JPH01225303A - Manufacture of green compact core - Google Patents

Manufacture of green compact core

Info

Publication number
JPH01225303A
JPH01225303A JP5116188A JP5116188A JPH01225303A JP H01225303 A JPH01225303 A JP H01225303A JP 5116188 A JP5116188 A JP 5116188A JP 5116188 A JP5116188 A JP 5116188A JP H01225303 A JPH01225303 A JP H01225303A
Authority
JP
Japan
Prior art keywords
mold
binder resin
molded
powder
metal mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5116188A
Other languages
Japanese (ja)
Inventor
Masayuki Ishikawa
政幸 石川
Tei Taguchi
禎 田口
Yasuhiko Dobashi
土橋 恭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP5116188A priority Critical patent/JPH01225303A/en
Priority to US07/313,612 priority patent/US5160447A/en
Publication of JPH01225303A publication Critical patent/JPH01225303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To promote that a binder resin creeps into ferromagnetic powders and to restrain a gap part from being produced by a method wherein a mixture of the ferro magnetic powders and the binder resin or the ferromagnetic powders coated with the binder resin are filled into metal molds, and are pressurized and molded during a heating operation. CONSTITUTION:First, a reduced iron powder and an epoxy resin which have been weighted in their mixture ratio are stirred and mixed by using a stirrer or the like for about one hour. Then, a mixture of the reduced iron powder and the epoxy resin is poured into a metal mold; the inside of the metal mold is filled with the mixture; after that, the mixture is compressed and molded at 2tons/cm<2>; a molded substance is formed. While the molded substance is kept in a pressurized state inside the metal mold, it is heated at about 150 deg.C for one hour and hardened. The molded substance which has been heated and hardened is taken out from the metal mold; it is cooled; a green compact core is formed. The green compact core formed after the molded substance has been heated and hardened while this substance is kept in the pressurized state inside the metal mold is excellent in its strength and magnetic characteristic as compared with the green compact core which has been taken out from the metal mold and hardened.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、モータやトランス等の電気機器の磁心や、永
久磁石材料等に用いられる圧粉磁心の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a powder magnetic core used for magnetic cores of electrical equipment such as motors and transformers, permanent magnet materials, and the like.

(従来の技術) 従来より、鉄や鉄合金若しくはフェライト等の強磁性粉
をエポキシ樹脂等の熱硬化性樹脂よりなるバインダー樹
脂を用いて結合せさた後、所定形状に成形して圧粉磁心
を形成する圧粉磁、むの製造方法が良く知られている(
例えば、特公昭47−22514号、特公昭50−14
207号、特開昭49−4197号等)。
(Prior art) Conventionally, ferromagnetic powder such as iron, iron alloy, or ferrite is bonded using a binder resin made of thermosetting resin such as epoxy resin, and then molded into a predetermined shape to produce a powder magnetic core. The manufacturing method of powder porcelain, which forms powder porcelain, is well known (
For example, Special Publication No. 47-22514, Special Publication No. 50-14
No. 207, JP-A No. 49-4197, etc.).

従来の圧粉磁心の製造方法は1通常、鉄や鉄合金若しく
はフェライト等の強磁性粉と、エポキシ樹脂等の熱硬化
性樹脂よりなるバインダー樹脂とを混合した混合物、若
しくは予めバインダー樹脂によって被覆された強磁性粉
を、金型内に充填し圧縮成形して成形体を形成した後、
該成形体を金型から取り出して恒温層内で加熱硬化して
圧粉磁心を形成していた。
Conventional powder magnetic core manufacturing methods are as follows: 1. Usually, a powder magnetic core is produced using a mixture of ferromagnetic powder such as iron, iron alloy, or ferrite, and a binder resin made of a thermosetting resin such as an epoxy resin, or is coated with a binder resin in advance. After filling the mold with ferromagnetic powder and compression molding it to form a molded body,
The molded body was taken out from the mold and heated and hardened in a constant temperature bath to form a powder magnetic core.

(発明が解決しようとする課顕) しかしながら、前記従来の圧粉磁心の製造方法では、混
合時や金型内への充填時に入り込んだ気泡や、バインダ
ー樹脂の溶媒が揮発した後の空隙等がそのまま残りやす
く、製造された圧粉磁心内に比較的多くの空隙部分が残
留してしまうという欠点があった。
(Problems to be Solved by the Invention) However, in the conventional method for manufacturing powder magnetic cores, air bubbles that enter during mixing or filling into a mold, and voids after the solvent of the binder resin evaporates, etc. This has the disadvantage that it tends to remain as it is, and a relatively large number of voids remain in the manufactured powder magnetic core.

このため、従来の方法で製造された圧粉磁心は、内部に
空隙が存在しているため強度が低く破損しやすいという
欠点を有し、また、空隙の存在のため成形体中の強磁性
粉の充填率(成形体中における強磁性粉の密度)が低く
、飽和磁束密度が低く磁気特性が不十分となりやすいと
いう問題があった。
For this reason, powder magnetic cores manufactured by conventional methods have the disadvantage of having low strength and being easily damaged due to the presence of voids inside. There were problems in that the filling rate (density of ferromagnetic powder in the compact) was low, the saturation magnetic flux density was low, and the magnetic properties tended to be insufficient.

本発明は上記事情に鑑みてなされたものであって、成形
後の圧粉磁心中の空隙率を低くシ、圧粉磁心の強度及び
磁気特性を向上し得る圧粉磁心の製造方法を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and provides a method for manufacturing a powder magnetic core that can reduce the porosity of the powder magnetic core after molding and improve the strength and magnetic properties of the powder magnetic core. The purpose is to

(課題を解決するための手段) 上記目的を達成するため、本発明による圧粉磁心の製造
方法では、強磁性粉を熱硬化性樹脂よりなるバインダー
樹脂を用いて結合し金型内で加圧成形して成形体を形成
し、該成形体を上記金型内で加圧状態を保持しながら加
熱硬化させ圧粉磁心を形成したことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, in the method for manufacturing a powder magnetic core according to the present invention, ferromagnetic powder is bound using a binder resin made of a thermosetting resin and pressurized in a mold. The method is characterized in that a molded body is formed by molding, and the molded body is heated and hardened while maintaining a pressurized state in the mold to form a powder magnetic core.

(作   用) 強磁性粉とバインダー樹脂との混合物若しくはバインダ
ー樹脂で被覆された強磁性粉を金型内に充填し、加熱し
ながら加圧成形することにより。
(Function) By filling a mold with a mixture of ferromagnetic powder and binder resin, or ferromagnetic powder coated with binder resin, and press-molding while heating.

バインダー樹脂の粘性が下がり強磁性粉間へのバインダ
ー樹脂の回り込みが促進され、空隙部分の発生が抑制さ
れる。
The viscosity of the binder resin decreases, promoting the wraparound of the binder resin between the ferromagnetic powders, and suppressing the generation of voids.

(実 施 例) 以下、本発明を図示の実施例に基づいて詳細に説明する
(Example) Hereinafter, the present invention will be explained in detail based on the illustrated example.

第1図は本発明の一実施例を示す圧粉磁心の製造工程図
であって、この例では、強磁性粉として還元鉄粉、バイ
ンダー樹脂としてエポキシ樹脂を“用いた例を示し、配
合比は、エポキシ樹脂を3重量%、残部を還元鉄粉とし
た例である。
FIG. 1 is a manufacturing process diagram of a powder magnetic core showing an embodiment of the present invention. In this example, reduced iron powder is used as the ferromagnetic powder and epoxy resin is used as the binder resin. is an example in which the epoxy resin is 3% by weight and the balance is reduced iron powder.

以下第1図に沿って、圧粉磁心の製造方法について説明
する。
The method for manufacturing a powder magnetic core will be described below with reference to FIG.

同図において、先ず、夫々の配合比で秤量された還元鉄
粉とエポキシ樹脂とを、撹拌機等により約1時間撹拌・
混合する(S2)。
In the figure, first, reduced iron powder and epoxy resin, which were weighed at their respective compounding ratios, were stirred for about 1 hour using a stirrer or the like.
Mix (S2).

次に、還元鉄粉とエポキシ樹脂との混合物を金型内に流
し込み金型内に充填した後、圧縮圧力、2ton/a#
で圧縮成形し成形体を形成する(SS)。
Next, after pouring the mixture of reduced iron powder and epoxy resin into the mold and filling the mold, the compression pressure was set to 2 tons/a#.
Compression molding is performed to form a molded body (SS).

圧縮成形後、成形体を金型内で加圧(2ton/aj)
した状態のまま、約150℃で1時間加熱硬化する(S
4)。
After compression molding, pressurize the molded product in the mold (2 ton/aj)
Heat cure at approximately 150°C for 1 hour (S
4).

加熱硬化後の成形体は金型より取り出されて冷却され、
圧粉磁心が形成される(SS)。
After heating and hardening, the molded product is removed from the mold and cooled.
A dust core is formed (SS).

さて、以上のようにして製作された圧粉磁心と。Now, about the powder magnetic core manufactured as described above.

金型内での圧縮成形後金型外に取り出されて200℃、
1時間加熱硬化させた圧粉磁心との、強度及び磁気特性
を比較したところ1次の結果を得た。
After compression molding in the mold, it is taken out of the mold and heated to 200℃.
When the strength and magnetic properties were compared with a powder magnetic core that had been heat-cured for 1 hour, the following results were obtained.

尚、上記抗折力(曲げ破壊強度)の測定は、第3図に示
すような5周知の3点曲げ試験法を用いて測定した。こ
こで、図中符号2は圧粉磁心の試験片、符号6は支点、
符号5は荷重を夫々示しており、圧粉磁心の試験片2は
、金型外加熱硬化品、金型内加熱硬化品とも同形上、同
寸法に形成されたものを用いた。
The transverse rupture strength (bending fracture strength) was measured using a well-known three-point bending test method as shown in FIG. Here, code 2 in the figure is a test piece of powder magnetic core, code 6 is a fulcrum,
Reference numeral 5 indicates the load, and the powder magnetic core test piece 2 was formed to have the same shape and dimensions for both the heat-cured product outside the mold and the heat-cured product inside the mold.

また、上記ギャップ磁束密度の測定では1本願8顯人が
先に出願した、特願昭62−245385号「電磁駆動
装置」に記載されたりニアモータの内ヨークとじて圧粉
磁心を使泪したときの測定値を示す。
In addition, in the measurement of the above-mentioned gap magnetic flux density, when a powder magnetic core is used as the inner yoke of a near motor, it is described in Japanese Patent Application No. 1982-245385 "Electromagnetic Drive Device", which was previously filed by 1. The measured value is shown.

尚、このリニアモータは第2図に示す如く構成されてお
り、上記磁束密度の測定では、圧粉磁心から成る内ヨー
ク2と、外ヨーク3に固定された永久磁石4との間の磁
気ギャップdでの磁束密度を測定した。
This linear motor is constructed as shown in FIG. 2, and in the measurement of the magnetic flux density described above, the magnetic gap between the inner yoke 2 made of a powder magnetic core and the permanent magnet 4 fixed to the outer yoke 3 is measured. The magnetic flux density at d was measured.

さて、上記抗折力及びギャップ磁束密度の測定結果から
明らかなように、金型内で加圧状態を保持しながら加熱
硬化させて形成した圧粉磁心の方が、強度、磁気特性と
も優れていることが判る。
Now, as is clear from the above measurement results of transverse rupture force and gap magnetic flux density, powder magnetic cores formed by heating and curing while maintaining a pressurized state in a mold have superior strength and magnetic properties. I know that there is.

これは、強磁性粉とバインダー樹脂の混合物を金型内で
加熱しながら加圧成形することで、バインダー樹脂の粘
性が下がり、バインダー樹脂の強磁性粉間への回り込み
が促進されるためである。
This is because by press-molding a mixture of ferromagnetic powder and binder resin while heating it in a mold, the viscosity of the binder resin decreases and the wraparound of the binder resin between the ferromagnetic powders is promoted. .

したがって1本発明による圧粉磁心の製造方法によれば
、強磁性粉を熱硬化性樹脂よりなるバインダー樹脂を用
いて結合し金型内で加圧成形して成形体を形成した後、
成形体をその金型内で加圧状態を保持しながら加熱硬化
させ圧粉磁心を形成したことにより、バインダー樹脂の
強磁性粉間への回り込みが促進され、空隙の発生が抑制
される。
Therefore, according to the method for manufacturing a powder magnetic core according to the present invention, ferromagnetic powder is bonded using a binder resin made of a thermosetting resin, and after forming a molded body by pressure molding in a mold,
By heating and curing the compact while maintaining a pressurized state within the mold to form a dust core, the binder resin is promoted to wrap around between the ferromagnetic powders, and the generation of voids is suppressed.

このため、本発明による製造方法によれば、バインダー
樹脂の強磁性粉間への回り込みが促進されるため、強磁
性粉間の電気絶縁性が向上し、渦電流の発生が防止され
、飽和磁束密度等の磁気特性が向上される。また、バイ
ンダー樹脂の強磁性粉間への回り込みにより空vR率が
低下されるため、成形体密度が高くなり、抗折力等の機
械的強度が向上する。
Therefore, according to the manufacturing method of the present invention, the wraparound of the binder resin between the ferromagnetic powders is promoted, the electrical insulation between the ferromagnetic powders is improved, the generation of eddy current is prevented, and the saturation magnetic flux Magnetic properties such as density are improved. In addition, since the binder resin wraps around between the ferromagnetic powders and the void VR ratio is reduced, the density of the compact is increased and mechanical strength such as transverse rupture strength is improved.

また、全型内加熱硬化の場合、加熱時に圧縮圧力がかか
っているため、成形体内での内部発熱があり、加熱温度
150℃でも、型外加熱硬化の場合の200℃加熱とほ
ぼ同じ硬化条件が得られ、製造時の省エネルギー化も図
れる。
In addition, in the case of all in-mold heat curing, compression pressure is applied during heating, so internal heat generation occurs within the molded object, and even at a heating temperature of 150°C, the curing conditions are almost the same as 200°C heating in the case of outside-mold heat curing. can be obtained, and energy saving during manufacturing can also be achieved.

尚、第1図に示した例ではバインダー樹脂としてエポキ
シ樹脂を用いた例を示したが、このエポキシ樹脂として
は1例えば、ソマール社製F−219等が使用される。
In the example shown in FIG. 1, an epoxy resin is used as the binder resin, but as the epoxy resin, for example, F-219 manufactured by Somar Co., Ltd. is used.

また、エポキシ樹脂以外に、フェノール樹脂、ポリエス
テル樹脂、ジアリルフタレート樹脂等も熱硬化性樹脂と
して使用可能である。
In addition to epoxy resins, phenol resins, polyester resins, diallyl phthalate resins, and the like can also be used as thermosetting resins.

ここで、各バインダー樹脂の加熱硬化条件としては、例
えば、 Oフェノール樹脂    ;170℃、20分Oポリエ
ステル樹脂   ;180℃、20分Oジアリルフタレ
ート樹脂;170℃、20分である。
Here, the heat curing conditions for each binder resin include, for example: O phenol resin: 170°C, 20 minutes O polyester resin: 180°C, 20 minutes O diallyl phthalate resin: 170°C, 20 minutes.

ところで、本発明による圧粉磁心の製造方法では、強磁
性粉を熱硬化性樹脂よりなるバインダー樹脂を用いて結
合し金型内で加圧成形して成形体を形成し、該成形体を
上記金型内で加圧状態を保持しながら加熱硬化させ圧粉
磁心を形成したことを特徴とするが、金型内で成形体を
加圧状態を保持したまま加熱し、完全に硬化させた場合
に、圧粉磁心内に加圧による歪が残る場合がある。
By the way, in the method for producing a powder magnetic core according to the present invention, ferromagnetic powder is bonded using a binder resin made of a thermosetting resin and pressure-molded in a mold to form a molded body, and the molded body is The powder magnetic core is formed by heating and hardening while maintaining the pressurized state in the mold, but when the compact is heated and completely cured while maintaining the pressurized state in the mold. In addition, strain due to pressurization may remain in the powder magnetic core.

そこで、本発明では、加圧による歪を取り除くため、第
1図に例示した製造工程に改良を加えた実施例として、
同図(S4)の金型内での加圧加熱硬化時間を短縮し、
短時間の加圧加熱硬化を行ない。
Therefore, in the present invention, in order to eliminate the strain caused by pressurization, as an example in which improvements are made to the manufacturing process illustrated in FIG.
Shorten the pressure and heat curing time in the mold in the same figure (S4),
Curing under pressure and heat for a short period of time.

金型から取り出した後、恒温槽でさらに加熱硬化させる
After being removed from the mold, it is further heated and cured in a constant temperature bath.

このように、金型内での加圧加熱硬化の後に、金型外で
加熱硬化することにより、圧粉磁心内の歪が除去される
と共に、硬化が促進される。
In this way, by applying pressure and heating to harden within the mold and then heating and hardening outside the mold, strain within the dust core is removed and hardening is promoted.

(発明の効果) 以上実施例に基づいて説明したように、本発明による圧
粉磁心の製造方法によ九ば、金型内で成形体を加圧しな
がら加熱硬化するようにしたことにより、成形体中の強
磁性粉間へのバインダー樹脂の回り込みが促進され、空
隙率が減少し、成形体密度が高くなると共に、電気絶縁
性が向上される。したがって1本発明によれば1強磁性
粉のバインダー樹脂による結合が強化され、成形体の機
械的強度が向上する。また、成形体密度が高くなりかつ
電気If!縁性が向上されたので、飽和磁束密度が大き
くなり圧粉磁心の磁気特性が改善される。
(Effects of the Invention) As explained above based on the embodiments, according to the method for producing a powder magnetic core according to the present invention, the compact is heat-cured while being pressurized in a mold, so that molding is possible. The wraparound of the binder resin between the ferromagnetic powders in the body is promoted, the porosity is reduced, the density of the molded body is increased, and the electrical insulation is improved. Therefore, according to the present invention, the bond between the ferromagnetic powder and the binder resin is strengthened, and the mechanical strength of the molded article is improved. Moreover, the density of the molded body becomes high and the electric If! Since the edge properties are improved, the saturation magnetic flux density increases and the magnetic properties of the powder core are improved.

したがって、本発明によれば、機械的強度、磁気特性、
電気!i!S性が改善された圧粉磁心を提供することが
できる。
Therefore, according to the present invention, mechanical strength, magnetic properties,
electricity! i! A powder magnetic core with improved S properties can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す圧粉磁心の製造工程図
、第2wIは圧粉磁心の磁気特性の測定に使用されたり
ニアモータの概略構成図、第311は圧粉磁心の強度試
験法の一例を示す3点曲げ試験法の説明図である。 1・・・・駆動コイル、2・・・・圧粉磁心からなる内
ヨーク、3・・・・外ヨーク、4・・・・永久磁石、5
・・・荷重、6・・・・支点。
Fig. 1 is a manufacturing process diagram of a powder magnetic core showing an embodiment of the present invention, 2nd wI is a schematic configuration diagram of a near motor used to measure the magnetic properties of the powder magnetic core, and 311th is a strength test of the powder magnetic core. FIG. 2 is an explanatory diagram of a three-point bending test method showing an example of the method. 1... Drive coil, 2... Inner yoke made of powder magnetic core, 3... Outer yoke, 4... Permanent magnet, 5
...load, 6...fulcrum.

Claims (1)

【特許請求の範囲】[Claims]  強磁性粉を熱硬化性樹脂よりなるバインダー樹脂を用
いて結合し金型内で加圧成形して成形体を形成し、該成
形体を上記金型内で加圧状態を保持しながら加熱硬化さ
せ圧粉磁心を形成したことを特徴とする圧粉磁心の製造
方法。
Ferromagnetic powder is bonded using a binder resin made of thermosetting resin, pressure molded in a mold to form a molded body, and the molded body is heated and cured while maintaining the pressurized state in the mold. A method for manufacturing a powder magnetic core, characterized in that a powder magnetic core is formed by bending.
JP5116188A 1988-02-29 1988-03-04 Manufacture of green compact core Pending JPH01225303A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5116188A JPH01225303A (en) 1988-03-04 1988-03-04 Manufacture of green compact core
US07/313,612 US5160447A (en) 1988-02-29 1989-02-21 Compressed powder magnetic core and method for fabricating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5116188A JPH01225303A (en) 1988-03-04 1988-03-04 Manufacture of green compact core

Publications (1)

Publication Number Publication Date
JPH01225303A true JPH01225303A (en) 1989-09-08

Family

ID=12879102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5116188A Pending JPH01225303A (en) 1988-02-29 1988-03-04 Manufacture of green compact core

Country Status (1)

Country Link
JP (1) JPH01225303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167935A2 (en) * 2000-06-30 2002-01-02 Tokyo Sintered Metal Co., Ltd. A magnetic core for a non-contact displacement sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986007489A1 (en) * 1985-06-10 1986-12-18 Takeuchi Press Industries Co., Ltd. Resin-bonded magnetic composition and process for producing magnetic molding therefrom

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986007489A1 (en) * 1985-06-10 1986-12-18 Takeuchi Press Industries Co., Ltd. Resin-bonded magnetic composition and process for producing magnetic molding therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167935A2 (en) * 2000-06-30 2002-01-02 Tokyo Sintered Metal Co., Ltd. A magnetic core for a non-contact displacement sensor
EP1167935A3 (en) * 2000-06-30 2003-10-08 Tokyo Sintered Metal Co., Ltd. A magnetic core for a non-contact displacement sensor

Similar Documents

Publication Publication Date Title
US7230514B2 (en) Inductive component and method for producing same
US7265651B2 (en) Inductive component and method for the production thereof
US7532099B2 (en) Inductive component and method for producing the same
JP5333859B2 (en) Soft magnetic materials, dust cores, and reactors
JP5341306B2 (en) Reactor
EP3834961B1 (en) A manufacturing process and a manufacturing device for a radially-oriented sintered arc-shaped nd-fe-b magnet
WO2010061525A1 (en) Method for producing soft magnetic material and method for producing dust core
KR101640561B1 (en) A manufacturing method of a magnetic core and an inductor with an embedded coil by molding process under a room temperature condition and a magnetic core and a molded inductor manufactured thereby.
CN111354559A (en) Fixing device and method for forming aligned magnetic cores
CN114551075A (en) Inductor manufacturing method
JP4605317B2 (en) Rare earth anisotropic bonded magnet manufacturing method, magnet molded body orientation processing method, and magnetic field molding apparatus
JP4751774B2 (en) Method for manufacturing reactor for voltage converter
JPH01225303A (en) Manufacture of green compact core
JP2003068550A (en) Soft magnetism pot core, manufacturing method thereof, and reactor using the same
JPS6110937A (en) Magnetic wedge
JPH11126721A (en) Manufacture of dust core
JPS59129405A (en) Core of winding part
KR20150008652A (en) Soft magnetic composite, method for preparing thereof, and electronic elements comprising core material the same
JP2013077845A (en) Reactor and boost converter
JP5195891B2 (en) Reactor core, reactor, and reactor manufacturing method
JPH02163906A (en) Manufacture of bond magnet
RU2187857C2 (en) Process of manufacture of magnetic cores
JPH0324133B2 (en)
JP2003153504A (en) Cylindrical bonded magnet and manufacturing method therefor
SU955389A1 (en) Ring method electric motor magnetic wedge manufacturing method