JPH01225377A - Led array - Google Patents

Led array

Info

Publication number
JPH01225377A
JPH01225377A JP63052325A JP5232588A JPH01225377A JP H01225377 A JPH01225377 A JP H01225377A JP 63052325 A JP63052325 A JP 63052325A JP 5232588 A JP5232588 A JP 5232588A JP H01225377 A JPH01225377 A JP H01225377A
Authority
JP
Japan
Prior art keywords
led
dots
substrate
array
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63052325A
Other languages
Japanese (ja)
Inventor
Akira Ito
晃 伊藤
Kunihiro Hattori
服部 邦裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP63052325A priority Critical patent/JPH01225377A/en
Publication of JPH01225377A publication Critical patent/JPH01225377A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make an LED array have high density and brightness, by mounting a crystal layer including an active layer on a substrate and manufacturing an LED dot array after forming grooves which cut the active layer at least into a number of pieces in a crystal layer to manufacture an LED dot array and then, causing the width of each groove between LED dots to have a constant value or less, thereby mounting electrodes at the substrate and respective LED dots. CONSTITUTION:Each width of grooves which form LED dots where light emitting points are isolated one another is 20mum or less. This device is composed of a number of the LED dots P having a double hetero structure consisting of: a p-type GaAs substrate B; a p-type AlGaAS clad layer 1 where epitaxial growths are performed in order on the substrate B; a p-type AlGaAs active layer 2; and an n-type AlGaAs clad layer 3, n-side electrodes E1 which are mounted on the clad layer 3 as well as a p-side electrode E2 which is mounted at the substrate B. The grooves 5 cut the active layer 2 of the LED dots P into pieces. In this way, a number of independent light emitting points, that is, an LED dot array, is completed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単位長当たりのLEDドツトを高密度かつ高
輝度にしたLEDアレイ、特にLEDプリンタの光源に
最適なLEDアレイに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an LED array that has high density and high brightness of LED dots per unit length, and particularly to an LED array that is optimal as a light source for an LED printer.

〔従来の技術〕[Conventional technology]

プリンタはコンピュータの処理結果やデイスプレィ上の
文字、図形情報を紙に出力してハードコピーを作製する
装置で、大別すると、用紙−行分の印字を一回でできる
ラインプリンタと、タイプライタのように一字ずつ印字
するシリアルプリンタがあり、また、印字方式にはドラ
ムやベルトを機械的にたたいて印字するインパクト型と
、静電気、放電現象、インクなどを利用して印字するノ
ンインパクト型がある。
A printer is a device that outputs computer processing results and text and graphic information on a display onto paper to create a hard copy.It can be roughly divided into line printers, which can print a line of paper at a time, and typewriters. There are serial printers that print one character at a time, and there are two types of printing methods: impact type, which prints by mechanically hitting a drum or belt, and non-impact type, which prints using static electricity, discharge phenomenon, ink, etc. There is.

最近はインパクト型プリンタに代わって騒音の少ないノ
ンインパクト型プリンタが急速に普及しつつある。ノン
インパクト型の中でレーザビームプリンタ、液晶シャッ
タプリンタ、LEDプリンタが特に脚光を浴びてその採
用数も増加しつつある。これら電子写真方式の中でLE
D方式は中速機としての用途が当初意図されていたが、
レーザビームプリンタに比べて可動部のないこと、調整
誤差が少ないことなどから超高速プリンタの能力の可能
性が出てきた。LEDプリンタは光源となるヘッドが集
束性ロッドレンズアレイとLEDアレイチップの採用に
より完全に固体化、電子走査化されており、小型で借問
性の高い電子写真方式プリンタとして知られている。
Recently, non-impact printers with less noise are rapidly becoming popular in place of impact printers. Among non-impact type printers, laser beam printers, liquid crystal shutter printers, and LED printers are particularly in the spotlight, and their number of uses is increasing. Among these electrophotographic methods, LE
The D method was originally intended for use as a medium-speed aircraft, but
Compared to laser beam printers, there are no moving parts and fewer adjustment errors, creating the potential for ultra-high-speed printer capabilities. LED printers have a light source head that is completely solid-state and electronically scanned by using a focusing rod lens array and an LED array chip, and are known as small, highly portable electrophotographic printers.

LEDを光源として用いたLEDプリンタは概して帯電
した感光体表面の所望の部分をLEDを用いて放電させ
、電荷をもたせたトナーで現像、転写する方式を採って
いる。たとえばA4サイズ用のプリンタでは、このA4
サイズの長さに対応するLEDドツトアレイを必要とし
、LEDの光は集束性ロッドレンズによって感光面に結
像させる。このLED表示素子は第6図に示すように、
各1個ずつのLEDを有する発光部30を一定間隔を置
いて配置したものである0発光部30は配線部31に電
気的に接続されている。
An LED printer using an LED as a light source generally employs a method of discharging a desired portion of the charged surface of a photoreceptor using an LED, and developing and transferring the charged toner. For example, in an A4 size printer, this A4
It requires an array of LED dots corresponding to the length of the size, and the light from the LEDs is imaged onto the photosensitive surface by a focusing rod lens. This LED display element, as shown in Figure 6,
The light emitting parts 30, which are light emitting parts 30 each having one LED arranged at regular intervals, are electrically connected to the wiring part 31.

このように特に高速印字に適しているLEDプリンタの
キーデバイスであるLEDヘッドを中心にしてLEDプ
リンタの小型化、高速化及び高印字品質化に対して、ま
ず小型化が達成できたのはLEDアレイチップを高精度
に1列に配列するための技術が確立されたことによる。
In this way, the LED head, which is a key device for LED printers that is especially suitable for high-speed printing, has become smaller, faster, and has higher printing quality.The first thing that has been able to achieve miniaturization is LED. This is because a technology for arranging array chips in a single row with high precision has been established.

現段蝙では400 ドツト/インチの解像度のヘッドま
では1列配列が実用化されており、より高解像度化も技
術的には可能であるが、480ドツト/インチ程度が1
列配列方式の現状技術での実用化の限界と考えられてい
る。さらに、高速化のためにLED自体の高効率化によ
り高出力を得る検討も行われている。すなわち、従来の
このLED材料であるGaPAsホモ接合LEDに代え
てAlGaAsシングルへテロ接合LEDを用いるもの
であり、0.6W/dの高出力のものが得られている。
At present, single-row arrays are in practical use for heads with resolutions of up to 400 dots/inch, and higher resolution is technically possible, but about 480 dots/inch is one line.
This is considered to be the limit of practical application of the column array method with the current technology. Furthermore, in order to increase speed, studies are also being conducted to obtain high output by increasing the efficiency of the LED itself. That is, an AlGaAs single heterojunction LED is used in place of the GaPAs homojunction LED which is the conventional LED material, and a high output of 0.6 W/d is obtained.

また高印字品質化では400 ドツト/インチの高密度
化が実用されている。
In order to achieve high printing quality, a high density of 400 dots/inch has been put into practice.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、これからのプリンタの主流になると目され
ているノンインパクト型LEDプリンタの一層の小型化
、高速化、高印字品質化に向けての開発が試行されてい
る。このうち特に高印字品質化にはLEDアレイの高密
度化並びに高輝度化の実現が欠かせない要件であるが、
現状ではせいぜい400ドツト/インチが限度である。
In this way, attempts are being made to develop non-impact type LED printers, which are expected to become the mainstream printers of the future, to further downsize, speed up, and improve print quality. Among these, achieving high density and high brightness of the LED array is an essential requirement for achieving high print quality.
Currently, the limit is 400 dots/inch at most.

また高輝度化は前述したようにGaPAsに代えてAl
GaAsを用い、シングルへテロさらにはダブルヘテロ
構造にすることにより対処することが望ましいが、現段
階ではまだダブルヘテロ構造のLEDアレイは提供され
ておらず、高輝度化を狙ったAlGaAsとシングルへ
テロ構造との組み合わせによる約2077W/ドツトの
ものが最高である。
In addition, as mentioned above, high brightness can be achieved by using Al instead of GaPAs.
It is desirable to solve this problem by using GaAs to create a single hetero structure or even a double hetero structure, but at this stage, double hetero structure LED arrays are not yet available. The highest value is about 2077 W/dot in combination with the terror structure.

従って本発明の目的は、以上の問題点を鑑みて、より一
層の高密度で高輝度のLEDアレイ、特にLEDプリン
タの光源としてその高印字品質化を可能にするLEDア
レイを提供することにある。
Therefore, in view of the above-mentioned problems, it is an object of the present invention to provide an LED array with even higher density and higher brightness, particularly an LED array that can be used as a light source for an LED printer and achieve higher print quality. .

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するLEDアレイは、基板上に活性層を
含む結晶層を設け、少な(とも活性層まで結晶層を多数
に寸断する溝を形成してLEDドツトアレイを作製し、
LEDドツト間の溝の幅が20.1−以下であり、基板
及び各LEDドツトに電極を設けたことを特徴とするも
のである。
The LED array that achieves the above purpose is manufactured by providing a crystal layer including an active layer on a substrate, forming grooves that cut the crystal layer into many pieces (at least up to the active layer), and fabricating an LED dot array.
It is characterized in that the width of the groove between the LED dots is 20.1 mm or less, and that an electrode is provided on the substrate and each LED dot.

本発明のLEDアレイは、互いに分離された発光点数で
あるLEDドツトを形成している溝の幅が20−以下で
あることにより、少なくとも400ドツト/インチの精
細度は優に達成可能で、溝の幅を最小限(たとえば2−
程度)にすれば600ドツト/インチも実現することが
できる。
In the LED array of the present invention, the width of the grooves forming the LED dots, which are the number of light emitting points separated from each other, is 20 or less, so that a precision of at least 400 dots/inch can be easily achieved. Minimum width (e.g. 2-
600 dots/inch can be achieved.

また活性層の半導体材料として^lGa1laを選択す
れば、GaPAaに比較して高出力が得られ、シングル
へテロさらにはダブルヘテロ構造を採ればより高輝度、
たとえばAlGaAsとダブルヘテロ構造との併用によ
り少なくとも約60μW/ドツトが期待できる。
In addition, if ^lGa1la is selected as the semiconductor material for the active layer, higher output can be obtained compared to GaPAa, and if a single hetero or double hetero structure is adopted, higher brightness can be obtained.
For example, by using AlGaAs in combination with a double heterostructure, at least about 60 μW/dot can be expected.

なお、本発明のLEDアレイに使用する半導体材料には
特に制限はなく、GaAs、 GaPAs 、AlGa
As、GaP 、 Ga1nPなど各々の材料の特性を
活かして用いればよい。
Note that there is no particular restriction on the semiconductor material used for the LED array of the present invention, and examples include GaAs, GaPAs, and AlGa.
Materials such as As, GaP, and Ga1nP may be used by taking advantage of their characteristics.

〔実施例〕〔Example〕

以下、本発明のLEDアレ4を図面に基づいて詳細に説
明する。
Hereinafter, the LED array 4 of the present invention will be explained in detail based on the drawings.

第1図はその実施例を示す、このLEDアレイは、P型
GaAs基板Bと、基板B上に順にエピタキシャル成長
させたp型^lGaAsクラッド層1.P型^lGaA
s活性層2及びn型A]GaAsクラッド層3からなる
ダブルヘテロ構造の多数のLEDドツトP(図面では一
部だけを示す)と、クラッド層3に設けたn側電極E1
と、基板Bに設けたp側電極E2とを有する0図からも
明らかな如く、各LEDドツトPは溝5によって互いに
分離されており、溝5はLEDドツトPの活性層2を寸
断し、これにより多数の独立した発光点数であるLED
ドツトアレイが形成されている。なお、より高密度化が
必要な場合はp型GaAs基板Bを取り除いた構造とし
てもよい。
FIG. 1 shows an example of this. This LED array consists of a P-type GaAs substrate B and a p-type GaAs cladding layer 1. P-type^lGaA
s active layer 2 and n-type A] A large number of LED dots P (only some of which are shown in the drawing) of a double heterostructure consisting of a GaAs cladding layer 3 and an n-side electrode E1 provided on the cladding layer 3.
As is clear from FIG. 0, which has a p-side electrode E2 provided on the substrate B, each LED dot P is separated from each other by a groove 5, and the groove 5 cuts the active layer 2 of the LED dot P. This results in a large number of independent light emitting points, such as LEDs.
A dot array is formed. Note that if higher density is required, a structure may be adopted in which the p-type GaAs substrate B is removed.

かかる構造のLEDアレイの高密度発光パターンを第2
図に示す、各LEDドツトPは四角柱状を呈し、電極E
1はLEDドツトPの頂部すなわちクラッド層3の上部
を略縦断する細長いものであり、各LEDドツトPに交
互に達するように配置されている。
The high-density light emitting pattern of the LED array with such a structure is
As shown in the figure, each LED dot P has a square prism shape, and the electrode E
Reference numerals 1 are elongated strips extending substantially vertically across the tops of the LED dots P, that is, the top of the cladding layer 3, and are arranged so as to reach each LED dot P alternately.

ここにおいて、たとえば溝5の輻Wは5ps、LEDド
ツトPの大きさはa −4QPa、 l) x5Q−程
度であり、この場合にはLEDアレイを約564ドツト
/インチまで高密度化することができる。さらに発光パ
ターンの精度にも依るが幅Wを2P程度にまですること
は可能であり、604ドツト/インチを達成できる。
Here, for example, the radius W of the groove 5 is 5 ps, the size of the LED dot P is about a-4QPa, l) x5Q-, and in this case, it is possible to increase the density of the LED array to about 564 dots/inch. can. Furthermore, although it depends on the accuracy of the light emitting pattern, it is possible to make the width W up to about 2P, and 604 dots/inch can be achieved.

上記実施例では、AlGaAsとダブルヘテロ構造と相
まワでかなりの高出力(少なくとも60tIW/ドツト
)が簡単に得られ、しかもプリンタの印字速度は光出力
に比例するので高速印字が達成可能となる。
In the above embodiment, a considerably high output (at least 60 tIW/dot) can be easily obtained by combining AlGaAs and a double heterostructure, and since the printing speed of the printer is proportional to the optical output, high-speed printing can be achieved. .

本発明のLEDアレイの発光パターンの別例を第3図に
、並びにその発光パターンを有するLEDアレイの断面
を第4図に示す、各LEDドツトPが溝5によって互い
に分離され、n側電極E1がLEDドツトPの上部の周
囲に設けられている。
Another example of the light emitting pattern of the LED array of the present invention is shown in FIG. 3, and a cross section of the LED array having the light emitting pattern is shown in FIG. is provided around the upper part of the LED dot P.

基板B及びLEDドッ)Pを構成する半導体材料は第1
図に示したものと同一である。このLEDアレイの寸法
例を挙げると、LEDドツトPの大きさは横×縦−40
X 60P、溝5の幅10 p−、電極E1のLEDド
ツトP上での幅5ps、α−90P1β−110−で、
約430ドツト/インチの精細度となる。
The semiconductor material constituting the substrate B and the LED dot P is the first
It is the same as shown in the figure. To give an example of the dimensions of this LED array, the size of the LED dot P is width x height -40
X 60P, width of groove 5 10 p-, width of electrode E1 on LED dot P 5 ps, α-90P1β-110-,
The definition is approximately 430 dots/inch.

なお、上記実施例に示したものに限らず本発明のLED
アレイの製造方法には特に限定はなく、常套手段で行え
ばよいが、LEDアレイの製造工程で特に重要であるL
EDドツトアレイの作製時に基板上の結晶層を多数に独
立分離する溝を形成する際のエツチング方法としては、
特に塩素と水素または塩素と金属水素化物ガスよりなる
混合ガスを用いるエツチング方法を採ることが好ましい
(特願昭62−62216号、特願昭62−74990
号、特願昭62−74991号参照)、これらに開示の
エツチング方法によれば、異方性のエツチング速度を各
種化合物半導体材料により異なることなく等速的に大き
くすることができる。従って、均一な狭い幅の溝を容易
かつ高速に形成でき、より一層の高密度化LEDアレイ
を得るには有用なエツチング技術である。ちなみに、通
常の湿式エツチングではこのような高密度の溝を形成す
るのは困難である。
Note that the LEDs of the present invention are not limited to those shown in the above embodiments.
There are no particular limitations on the method for manufacturing the array, and conventional methods may be used, but L is particularly important in the manufacturing process of LED arrays.
The etching method used to form grooves that separate crystal layers on a substrate into multiple independent layers during the production of an ED dot array is as follows:
In particular, it is preferable to use an etching method using a mixed gas of chlorine and hydrogen or chlorine and metal hydride gas (Japanese Patent Application No. 62-62216, Japanese Patent Application No. 74990-1982).
According to the etching methods disclosed in these documents, the anisotropic etching rate can be uniformly increased without being different depending on various compound semiconductor materials. Therefore, it is an etching technique that can easily and quickly form grooves with a uniform narrow width, and is useful for obtaining even higher density LED arrays. Incidentally, it is difficult to form such high-density grooves using normal wet etching.

〔発明の効果〕〔Effect of the invention〕

本発明のLEDアレイは、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the LED array of the present invention is configured as described above, it produces the effects described below.

基板上に設けられた活性層を含む結晶層を該結晶層の少
なくとも活性層まで多数に寸断する溝の幅が20P以下
であることにより、高精細度のLEDドツトが簡単に得
られ、発光パターンの精度によっては600ドツト/イ
ンチ程度までの高密度化を実現することができる。また
半導体材料として^lGaAsなどを使用し、シングル
へテロさらにはダブルヘテロ構造を採用すればかなりの
高出力(たとえばAlGaAsとダブルヘテロ構造の組
み合わせでは100μW/ドツト程度)が可能どなる。
Since the width of the groove for cutting the crystal layer including the active layer provided on the substrate into multiple pieces up to at least the active layer of the crystal layer is 20P or less, high-definition LED dots can be easily obtained and the light emitting pattern can be easily obtained. Depending on the accuracy, high density up to about 600 dots/inch can be achieved. Furthermore, if GaAs or the like is used as a semiconductor material and a single or even double hetero structure is adopted, a considerably high output (for example, about 100 μW/dot in a combination of AlGaAs and a double hetero structure) is possible.

従って、本発明のLEDアレイをプリンタの光源として
用いれば高密度かつ高輝度特性により特に高品質な印字
が得られ、付随的に印字の高速化を達成することもでき
る。
Therefore, when the LED array of the present invention is used as a light source for a printer, particularly high quality printing can be obtained due to its high density and high brightness characteristics, and concomitantly, high speed printing can also be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のLEDアレイの一実施例の略断面図、
第2図は第1図のアレイの発光パターンを示す略平面図
、第3図は発光パターンの別例を示す略平面図、第4図
は第3図の発光パターンを有するLEDアレイの略断面
図、第5図はプリンタ用のLEDアレイの発光パターン
例を示す略図である。 B      :p型Ga^3基板 1       :p型AlGaAsクラッド層2  
     :p型^lGaAs活性層3       
:n型AlGa^3クラッド層5     :溝 p        : LEDドツト El、E2   :電極 第2図 筒3図 第5図
FIG. 1 is a schematic cross-sectional view of an embodiment of the LED array of the present invention;
2 is a schematic plan view showing the light emitting pattern of the array in FIG. 1, FIG. 3 is a schematic plan view showing another example of the light emitting pattern, and FIG. 4 is a schematic cross section of the LED array having the light emitting pattern shown in FIG. 3. FIG. 5 is a schematic diagram showing an example of a light emitting pattern of an LED array for a printer. B: p-type Ga^3 substrate 1: p-type AlGaAs cladding layer 2
:p type^lGaAs active layer 3
: N-type AlGa^3 cladding layer 5 : Groove p : LED dots El, E2 : Electrode Figure 2, Figure 3, Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に活性層を含む結晶層を設け、少なくとも
活性層まで結晶層を多数に寸断する溝を形成してLED
ドットアレイを作製し、LEDドット間の溝の幅が20
μm以下であり、基板及び各LEDドットに電極を設け
たことを特徴とするLEDアレイ。
(1) A crystal layer including an active layer is provided on a substrate, and grooves are formed to cut the crystal layer into many pieces up to at least the active layer.
A dot array was created, and the width of the groove between LED dots was 20
1. An LED array characterized in that the size is less than .mu.m, and an electrode is provided on a substrate and each LED dot.
(2)前記結晶層がダブルヘテロ構造を有し、前記LE
DアレイがLEDプリンタの光源であることを特徴とす
る請求項(1)記載のLEDアレイ。
(2) The crystal layer has a double heterostructure, and the LE
The LED array according to claim 1, wherein the D array is a light source of an LED printer.
JP63052325A 1988-03-04 1988-03-04 Led array Pending JPH01225377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63052325A JPH01225377A (en) 1988-03-04 1988-03-04 Led array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63052325A JPH01225377A (en) 1988-03-04 1988-03-04 Led array

Publications (1)

Publication Number Publication Date
JPH01225377A true JPH01225377A (en) 1989-09-08

Family

ID=12911639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63052325A Pending JPH01225377A (en) 1988-03-04 1988-03-04 Led array

Country Status (1)

Country Link
JP (1) JPH01225377A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635503B2 (en) 2002-01-28 2003-10-21 Cree, Inc. Cluster packaging of light emitting diodes
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6794684B2 (en) 2001-02-01 2004-09-21 Cree, Inc. Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same
US7037742B2 (en) 2001-07-23 2006-05-02 Cree, Inc. Methods of fabricating light emitting devices using mesa regions and passivation layers
KR100597166B1 (en) * 2005-05-03 2006-07-04 삼성전기주식회사 Flip chip light emitting diode and method of manufactureing the same
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
US7625809B2 (en) 2003-09-11 2009-12-01 Oki Data Corporation Semiconductor device and method of manufacturing the same
US8901699B2 (en) 2005-05-11 2014-12-02 Cree, Inc. Silicon carbide junction barrier Schottky diodes with suppressed minority carrier injection
US9391118B2 (en) 2007-01-22 2016-07-12 Cree, Inc. Fault tolerant light emitters, systems incorporating fault tolerant light emitters and methods of fabricating fault tolerant light emitters
US10157898B2 (en) 2007-01-22 2018-12-18 Cree, Inc. Illumination devices, and methods of fabricating same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420222B2 (en) 2001-02-01 2008-09-02 Cree, Inc. Light emitting diodes including transparent oxide layers
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6794684B2 (en) 2001-02-01 2004-09-21 Cree, Inc. Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same
US7026659B2 (en) 2001-02-01 2006-04-11 Cree, Inc. Light emitting diodes including pedestals
US8692277B2 (en) 2001-02-01 2014-04-08 Cree, Inc. Light emitting diodes including optically matched substrates
US8426881B2 (en) 2001-02-01 2013-04-23 Cree, Inc. Light emitting diodes including two reflector layers
US7037742B2 (en) 2001-07-23 2006-05-02 Cree, Inc. Methods of fabricating light emitting devices using mesa regions and passivation layers
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
US7611915B2 (en) 2001-07-23 2009-11-03 Cree, Inc. Methods of manufacturing light emitting diodes including barrier layers/sublayers
US8269241B2 (en) 2001-07-23 2012-09-18 Cree, Inc. Light emitting diodes including barrier layers/sublayers and manufacturing methods therefor
US8907366B2 (en) 2001-07-23 2014-12-09 Cree, Inc. Light emitting diodes including current spreading layer and barrier sublayers
US6635503B2 (en) 2002-01-28 2003-10-21 Cree, Inc. Cluster packaging of light emitting diodes
US7625809B2 (en) 2003-09-11 2009-12-01 Oki Data Corporation Semiconductor device and method of manufacturing the same
US8384221B2 (en) 2003-09-11 2013-02-26 Oki Data Corporation Semiconductor device, LED head and method of manufacturing the same
KR100597166B1 (en) * 2005-05-03 2006-07-04 삼성전기주식회사 Flip chip light emitting diode and method of manufactureing the same
US8901699B2 (en) 2005-05-11 2014-12-02 Cree, Inc. Silicon carbide junction barrier Schottky diodes with suppressed minority carrier injection
US9391118B2 (en) 2007-01-22 2016-07-12 Cree, Inc. Fault tolerant light emitters, systems incorporating fault tolerant light emitters and methods of fabricating fault tolerant light emitters
US10157898B2 (en) 2007-01-22 2018-12-18 Cree, Inc. Illumination devices, and methods of fabricating same
US10586787B2 (en) 2007-01-22 2020-03-10 Cree, Inc. Illumination devices using externally interconnected arrays of light emitting devices, and methods of fabricating same

Similar Documents

Publication Publication Date Title
CN101187731B (en) Scanning unit and image forming apparatus
US8830287B2 (en) Surface-emission laser array, optical scanning apparatus and image forming apparatus
US7545547B2 (en) Scanning unit and image forming apparatus
JPH0936497A (en) Face luminescence laser pattern of multiplex light laser scanner
JPH01225377A (en) Led array
US5848087A (en) Two-dimensional surface emitting laser array, two-dimensional surface emitting laser beam scanner, two-dimensional surface emitting laser beam recorder, and two-dimensional surface emitting laser beam recording method
JP2008028139A (en) Method for manufacturing semiconductor chip, surface-emitting semiconductor laser, surface-emitting semiconductor laser array, optical scanning apparatus and image forming apparatus
JPH0394481A (en) Array-shaped semiconductor light-emitting device
US20050151828A1 (en) Xerographic printing system with VCSEL-micro-optic laser printbar
JP5224159B2 (en) Surface emitting laser array, optical scanning device, and image forming apparatus
US6064418A (en) Led array, print head, and electrophotographic printer
JP3386252B2 (en) Manufacturing method of stacked active area laser array
US20040021146A1 (en) Semiconductor array device with single interconnection layer
JP2004273746A (en) Light-emitting diode array
JP2008166611A (en) Light emitting element array, optical print head using the same and image forming apparatus
KR102351775B1 (en) Image forming apparatus and light emitting device therein
JPH11254741A (en) Laser recorder
JP2016051815A (en) Semiconductor device, manufacturing method of semiconductor device, print head, and image forming apparatus
JP2008066579A (en) Light-emission control method and light-emitting device
JP4574006B2 (en) Image forming apparatus
US5300954A (en) Optical printer head
JP3205049B2 (en) Light source for optical printer
JP3093439B2 (en) Semiconductor light emitting device
JP2012195431A (en) Plane emission laser element, plane emission laser array, and manufacturing method, optical scanner and image formation apparatus using the same, and optical transceiver module, optical communication device, and electrical apparatus
JP5000569B2 (en) Light emitting element array and image forming apparatus having the same