JPH01225427A - Efficient production of rice hybrid seed - Google Patents
Efficient production of rice hybrid seedInfo
- Publication number
- JPH01225427A JPH01225427A JP63051727A JP5172788A JPH01225427A JP H01225427 A JPH01225427 A JP H01225427A JP 63051727 A JP63051727 A JP 63051727A JP 5172788 A JP5172788 A JP 5172788A JP H01225427 A JPH01225427 A JP H01225427A
- Authority
- JP
- Japan
- Prior art keywords
- seeds
- rice
- line
- lines
- traits
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 235000007164 Oryza sativa Nutrition 0.000 title claims abstract description 35
- 235000009566 rice Nutrition 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 240000007594 Oryza sativa Species 0.000 title 1
- 241000209094 Oryza Species 0.000 claims abstract description 34
- 235000013339 cereals Nutrition 0.000 claims abstract description 18
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 26
- 238000003306 harvesting Methods 0.000 claims description 6
- 206010021929 Infertility male Diseases 0.000 abstract description 4
- 208000007466 Male Infertility Diseases 0.000 abstract description 4
- 230000001939 inductive effect Effects 0.000 abstract 1
- 241000196324 Embryophyta Species 0.000 description 30
- 206010020649 Hyperkeratosis Diseases 0.000 description 11
- 230000035558 fertility Effects 0.000 description 8
- 239000001963 growth medium Substances 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 230000001086 cytosolic effect Effects 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 5
- 210000004748 cultured cell Anatomy 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 230000004069 differentiation Effects 0.000 description 4
- 238000011109 contamination Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008775 paternal effect Effects 0.000 description 3
- 230000010152 pollination Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 210000005069 ears Anatomy 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005094 fruit set Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000010903 husk Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 2
- 101000708283 Oryza sativa subsp. indica Protein Rf1, mitochondrial Proteins 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 201000006839 congenital myasthenic syndrome 12 Diseases 0.000 description 1
- 238000009402 cross-breeding Methods 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
Landscapes
- Cultivation Of Plants (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野]
本発明は、イネ雑種種子生産において、イネF1種子の
生産ならびに雄性不稔系統の維持を、純粋且つ効率良く
行う方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing rice F1 seeds and maintaining male sterile lines in a pure and efficient manner in rice hybrid seed production.
一般に、植物は雑種(ハイブリッド、Fl(′エフワン
m)=雑種第1代)にすると多くの形質に関して両親の
いずれよりも強壮となり、収量および品質が向上するこ
とが古くから知られている。このことを雑種強勢と呼ぶ
が、イネにおいて利用したのがハイブリッドライスであ
る。In general, it has been known for a long time that when plants are hybridized (hybrid, Fl ('F1 m) = first hybrid generation), they become more vigorous than either of their parents with respect to many traits, and yield and quality are improved. This is called hybrid vigor, and it is used in hybrid rice.
しかしながら、イネは自家受精作物であり、1つの穎花
(”えいか”=籾殻に包まれた花)に母親(雌しべ)と
父親(雄しべ)の両方が存在する、したがって、雑種種
子を得るためには、開花直前に雄しべを全て取り除き(
除雄)、父親となる雄しべの花粉を受粉させなければな
らない、従来からイネの育種においては、開花前に1つ
1つの顕在につき除雄した後、雑文を避けるため袋をか
ぶせ、開花時期に花粉親の花粉を受粉させ、また袋をか
ぶせるといった方法で交配を行っていた。However, rice is a self-fertilizing crop, meaning that both the mother (pistil) and father (stamen) are present in one spikelet (“eika” = flower wrapped in rice husk), thus obtaining hybrid seeds. Remove all stamens just before flowering (
Traditionally, in rice breeding, each seedling must be emasculated before flowering, then covered with a bag to avoid confusion, and then pollinated with the pollen from the father stamen. Crossing was carried out by pollinating the pollen of the parent and then covering it with a bag.
このような方法は、品種改良のような実験室規模の作業
では実施可能であるが、大量の雑種種子を生産しなけれ
ばならない商業的規模では全く利用できないものである
。Although such methods are feasible for laboratory-scale operations such as breeding, they are completely unusable on a commercial scale, where large quantities of hybrid seeds must be produced.
そこで、イネのような自家受精作物でも雑種種子を大量
に得るために、雄性不稔を利用した採種体系の導入が図
られた。ハイブリッドライスの生産に関しては、現在で
は細胞質雄性不稔系統を主軸とし、それを維持するため
の系統、およびF1雑種生産のための稔性回復系統(そ
れぞれ、^−1ine、B−1ine、およびR−1i
neと呼ぶ)の3つの系統による「三基法」が確立され
ている。このシステムでは、A−1ineを母親、R−
1ineを父親どして11種子を生産するものであるが
、11種子は母親であるA−1ineの植物体上に作ら
れるため、種子の採取時には父親系統は全く不必要なも
のとなる。また、雄性不稔系統はその名の通りそれ自身
だけでは全く稔実しないため、B−1ineを父親とし
て系統維持を行わなければならないが、その場合もF1
種子生産と同様の問題を孕んでいる。Therefore, attempts were made to introduce a seed collection system that utilizes male sterility in order to obtain large quantities of hybrid seeds even for self-fertilized crops such as rice. Regarding the production of hybrid rice, currently the main axis is the cytoplasmic male sterile line, and lines for maintaining it, as well as fertility recovery lines for producing F1 hybrids (^-1ine, B-1ine, and R -1i
The ``Three Fundamental Law'' has been established based on three systems of ``ne''. In this system, A-1ine is the mother, R-
A-1ine is used as the father to produce 11 seeds, but since the 11 seeds are produced on the mother A-1ine plant, the father line is completely unnecessary when collecting seeds. In addition, as the name suggests, male sterile lines do not produce any fertile fruit on their own, so the line must be maintained using B-1ine as the father, but in that case, F1
It is fraught with the same problems as seed production.
現在利用されている種子生産の方法は、圃場において母
親系統と父親系統を畝を分けて栽植して交配させ、種子
の収穫時に母親の植物体上に実った雑種種子と父親の植
物体上に実った不必要な種子とを区別して、それぞれ別
々に収穫することによって行っている。The method of seed production currently used is to plant the mother and father lines in separate rows in the field and cross them, and when the seeds are harvested, the hybrid seeds grown on the mother plant are mixed with the hybrid seeds on the father plant. This is done by separating the unneeded seeds that have ripened and harvesting them separately.
このような栽培方法が行われている背景には、必要な雑
種と不必要な父親系統の区別が容易にできないことが理
由に挙げられる。これらの異なる種類の種子が混じり合
えば、品質の面で非常に好ましくないばかりでなく、系
統を純粋に維持することも不可能となる。そのため上に
述べたように両親系統の株を畝を明確に分けて栽培しな
ければならない。The reason behind this cultivation method is that it is not easy to distinguish between necessary hybrids and unnecessary paternal lines. If these different types of seeds are mixed together, not only will the quality be extremely unfavorable, but it will also be impossible to maintain pure strains. Therefore, as mentioned above, the strains of both parents must be cultivated with clearly separated rows.
しかし、この方法では両親株の距離を小さくすることが
できないことから、受粉率が低くなり、単位面積当たり
の雑種種子の生産量も少ない、さらにまた、播種、育苗
、栽培、および収穫の全ての段階で、母親系統と父親系
統の区別を確実に行わなければならず、栽培管理に大き
な労力を費やすことにもなる。However, since this method cannot reduce the distance between the parent plants, the pollination rate is low and the amount of hybrid seeds produced per unit area is low. At each stage, the mother line and the father line must be clearly distinguished, which requires a great deal of effort in cultivation management.
その上、ハイブリッドライス生産において各系統の純粋
性を保つために、異系統の混入を除去することは必要不
可欠であるが、従来はこの作業は主として経験による不
確実な識別に頼らざるを得なかった。Furthermore, in order to maintain the purity of each line in hybrid rice production, it is essential to remove contamination from different lines, but traditionally this work has had to rely mainly on uncertain identification based on experience. Ta.
これらの問題点を解決するためには、母親系統と父親系
統の区別が容易に行えるようにすることが必要である。In order to solve these problems, it is necessary to make it easy to distinguish between the maternal lineage and the paternal lineage.
また、雑種種子の生産量を向上させるためには、これま
で畝別に分けて栽植していた両親系統を混在させて植え
ることによって受粉率の増大を図ることが望ましい。In addition, in order to improve the production of hybrid seeds, it is desirable to increase the pollination rate by planting a mixture of both parental lines, which have been planted separately in rows.
植物は、品種や系統間にいくつかの形質に関して相違が
認められることが知られている。そこでこのような形質
の差がその形質を支配する遺伝子を導入することによっ
て発現することを利用して効率良くイネの雑種種子の生
産を行わせることを試み、本発明を見るに至った。It is known that there are differences in some traits among plant varieties and lines. Therefore, we attempted to efficiently produce rice hybrid seeds by utilizing the fact that such differences in traits are expressed by introducing a gene that controls the traits, and thus arrived at the present invention.
すなわち、本発明は、粒形質に関する遺伝子をイネ雑種
種子の生産に関与する親系統に導入することによって、
両親系統間に粒形質における相違を生じさせ、その相違
を識別することによって片方の親系統を種子の収穫後の
除去し、11種子および雄性不稔系統種子を純粋性を維
持しつつ効率よく得る方法、ならびに草型形質に関する
遺伝子を、イネ雑種種子の生産に関与する親系統に導入
することによって、両親系統間に草型形質における相違
を生じさせ、その相違を識別することによって片方の親
系統を種子の収穫前に除去し、11種子および雄性不稔
系統種子を純粋性を維持しつつ効率よく得る方法である
。That is, the present invention introduces genes related to grain traits into the parent line involved in the production of rice hybrid seeds,
By creating differences in grain traits between the parental lines and identifying the differences, one parent line can be removed after seed harvest, and 11 seeds and male sterile line seeds can be efficiently obtained while maintaining purity. By introducing the method and genes related to grass type traits into the parental lines involved in the production of rice hybrid seeds, differences in grass type traits are generated between the parental lines, and by identifying the differences, one of the parental lines is This is a method for efficiently obtaining 11 seeds and male sterile line seeds while maintaining their purity by removing them before harvesting the seeds.
本発明において、粒形質とは種子に現れる表現形質を指
し、例えば籾色、粒重、粒形、および粒重などであり、
また、草型形質とは幼苗あるいは成長した植物体に現れ
る表現形質を指し、例えば草丈あるいは葉色などが挙げ
られる。In the present invention, grain traits refer to phenotypic traits that appear in seeds, such as chaff color, grain weight, grain shape, and grain weight,
In addition, plant type traits refer to phenotypic traits that appear in young seedlings or grown plants, such as plant height or leaf color.
以下に具体的にこのような明確に識別できる形質を持っ
たイネの作出方法、並びにそれを利用した雑種種子の効
率的な生産方法について述べる。Below, we will specifically describe a method for producing rice with such clearly distinguishable traits, as well as an efficient method for producing hybrid seeds using the method.
粒および車架に関して明確に識別できる形質をイネ雑種
種子の生産に関与する親系統に導入する方法として、突
然変異を利用する方法がある。突然変異誘発の技術とし
ては、例えば細胞培養において、放射線を用いる方法や
特別な処理をしない方法が挙げられる。いずれの方法で
も頻度の差はあるが、明確に識別できる形質を植物に賦
与することが可能である。Mutation is a method of introducing clearly distinguishable grain and carriage traits into the parental lines involved in the production of rice hybrid seeds. Examples of mutagenesis techniques include methods that use radiation or methods that do not require special treatment in cell culture. Either method can impart distinctly distinguishable traits to plants, although the frequency varies.
イネの種子からカルス(細胞塊)を誘導する。Induce callus (cell mass) from rice seeds.
このカルスを増殖培地で継代培養を繰り返す(特別な処
理をしない方法)か、または継代して得られた懸濁培養
細胞に放射線を照射する。その後、増殖培地で増殖後、
カルスを植物体再生培地(分化培地)に移植する1分化
した植物体は馴化した後に土壌上に植え出す。This callus is repeatedly subcultured in a growth medium (a method that does not require any special treatment), or the suspension cultured cells obtained by subculture are irradiated. Then, after growing in growth medium,
The callus is transplanted to a plant regeneration medium (differentiation medium). After the differentiated plant is acclimated, it is transplanted onto soil.
このようにして再生した植物体から、粒あるいは車架に
明確に識別できる形質を持つ個体を選抜する。得られた
明確に識別できる形質は、多くの株で安定に遺伝する。From the plants regenerated in this way, individuals with clearly distinguishable traits in their grains or racks are selected. The resulting clearly distinguishable traits are stably inherited in many strains.
そこで、−度こうして得た明確に識別できる形質は、従
来の交雑育種の方法によって他の栽培品種に導入するこ
とが可能である。The clearly distinguishable traits thus obtained can then be introduced into other cultivars by conventional cross breeding methods.
以上のようにして得られた明確に識別できる形質を持つ
イネの品種を用いて雑種種子の生産を行う。Hybrid seeds are produced using the rice varieties with clearly distinguishable traits obtained as described above.
第1の方法として、母親系統と父親系統を別々に育苗し
た後、従来通り畝別に植え、種子の完熟時に母親系統の
みを収穫する。この場合、栽培の各段階で、各系統の車
架における形質の違いにより異種系統の混入を除去する
。As a first method, seedlings of the mother and father lines are raised separately, then planted in rows as usual, and only the mother line is harvested when the seeds are fully ripe. In this case, at each stage of cultivation, the contamination of different strains is eliminated based on the differences in traits in the carriages of each strain.
第2の方法は、母親系統と父親系統の種子を混ぜて苗を
作り、圃場に栽培する。この方法を混植と呼ぶ。種子が
完熟した時点で、圃場の種子を無選抜で収穫する。収穫
後、系統間の粒形質の違いにより母親系統を選抜する。The second method is to mix the seeds of the mother and father lines to make seedlings and cultivate them in the field. This method is called mixed planting. When the seeds are fully ripe, the seeds in the field are harvested without selection. After harvesting, the mother line is selected based on the differences in grain traits between the lines.
粒または草型形質に関する遺伝因子を、イネ雑種種子生
産に関与する親系統に導入することによって、両親系統
間にこれらの形質における明確な相違を生じさせること
ができ、両親系統の識別を99.9%以上の確立で行う
ことが可能である。それにより11種子の生産ならびに
雄性不稔系統の維持を高純度且つ高効率に行える。By introducing genetic factors for grain or plant type traits into the parental lines involved in rice hybrid seed production, clear differences in these traits can be generated between the parental lines, making it possible to distinguish between the parental lines. This can be done with a probability of 9% or more. Thereby, production of 11 seeds and maintenance of male sterile lines can be performed with high purity and high efficiency.
以下、実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.
実施例1
中国稲C57に由来する稔性回復系統(MT−1?V5
)の種子からカルスを誘導した。このカルスをMSi本
、シgt1.c3χ)、寒天(0,8χ)、および2.
4−D(lpp■)を含む培地(以下これを増殖培地と
呼ぶ)で1ケ月間培養した。増殖したカルスをさらに増
殖培地で1ケ月間継代培養した。得られたカルスをN6
の無機塩類およびシMta<3χ)を含む培地(分化培
地)へ移植し、植物体を再生させた。これらの再生植物
体からもとのC57より明らかに背丈の高い個体を選抜
し、35の長稈稔性回復系統を得た。この中から、雄性
不稔系統(MT−0MS4)との交配検定から、確実に
稔性を回復させる2つの系統(MT−RV5−TXIお
よびMT−RV5−TX2 )を得た。Example 1 Fertility recovery line (MT-1?V5) derived from Chinese rice C57
) calli were induced from seeds. This callus is MSi book, Sigt1. c3χ), agar (0,8χ), and 2.
The cells were cultured for one month in a medium containing 4-D (lpp■) (hereinafter referred to as growth medium). The proliferated callus was further subcultured in a growth medium for 1 month. The obtained callus is N6
The plants were transplanted to a medium (differentiation medium) containing inorganic salts and Mta<3χ), and the plants were regenerated. From these regenerated plants, individuals that were clearly taller than the original C57 were selected, and 35 long-culm fertile lines were obtained. Among these, two lines (MT-RV5-TXI and MT-RV5-TX2) that reliably restored fertility were obtained through a cross test with a male sterile line (MT-0MS4).
このようにして得られた長稈の稔性回復系統を父親とし
、常法に従い混植により11種子の生産のための栽培試
験を行った。この時C57を父親として同様の栽培試験
を実施し、結実率の比較を行った。その結果は第1表の
通りで、育成された長稈稔性回復系統が高い結実率を示
した。Using the thus obtained long culm fertility restored line as the father, a cultivation test was conducted to produce 11 seeds by mixed planting according to a conventional method. At this time, a similar cultivation test was conducted using C57 as the father, and the fruiting rate was compared. The results are shown in Table 1, and the cultivated long culm fertile lines showed a high fruiting rate.
さらにまた、従来の稔性回復系統(MT−RV−5)を
用いた場合、この父親系統はF1結実後にはF1植物と
ほぼ同じ草丈となり除去が不可能であったが、育成され
た長稈稔性回復系統を用いた場合には、Fl植物より草
丈が明確に高くなり、穂を容易に除去することができた
。Furthermore, when a conventional fertility recovery line (MT-RV-5) was used, this father line had almost the same plant height as the F1 plants after fruiting, making it impossible to remove; When the fertility restored line was used, the plant height was clearly higher than that of the Fl plants, and the panicles could be easily removed.
第1表
実施例2
野敗稲(中国)由来の細胞質雄性不稔を有する系統(M
T−0MS7)の種子からカルスを誘導した。このカル
スをLS基本、シ!II!(3χ)、および2,4−ロ
(1ppm)を含む液体培地で1週間毎に継代し、懸濁
培養細胞を得た。この懸濁培養細胞に20kRのガンマ
線を照射し、上述の液体培地と同じ組成に寒天(0,8
%)を含む培地(以下これを増殖培地とよぶ)で1ケ月
間培養した。生存したカルスをさらに増殖培地に移し増
殖させた。得られたカルスをN6の無機塩類およびシ!
!糖(3z)を含む培地(以下これを分化培地と呼ぶ)
へ移植し植物体を再生させた。これらの再生植物体から
、種子色が正常なイネ(MT−BT)との検定交配によ
り、種子(籾殻)の色が赤となる24系統を選抜した。Table 1 Example 2 Line with cytoplasmic male sterility (M
Callus was induced from the seeds of T-0MS7). This callus is basically LS! II! (3χ) and 2,4-ro (1 ppm) were subcultured every week to obtain suspension cultured cells. These suspension cultured cells were irradiated with 20 kR gamma rays, and agar (0,8
%) (hereinafter referred to as growth medium) for one month. The surviving callus was further transferred to a growth medium and allowed to grow. The obtained callus was treated with N6 inorganic salts and Si!
! Medium containing sugar (3z) (hereinafter referred to as differentiation medium)
The plants were regenerated. From these regenerated plants, 24 lines with red seeds (rice husks) were selected by test crossing with rice (MT-BT) with normal seed color.
この中から、さらに種子色が正常な稔性回復系統(MT
−RL9)との交配実験を行い、着果種子が赤色となる
3系統(MT−0MS7−AXI、MT−0MS7−A
X2 、およびMT−0MS7−AX3)を得た。これ
らの系統は株分けによって維持した。Among these, a fertility-recovered line with normal seed color (MT
-RL9), three lines with red fruiting seeds (MT-0MS7-AXI, MT-0MS7-A
X2, and MT-0MS7-AX3) were obtained. These lines were maintained by division.
このようにして得られた系統を母木とし、常法に従い混
植および畝別植えにより11種子を得るための栽培試験
を行った0種子が完熟した時点で圃場の全種子を無選抜
で収穫した。得られた種子は表面の色を識別することに
より、市販のソーターを用いて、父親が自殖して着果し
たもの(正常色)か11種子のもの(赤色)かを明確に
区別することができた0本方法を用いた場合の11種子
の結実率を第2表に示す。Using the line thus obtained as the mother tree, cultivation tests were conducted to obtain 11 seeds by mixed planting and row planting according to conventional methods. When 0 seeds were fully ripe, all seeds in the field were harvested without selection. . By identifying the surface color of the obtained seeds, we can use a commercially available sorter to clearly distinguish whether the seeds were self-fertilized by the father and set fruit (normal color) or those with 11 seeds (red). Table 2 shows the fruit set rate of 11 seeds when using the 0-plant method.
同様に得られた雄性不稔系統を母木とし、常法に従い混
植および畝別植えにより雄性不稔系統を維持するための
栽培試験を行った。完熟種子を無選抜で収穫した。得ら
れた種子は表面の色を識別することにより、市販のソー
ターを用いて父親が自殖して着果したもの(正常色)か
雄性不稔系統に着果したもの(赤色)かを明確に区別す
ることができた0本方法を用いた場合の増殖された雄性
不稔系統の結実率を第3表に示す。Using the similarly obtained male sterile line as a mother tree, cultivation tests were conducted to maintain the male sterile line by mixed planting and row planting according to conventional methods. Fully ripened seeds were harvested without selection. By identifying the color of the surface of the obtained seeds, we can use a commercially available sorter to clearly determine whether the seeds are self-fertilized by the father (normal color) or are male-sterile lines (red). Table 3 shows the fruiting rates of the male sterile lines propagated using the 0 line method, which were able to differentiate between the two.
第2表
細胞質雄性不稔系統 結実率(%)畝別植え
混植
MT−0MS7−AXI 30.1
68.7MT−0MS7−AX2 41.8
75.41’lT−0MS7−AX3
37.5 70.2第3表
細胞質雄性不稔系統 結実率(%)畝別植え
混植
MT−0MS7−AXI 40.3
75.1MT−0MS7−AX2 49.5
81.8MT−0MS7−AX3 45
.2 77.4実施例3
フィリピンの稲lR24由来の稔性回復系統(IIT−
RV2)の種子から、実施例2に従い再生植物体を得た
。この再生植物体から種子の大きい29系統を選抜した
。この中から、細胞質雄性不稔系統(MT−CMS12
)との検定交配から、確実に稔性を回復させる2系統(
MT−RV2−GXlおよびMT−RV2−GX2)を
得た。Table 2 Cytoplasmic male sterile line Fruiting rate (%) Planted by row
Mixed planting MT-0MS7-AXI 30.1
68.7MT-0MS7-AX2 41.8
75.41'lT-0MS7-AX3
37.5 70.2 Table 3 Cytoplasmic male sterile line Fruiting rate (%) Planted by row
Mixed planting MT-0MS7-AXI 40.3
75.1MT-0MS7-AX2 49.5
81.8MT-0MS7-AX3 45
.. 2 77.4 Example 3 Fertility restorer line derived from Philippine rice IR24 (IIT-
Regenerated plants were obtained from seeds of RV2) according to Example 2. From these regenerated plants, 29 lines with large seeds were selected. Among these, cytoplasmic male sterile line (MT-CMS12
), two lines that reliably recovered fertility were found through test crosses with (
MT-RV2-GXl and MT-RV2-GX2) were obtained.
このようにして得られた大粒の稔性回復系統を父本とし
、常法に従い混植により11種子を得るための栽培試験
を行った。種子が完熟した時点で、圃場の全種子を無選
抜で収穫した。得られた種子は市販の粒形選別機および
種子比重選別機を用いることにより、FIM種種子と自
殖した父親系統種子を容易に選別することができた。Using the thus obtained large-grained fertility restored line as the father plant, a cultivation test was conducted to obtain 11 seeds by mixed planting according to a conventional method. When the seeds were fully ripe, all seeds in the field were harvested without selection. By using a commercially available grain size sorter and seed specific gravity sorter, the obtained seeds could be easily separated into FIM seeds and self-pollinated paternal line seeds.
実施例4
Chinsurah Boro II由来の細胞質雄性
不稔因子を有するイネ(MT−0MS2)を母親とし、
葉耳(葉身・鞘間にある節)が赤紫色の形質を持つイネ
(MT−VTZ413)を父親として交配を行った。得
られた雑種種子からカルスを誘導し、実施例2に従い懸
濁培養細胞を得た。この懸濁培養細胞に40kRのガン
マ線を照射し、増殖培地で1ケ月間培養した。生き残っ
たカルスを増殖培地で増殖させた。得られたカルスを分
化培地に移植し植物体を再生させた。Example 4 Rice (MT-0MS2) having a cytoplasmic male sterility factor derived from Chinsurah Boro II was used as a mother,
Crossing was conducted using rice (MT-VTZ413), which has a reddish-purple color in leaf ears (nodes located between the leaf blade and sheath) as the father. Callus was induced from the obtained hybrid seeds, and suspension cultured cells were obtained according to Example 2. The suspension cultured cells were irradiated with 40kR gamma rays and cultured in a growth medium for one month. Surviving calli were grown in growth medium. The obtained callus was transplanted to a differentiation medium to regenerate a plant.
これらの再生植物体から、葉耳色が赤紫である外は?l
T−CMS2と形態上識別のできない系統(MT−0M
S2−PAI)を得た。この系統は細胞質雄性不稔であ
っこのようにして新たに得られた系統を母親とし、常法
に従い畝別植えによりF1種子を得るための栽培試験を
行った。育苗および栽培段階において、雄性不稔系統お
よび稔性回復系統(いずれも葉耳色は白)と明確に区別
することができ、異系統の混入を除去した。その結果、
F1種子は99.9%の純粋性で得られた。Among these regenerated plants, what is the color of the leaf ears that is reddish-purple? l
A strain that is morphologically indistinguishable from T-CMS2 (MT-0M
S2-PAI) was obtained. This line is cytoplasmic male sterile, and using the newly obtained line as the mother, a cultivation test was conducted to obtain F1 seeds by planting in rows according to the conventional method. At the seedling raising and cultivation stages, it was possible to clearly distinguish between the male sterile line and the fertile restored line (both leaf ear colors are white), and contamination by different lines was eliminated. the result,
F1 seeds were obtained with 99.9% purity.
本発明によって、ハイブリッドライスの生産において、
両親系統間に粒および草型形質に関する遺伝因子の発現
によって生じる形質の差を識別することにより、片方の
親系統を選択的に除去して雑種種子を効率良く得る技術
が完成した。この方法により、雑種種子を得る労力を著
しく低減させることができるようになっただけでなく、
増殖栽培が可能となり、受粉率ひいては結実率も飛躍的
に向上し、単位面積当たりの種子の生産量が大幅に増加
した。さらにまた、この技術を用いることで三基法にお
ける各系統の純粋性を高水準に維持していくことが可能
となった。According to the present invention, in the production of hybrid rice,
By identifying the differences in traits caused by the expression of genetic factors related to grain and plant shape traits between the parental lines, we have completed a technology to selectively remove one of the parental lines to efficiently obtain hybrid seeds. This method not only made it possible to significantly reduce the effort required to obtain hybrid seeds, but also
Multiplication cultivation became possible, and the pollination rate and fruit set rate improved dramatically, and the amount of seeds produced per unit area increased significantly. Furthermore, by using this technology, it has become possible to maintain a high level of purity for each strain in the three-base method.
特許出願人 三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.
Claims (1)
与する親系統に導入することによって、両親系統間に粒
形質における相違を生じさせ、その相違を識別すること
によって片方の親系統を種子の収穫後に除去し、イネ種
子を純粋性を維持しつつ効率よく得る方法。2、草型形
質に関する遺伝子を、イネ雑種種子の生産に関与する親
系統に導入することによって、両親系統間に草型形質に
おける相違を生じさせ、その相違を識別することによっ
て片方の親系統を種子の収穫前に除去し、イネF1種子
を純粋性を維持しつつ効率よく得る方法。 3、イネ雑種種子生産において、請求項第1項記載の方
法を利用することにより、雄性不稔系統種子を純粋性を
維持しつつ効率よく得る方法。 4、イネ雑種種子生産において、請求項第2項記載の方
法を利用することにより、雄性不稔系統種子を純粋性を
維持しつつ効率よく得る方法。[Claims] 1. By introducing genes related to grain traits into the parental lines involved in the production of rice hybrid seeds, differences in grain traits are created between the parental lines, and by identifying the differences, one A method for efficiently obtaining rice seeds while maintaining purity by removing the parent line after harvesting the seeds. 2. By introducing genes related to grass-type traits into the parental lines involved in the production of rice hybrid seeds, differences in grass-type traits are created between the parental lines, and by identifying the differences, one parent line can be differentiated from the other. A method for efficiently obtaining rice F1 seeds while maintaining purity by removing the seeds before harvesting. 3. A method for efficiently obtaining male sterile line seeds while maintaining purity by using the method according to claim 1 in the production of rice hybrid seeds. 4. A method for efficiently obtaining male sterile line seeds while maintaining purity by using the method according to claim 2 in the production of rice hybrid seeds.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63051727A JPH01225427A (en) | 1988-03-07 | 1988-03-07 | Efficient production of rice hybrid seed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63051727A JPH01225427A (en) | 1988-03-07 | 1988-03-07 | Efficient production of rice hybrid seed |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01225427A true JPH01225427A (en) | 1989-09-08 |
Family
ID=12894919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63051727A Pending JPH01225427A (en) | 1988-03-07 | 1988-03-07 | Efficient production of rice hybrid seed |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01225427A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019131317A1 (en) * | 2017-12-27 | 2019-07-04 | 株式会社水稲生産技術研究所 | Selection method for hybrid cereal species seeds produced by mixed planting |
-
1988
- 1988-03-07 JP JP63051727A patent/JPH01225427A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019131317A1 (en) * | 2017-12-27 | 2019-07-04 | 株式会社水稲生産技術研究所 | Selection method for hybrid cereal species seeds produced by mixed planting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Multani et al. | Development of monosomic alien addition lines and introgression of genes from Oryza australiensis Domin. to cultivated rice O. sativa L. | |
Wan et al. | Efficient production of doubled haploid plants through colchicine treatment of anther-derived maize callus | |
US5644066A (en) | Methods for introducing a fertility restorer gene and for producing F1 | |
Phillips et al. | Interspecific hybridization of red clover (Trifolium pratense L.) with T. sarosiense Hazsl. using in vitro embryo rescue | |
US5007198A (en) | Process for the accelerated production of triploid seeds for seedless watermelon cultivars | |
CN113557957B (en) | Breeding method and application of blue-standard two-line hybrid wheat system | |
CN113993373A (en) | Cytoplasmic male sterile turnip plant with improved growth | |
AU2015246071A1 (en) | A lolium multiflorum line inducing genome loss | |
JPH01132320A (en) | Efficient production of seed of hybrid of rice plant | |
Ortiz et al. | A new method of producing 4x hybrid true potato seed | |
Bingham | Maximizing hybrid vigour in autotetraploid alfalfa | |
JPH01225427A (en) | Efficient production of rice hybrid seed | |
Inomata | Intergeneric hybrid between Brassica napus and Diplotaxis harra through ovary culture and the cytogenetic analysis of their progenies | |
JPS6174526A (en) | Growing of hybrid wheat variety of one generation by conditional plasma male sterility | |
JP2016136943A (en) | Jatropha hybrid by forming only female plant | |
Woo et al. | Production of interspecific hybridization between Fagopyrum tataricum and F. Cymosum through embryo rescue | |
KR100531679B1 (en) | A single dominant male sterile line and a restorer gene for male sterility line in broccoli and method of production the same | |
CN109089873B (en) | Method for obtaining hybrid rice parent combination for synchronous direct seeding seed production | |
Uijtewaal | The production and evaluation of monohaploid potatoes (2n= x= 12) for breeding research on cell and plant level | |
VS | Nature of chromosome pairing in allopolyploids of Arachis and their stability | |
Kramer et al. | An evaluation of maternal nullihaploidy for Nicotiana tabacum L. nullisomic production. II. A pollen irradiation and ovule culture approach | |
CN115119744A (en) | Apple non-integration system four-group sports planting method | |
Egawa et al. | Cross compatibility and cytogenetical relationships among Asian Vigna species | |
Tai et al. | Ploidy manipulation–examination of gene action and method of gene mapping | |
Inoue et al. | Characterization and overcoming of temperature-dependent lethality exhibited by hybrid embryos from the cross Nicotiana suaveolens× N. sylvestris |