと、
本発明の方法で焼いて得ることのできる生石灰の生成率
εとの関係を示したものである。
FIG. 8 shows the viscous diameter d of the crystalline limestone used in the present invention,
This figure shows the relationship between the production rate ε of quicklime that can be obtained by baking according to the method of the present invention.

生石灰の生成率εは、重量法によって測定した。The production rate ε of quicklime was measured by gravimetric method.

すなわち石灰石(CaCOs)を焼くと炭酸ガス(CO
z)が抜けて生石灰(Ca O)を生ずるが、最初の原
料として石灰石の重量と焼いて軽くなった生石灰の重量
を測定し、炭酸ガスが完全に抜けて生石灰のみになった
時の理論的重量より算出して求めた1石灰石の粒径dが
4m以上になると生成率εは著しく小さくなるが、これ
は原料である石灰石の深部では炭酸ガスが抜けなく、完
全に生石灰に変化しないものと考えられる。また粒径4
I以上になると、表面に著しく亀裂が生じ、化学蓄熱材
として使用した時、熱衝撃に弱いものとなる0粒径が0
.3 wmから4mの範囲では、生成率Cはほぼ100
%で、第5図に示すような微細な気孔が多数生じ、化学
蓄熱材として良質の生石灰が得られる。粒径が0.3 
rrxs以下では、生石灰の生成率転が著しく小さくな
る。これは、第1図に示すように、磁性皿8上に薄く石
灰石3を乗せて加熱するものの、石灰石3より炭酸ガス
が抜は出しにくくなることによるものと考えられる。も
ともと炭酸ガスは空気より重いので、自然対流や拡散に
よって1石灰石3の上方に移動しにくい0粒径が小さく
なると自然対流や拡散は、著しく抑制され、結果として
石灰石3中より炭酸ガスは抜けなくなり、生石灰の生成
率εは激減する。
In other words, when limestone (CaCOs) is burned, carbon dioxide gas (CO
Z) is removed and quicklime (CaO) is produced, but by measuring the weight of limestone as the first raw material and the weight of the quicklime that has been lightened by baking, we can calculate the theoretical value when carbon dioxide gas is completely removed and only quicklime is left. When the particle size d of one limestone calculated from the weight becomes 4 m or more, the production rate ε becomes significantly smaller, but this is because carbon dioxide gas cannot escape from the deep part of the raw limestone and it does not completely change to quicklime. Conceivable. Also, particle size 4
If the particle size exceeds I, significant cracks will occur on the surface, making it vulnerable to thermal shock when used as a chemical heat storage material.
.. In the range from 3wm to 4m, the production rate C is approximately 100
%, a large number of fine pores as shown in Fig. 5 are formed, and high quality quicklime can be obtained as a chemical heat storage material. Particle size is 0.3
Below rrxs, the rate of production of quicklime becomes significantly smaller. This is thought to be because, as shown in FIG. 1, although a thin layer of limestone 3 is placed on a magnetic plate 8 and heated, it is more difficult to extract carbon dioxide gas than from the limestone 3. Since carbon dioxide gas is originally heavier than air, it is difficult for it to move upwards through natural convection and diffusion.If the grain size becomes smaller, natural convection and diffusion will be significantly suppressed, and as a result, carbon dioxide will no longer escape from the limestone. , the production rate ε of quicklime is drastically reduced.

第9図は、原料の加熱温度Tと生石灰の生成率εとの関
係を示したものである。850℃以下では生成率εは著
しく小さくなる。1100℃以上になると、第5図に示
す気孔と気孔間に亀裂が生じ始め、化学蓄熱材として熱
衝撃に弱くなる。
FIG. 9 shows the relationship between the heating temperature T of the raw material and the production rate ε of quicklime. At temperatures below 850°C, the production rate ε becomes significantly smaller. When the temperature exceeds 1100° C., cracks begin to form between the pores shown in FIG. 5, and the material becomes vulnerable to thermal shock as a chemical heat storage material.

第10図は、第11図の化学蓄熱装置内に本発明の化学
蓄熱材(寒水を焼いて生石灰にしたもの)を入れて水蒸
気と反応させた時の化学蓄熱材の温度上昇特性を測定し
た結果を示したものである。
Figure 10 shows the temperature rise characteristics of the chemical heat storage material when the chemical heat storage material of the present invention (made by burning cold water into quicklime) was placed in the chemical heat storage device shown in Figure 11 and reacted with water vapor. The results are shown below.

第1容器1の内容積は約2Qで、この空間部の90%を
利用して、本発明の化学蓄熱材を充填した。化学蓄熱材
3及び第2容器内の被反応材(水)4を、約100℃に
加熱しておき、その後バルブ6を開いて、第2容器2か
ら水蒸気をパイプ5を介して第1容器1内に導入し、化
学蓄熱材と反応させた。第10図の実線に示すように1
反応直後。
The internal volume of the first container 1 was approximately 2Q, and 90% of this space was utilized to fill the chemical heat storage material of the present invention. The chemical heat storage material 3 and the reactant material (water) 4 in the second container are heated to about 100° C., and then the valve 6 is opened to allow water vapor to flow from the second container 2 through the pipe 5 to the first container. 1 and reacted with the chemical heat storage material. 1 as shown in the solid line in Figure 10.
Immediately after the reaction.

化学蓄熱材3の温度は急上昇し、理論的に予測される平
衡温度的500℃に達する。この温度は、そのまま長時
間にわたって維持される。この放熱過程が終了後、ヒー
ターで化学蓄熱材を再生し。
The temperature of the chemical heat storage material 3 rises rapidly and reaches the theoretically predicted equilibrium temperature of 500°C. This temperature is maintained for a long time. After this heat dissipation process is completed, the chemical heat storage material is regenerated using a heater.

同様に放熱させるという試験を100回行なったが、化
学蓄熱材の温度特性は、第10図の実線とほぼ同じであ
った。なおこの生石灰中に粒径IIから10+mの範囲
の結晶質の原料(石灰石)を5から30重量パーセント
ー様に混合すると生石灰粒子間の焼付きが少なく、特に
温度立上り特性の低下が全く見られなかった。
Similar heat dissipation tests were conducted 100 times, and the temperature characteristics of the chemical heat storage material were almost the same as the solid line in FIG. Furthermore, when a crystalline raw material (limestone) with a particle size ranging from II to 10+ m is mixed into this quicklime at a ratio of 5 to 30% by weight, there is little seizure between quicklime particles, and in particular, no deterioration in temperature rise characteristics is observed. Ta.

本発明の化学蓄熱材を従来の化学蓄熱材に変えて、同様
の実験を行なった。温度上昇特性は、破線に示す通りで
あり、立上りは実線より緩やかで。
A similar experiment was conducted by replacing the chemical heat storage material of the present invention with a conventional chemical heat storage material. The temperature rise characteristics are as shown by the broken line, and the rise is more gradual than the solid line.

また500℃一定に持続する時間帯は、実線より短かか
った。この従来の試料をヒーターで再生し。
Also, the time period in which the temperature remained constant at 500°C was shorter than that of the solid line. Regenerate this conventional sample with a heater.

再び放熱実験を行なった所、試料の温度は500℃まで
上昇せず、約300℃に達した後、すぐに温度低下し始
めた。すなわち化学蓄熱材としては、十分機能しなくな
った。
When the heat dissipation experiment was conducted again, the temperature of the sample did not rise to 500°C, and after reaching about 300°C, the temperature began to decrease immediately. In other words, it no longer functions adequately as a chemical heat storage material.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明の化学蓄熱材は、熱衝撃及
び熱サイクルに強く、化学蓄熱装置に組込んで使用した
時、長期にわたってくり返し使用しても性能低下のない
化学蓄熱材を得ることができる。
As explained above, (1) the chemical heat storage material of the present invention is resistant to thermal shock and thermal cycles, and when incorporated into a chemical heat storage device and used, it is possible to obtain a chemical heat storage material that does not deteriorate in performance even when used repeatedly over a long period of time. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の化学蓄熱材を生成する方法の一実施例
を示す図、第2図及び第3図はそれぞれ他の実施例を示
す図、第4図は本発明に用いる原料(結晶質石灰石)の
結晶の構造を示す電子顕微鏡写真、第5図は本発明で得
られた生石灰の結晶の構造を示す電子顕微鏡写真、第6
図は従来の非晶質生石灰の結晶の構造を示す電子[微鏡
写真。 第7図は第6図と同一の生石灰の結晶の構造を更に拡大
して示す***写真、第8図は原料(石灰石)の粒径と
本発明における生石灰の生成率との関係を示す線図、第
9図は本発明の原料(石灰石)の加熱温度と生石灰の生
成率との関係を示す線図、第10図は化学蓄熱材を化学
蓄熱装置内に入れて動作させた時の昇温特性を示す線図
、第11図は化学蓄熱装置の構成図である。 1・・・第1容器、2・・・第2容器、3・・・反応材
(化学蓄熱材)、4・・・被反応材、5・・・パイプ、
6・・・バルブ、7.11・・・炉、8・・・皿(磁製
皿、素焼き皿など)、9・・・コンベヤー、10.10
’ ・・・ローラー、12・・・空間部(非加熱部)、
13・・・ペルジャー、14・・・台、15・・・回転
テーブル、16・・・バルブ、$+e 第3 図 察40 粁品更石灰石(ぢ000/香)’fasrh 
 鞘&’lIL石&(5ooo4)s、、BE =−i
ba−らd4”p +z向フIK−じしり(5gO11
%” 〜0.9物η先孔 第ら6已  Jト番is?偏り石)こ ((oooA含
)・ 肴ヒ尋−μゴ漆qの 等品情馨ム石及(yooo
4奮)−#利第 3 口 畠占晶算石仄る。19ずlイ苧d(^気)第 7 凹 力り介〜シ造鷹丁(”c)
FIG. 1 is a diagram showing one embodiment of the method for producing the chemical heat storage material of the present invention, FIGS. 2 and 3 are diagrams each showing other embodiments, and FIG. Fig. 5 is an electron micrograph showing the crystal structure of quicklime obtained in the present invention;
The figure is an electron micrograph showing the crystal structure of conventional amorphous quicklime. Figure 7 is a further enlarged photo showing the same quicklime crystal structure as in Figure 6, and Figure 8 shows the relationship between the particle size of the raw material (limestone) and the production rate of quicklime in the present invention. Figure 9 is a diagram showing the relationship between the heating temperature of the raw material (limestone) of the present invention and the production rate of quicklime, and Figure 10 is a diagram showing the relationship between the heating temperature of the raw material (limestone) of the present invention and the production rate of quicklime. A diagram showing temperature increase characteristics, FIG. 11 is a configuration diagram of a chemical heat storage device. DESCRIPTION OF SYMBOLS 1... First container, 2... Second container, 3... Reactant material (chemical heat storage material), 4... Reacted material, 5... Pipe,
6... Valve, 7.11... Furnace, 8... Plate (porcelain plate, unglazed plate, etc.), 9... Conveyor, 10.10
'...roller, 12...space part (non-heating part),
13...Pelger, 14...stand, 15...rotary table, 16...valve, $+e 3rd diagram 40 熁品药石(〢000/ incense)'fasrh
Scabbard &'lIL stone & (5ooo4)s, BE =-i
ba-ra d4”p +z-direction IK-jishiri (5gO11
%" ~ 0.9 thing η first hole number 6th J to number is? biased stone) this ((oooA included), appetizer Hi-μgo lacquer, etc. item information about the stone and (yooo
4) - #Ritai 3 Kuchibatake Sansho Sanseki is here. 19zu l i 苧d (^ki) No. 7 Kokoro Risuke ~ Shizou Takacho (”c)

Claims (1)

【特許請求の範囲】 1、表面から内部に向つて形成された多数の気孔を有す
る生石灰を主体とした化学蓄熱材。 2、粒径0.3〜4mmの範囲の結晶質の石灰石を85
0〜1100℃の温度範囲で所定時間加熱し、次に前記
石灰石を500〜600℃の温度範囲で所定時間加熱し
、表面から内部に向う多数の気孔を有する生石灰を作る
ことを特徴とした化学蓄熱材の製造方法。
[Scope of Claims] 1. A chemical heat storage material mainly composed of quicklime and having a large number of pores formed from the surface toward the inside. 2. Crystalline limestone with a particle size of 0.3 to 4 mm is 85
A chemistry characterized by heating the limestone at a temperature range of 0 to 1100°C for a predetermined time, and then heating the limestone at a temperature range of 500 to 600°C for a predetermined time to produce quicklime having a large number of pores extending from the surface to the inside. Method for manufacturing heat storage material.
JP4952188A 1988-03-04 1988-03-04 Chemical heat storage material and manufacturing method thereof Expired - Fee Related JP2539480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4952188A JP2539480B2 (en) 1988-03-04 1988-03-04 Chemical heat storage material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4952188A JP2539480B2 (en) 1988-03-04 1988-03-04 Chemical heat storage material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01225686A true JPH01225686A (en) 1989-09-08
JP2539480B2 JP2539480B2 (en) 1996-10-02

Family

ID=12833441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4952188A Expired - Fee Related JP2539480B2 (en) 1988-03-04 1988-03-04 Chemical heat storage material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2539480B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132844A (en) * 2007-11-30 2009-06-18 Toyota Central R&D Labs Inc Molded article of chemical heat storage material and method for producing the same
JP2009228952A (en) * 2008-03-21 2009-10-08 Toyota Central R&D Labs Inc Chemical thermal storage material composite, thermal storage device using it, and its manufacturing method
JP2009227773A (en) * 2008-03-21 2009-10-08 Toyota Central R&D Labs Inc Chemical heat storage material composite and its manufacturing method
JP2009256518A (en) * 2008-04-18 2009-11-05 Toyota Central R&D Labs Inc Chemical heat storage material, chemical heat storage material molded article, and production methods thereof
JP2010169297A (en) * 2009-01-21 2010-08-05 Toyota Central R&D Labs Inc Chemical heat storage device
JP2010185035A (en) * 2009-02-13 2010-08-26 Toyota Central R&D Labs Inc Method for producing heat-storage substance powder, as well as chemical heat-storage apparatus and method for manufacturing the apparatus
JP2011027311A (en) * 2009-07-24 2011-02-10 Toyota Central R&D Labs Inc Chemical heat storage device
WO2012108288A1 (en) 2011-02-07 2012-08-16 株式会社豊田中央研究所 Heat storage device
WO2012128379A1 (en) 2011-03-18 2012-09-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical heat accumulator and method for producing the same
WO2012128380A1 (en) 2011-03-18 2012-09-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical heat accumulator and method for producing the same
US9074827B2 (en) 2007-11-30 2015-07-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger heat-utilization device and method of manufacturing the same
US9120959B2 (en) 2010-03-25 2015-09-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical thermal energy storage material structure, method of producing the same, and chemical heat accumulator
JP2020158696A (en) * 2019-03-27 2020-10-01 太平洋セメント株式会社 Chemical heat storage material for chemical heat pump covered with inorganic porous material and its manufacturing method
JP2020169776A (en) * 2019-04-05 2020-10-15 三菱マテリアル株式会社 Chemical heat storage material composite and manufacturing method therefore
JP2020169777A (en) * 2019-04-05 2020-10-15 三菱マテリアル株式会社 Chemical heat storage material composite and manufacturing method therefore

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074827B2 (en) 2007-11-30 2015-07-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger heat-utilization device and method of manufacturing the same
JP2009132844A (en) * 2007-11-30 2009-06-18 Toyota Central R&D Labs Inc Molded article of chemical heat storage material and method for producing the same
JP2009228952A (en) * 2008-03-21 2009-10-08 Toyota Central R&D Labs Inc Chemical thermal storage material composite, thermal storage device using it, and its manufacturing method
JP2009227773A (en) * 2008-03-21 2009-10-08 Toyota Central R&D Labs Inc Chemical heat storage material composite and its manufacturing method
JP2009256518A (en) * 2008-04-18 2009-11-05 Toyota Central R&D Labs Inc Chemical heat storage material, chemical heat storage material molded article, and production methods thereof
JP2010169297A (en) * 2009-01-21 2010-08-05 Toyota Central R&D Labs Inc Chemical heat storage device
JP2010185035A (en) * 2009-02-13 2010-08-26 Toyota Central R&D Labs Inc Method for producing heat-storage substance powder, as well as chemical heat-storage apparatus and method for manufacturing the apparatus
JP2011027311A (en) * 2009-07-24 2011-02-10 Toyota Central R&D Labs Inc Chemical heat storage device
US9120959B2 (en) 2010-03-25 2015-09-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical thermal energy storage material structure, method of producing the same, and chemical heat accumulator
WO2012108288A1 (en) 2011-02-07 2012-08-16 株式会社豊田中央研究所 Heat storage device
WO2012128379A1 (en) 2011-03-18 2012-09-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical heat accumulator and method for producing the same
WO2012128380A1 (en) 2011-03-18 2012-09-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical heat accumulator and method for producing the same
JP2020158696A (en) * 2019-03-27 2020-10-01 太平洋セメント株式会社 Chemical heat storage material for chemical heat pump covered with inorganic porous material and its manufacturing method
JP2020169776A (en) * 2019-04-05 2020-10-15 三菱マテリアル株式会社 Chemical heat storage material composite and manufacturing method therefore
JP2020169777A (en) * 2019-04-05 2020-10-15 三菱マテリアル株式会社 Chemical heat storage material composite and manufacturing method therefore

Also Published As

Publication number Publication date
JP2539480B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
JPH01225686A (en) Chemical heat storage material and its manufacture
Zhou et al. Effect of fuel-to-oxidizer ratios on combustion mode and microstructure of Li2TiO3 nanoscale powders
TWI230685B (en) Method and apparatus for synthesizing aluminium nitride
Xu et al. Preparation and performance study of cordierite/mullite composite ceramics for solar thermal energy storage
JPS5913470B2 (en) Silica brick manufacturing method
CN101300208A (en) High-temperature resistant, aluminate-based thermal insulation material
JPH04305076A (en) Production of cordierite honeycomb structural body
JPS6191076A (en) Porous silicon carbide sintered body and manufacture
JPH01319932A (en) Method of forming solid diffusion source of compound cd oxide/p205 and silicon wafer
KR101734472B1 (en) Microwave heating element using silicon carbide fibers and heating device thereof
KR100276109B1 (en) Method of producing chromium carbide-aluminium oxide composite powder by shs method
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JPS60171220A (en) Manufacture of porous alumina body
JPS6191022A (en) Production of quartz glass
JPS5899128A (en) Production of foamed particle of natural glass
JPS599497B2 (en) Optical glass manufacturing method
JPS58172292A (en) Graphite heating element of pulling device of single crystal of silicon
JPS6220156B2 (en)
SU1629244A1 (en) Process for producing graphite
RU2021117829A (en) A method for producing highly pure synthetic cristobalite with a fraction of 74-390 microns
JPS63195168A (en) Method of preventing decomposition of silicon carbide products during sintering
SU833769A1 (en) Method of making porous large-sized construction articles
JPH02172861A (en) Production of thermal shock resistant ceramic structural body
RU2268867C2 (en) Method of production of a ceramic charge
SU616255A1 (en) Method of obtaining porous materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees