JPH01224630A - Long-sized thermopile and its manufacture - Google Patents

Long-sized thermopile and its manufacture

Info

Publication number
JPH01224630A
JPH01224630A JP5083088A JP5083088A JPH01224630A JP H01224630 A JPH01224630 A JP H01224630A JP 5083088 A JP5083088 A JP 5083088A JP 5083088 A JP5083088 A JP 5083088A JP H01224630 A JPH01224630 A JP H01224630A
Authority
JP
Japan
Prior art keywords
thermopile
long
hot
thermoelectric conversion
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5083088A
Other languages
Japanese (ja)
Inventor
Atsushi Kawasaki
川崎 篤
Toru Inai
徹 井内
Yukio Nakamori
中森 幸雄
Hirokatsu Yashiro
弘克 矢代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5083088A priority Critical patent/JPH01224630A/en
Publication of JPH01224630A publication Critical patent/JPH01224630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure temperature speedily by providing elements which have hot contacts adhered at one end of a base body and cold contacts at the other end adhered zigzag as thin wire type thermoelectric transducing elements made of different kinds of metal. CONSTITUTION:The thin and long base body 25 is used, the thin wire type thermoelectric transducing elements 23 and 24 made of different kinds of metal are adhered zigzag thereto, and a hot contact 21 is provided to one end of a thin and long member while a cold contact 22 is provided to the other end. Here, the base body 25 is a thin and long stripe type insulating or semiconductor substrate, and the elements 23 and 24 are adhered to the surface of this substrate. Further, an infrared-ray absorbing film 29 is adhered to the hot contact end part of the substrate 25 while covering plural hot contacts 21. Consequently, the number of contacts can be increased as compared with a stripe type base body, so the sensitivity of a long-sized thermopile is increased and the temperature is measured speedily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、長尺サーモパイルとそれを使用した赤外線温
度計および長尺サーモパイルの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a long thermopile, an infrared thermometer using the same, and a method for manufacturing the long thermopile.

〔従来の技術〕[Conventional technology]

体温計には水銀温度計が広(使用されているが、最近で
はデジタル電子体温計も普及が進んでいる。
Mercury thermometers are widely used as thermometers, but digital electronic thermometers are also becoming more popular recently.

通常の電子体温計はセンサにサーミスタを用い、温度値
算出用の演算回路およびデジタル表示器を備えたものが
多いが、測温に要する時間は2〜3分で、水銀体温計よ
り悪い位である。これに対しては、最初の1分程度の間
の温度上昇の経過から最終値を予測する方式のものも開
発されているが、予測方式の電子体温計はその子・測値
が実際値と必ずしも一致しないという問題がある。
Conventional electronic thermometers use a thermistor as a sensor and are often equipped with an arithmetic circuit for calculating temperature values and a digital display, but the time required to measure temperature is 2 to 3 minutes, which is worse than a mercury thermometer. To deal with this, a method has been developed that predicts the final value from the progress of temperature rise during the first minute or so, but with electronic thermometers that use a prediction method, the measured value does not necessarily match the actual value. The problem is that it doesn't.

測温時間に関係する他の因子はセンサ部の熱容量である
。水銀体温計ではガラス壁を通して水銀溜めを体温で暖
め、水銀の膨張を読取るという経過を経るから、加熱対
象の熱容量はかなり大きい。
Another factor related to temperature measurement time is the heat capacity of the sensor section. In a mercury thermometer, the mercury reservoir is warmed by body heat through a glass wall, and the expansion of the mercury is read, so the heat capacity of the heated object is quite large.

電子体温計も、測定部位へ当接される金属部を体温で暖
め、該金属部の温度でサーミスタが抵抗値を変え、とい
う経過を経るから、やはり加熱対象(金属部)の熱容量
が大きい。
Electronic thermometers also use body temperature to warm the metal part that comes into contact with the measurement site, and the thermistor changes its resistance depending on the temperature of the metal part, so the heat capacity of the heated object (metal part) is large.

これらの体温計はいずれも接触型であるが、非接触型の
ものもあり、特開昭5L−88627r非接触型口腔温
度計」はその−例である。これは焦電検出型の赤外線セ
ンサを用い、口腔内から出る赤外線を集光し、チョッピ
ングして該センサに入力し、センサ出力を増幅し、基準
温度信号をもとに演算して体温を求め、表示器に表示す
る。或いは、赤外線センサとしてサーミスタを用い、集
光系、サーミスタ、増幅器、演算器、表示R溝、および
基/$温度検出器の構成をとる。
All of these thermometers are contact type, but there are also non-contact type thermometers, and JP-A-5L-88627R Non-Contact Oral Thermometer is an example. This uses a pyroelectric detection type infrared sensor to collect the infrared rays emitted from the oral cavity, chop it and input it to the sensor, amplify the sensor output, and calculate the body temperature based on the reference temperature signal. , displayed on the display. Alternatively, a thermistor is used as the infrared sensor, and the configuration includes a condensing system, a thermistor, an amplifier, an arithmetic unit, a display R groove, and a temperature detector.

耳孔内に挿込して体温を測定する方式のものもあり、特
開昭61−117422はその一例である。これは赤外
線センサとしてサーモパイルを用いている。
There is also a system that measures body temperature by inserting it into the ear canal, and Japanese Patent Application Laid-Open No. 117422/1986 is one example. This uses a thermopile as an infrared sensor.

第5図(a)はその外観を示し、(b)は電気回路部、
(C)は各部を離して示す側面図である。これらの図で
10はサーモパイル、11はサーミスタ、12゜13は
抵抗である。これらは金属ハウジング14内に埋め込ま
れ、赤外線が検温カバー19の先端部、金属チューブ1
5を通ってサーモパイル10へ導かれる。16はプロー
ブで、中空基部17、筒部18を備え、これらに金属チ
ューブ15および金属ハウジング14が入り、筒部18
の先端に使い捨てカバー19が嵌る。
FIG. 5(a) shows its appearance, and FIG. 5(b) shows the electric circuit section,
(C) is a side view showing each part separated. In these figures, 10 is a thermopile, 11 is a thermistor, and 12° and 13 are resistors. These are embedded in the metal housing 14, and infrared rays are emitted from the tip of the temperature measuring cover 19 to the metal tube 1.
5 to the thermopile 10. Reference numeral 16 denotes a probe, which includes a hollow base 17 and a cylindrical portion 18 into which a metal tube 15 and a metal housing 14 are inserted.
A disposable cover 19 is fitted to the tip.

この体温針ではカバー19を付けた状態でプローブ16
を耳孔に挿込み、耳孔が放出する赤外線を上記経路でサ
ーモパイル10が受け、出力を増幅器20を介して信号
処理回路(図示しない)を入力し、体温信号にして表示
器(図示しない)に表示させる。
In this body temperature needle, the probe 16 is attached with the cover 19 attached.
is inserted into the ear canal, the thermopile 10 receives the infrared rays emitted by the ear canal through the above path, the output is input to a signal processing circuit (not shown) via the amplifier 20, and is converted into a body temperature signal and displayed on the display (not shown). let

サーモパイルは周知のように温接点と冷接点の温度差の
関数である出力を生じ、たとえば第4図の如き形状をし
ている。即ち温接点は中心部に集めて円周上に配列し、
冷接点はその外側の同心円上に配列し、これらの温/冷
接点間を2種類の細線状異種金属線を交互に結ぶ。小型
化されており、温接点群と冷接点群の間隔は短い。測温
に当っては、測温対象が放出する赤外線を温接点に当て
、冷接点はできるだけ1定の温度に維持する。
Thermopiles, as is well known, produce an output that is a function of the temperature difference between hot and cold junctions, and have a shape such as that shown in FIG. 4, for example. In other words, the hot junctions are gathered in the center and arranged on the circumference,
The cold junctions are arranged on a concentric circle on the outside, and two types of thin dissimilar metal wires are alternately connected between the hot and cold junctions. It is miniaturized, and the distance between the hot junction group and the cold junction group is short. When measuring temperature, infrared rays emitted by the object to be measured are applied to the hot junction, and the cold junction is maintained at a constant temperature as much as possible.

測温中に冷接点の温度が変ると、それは誤差になるから
、測温開始前の温度(基準温度)を維持する必要がある
が、冷/温接点間の間隔が短いと、赤外線照射で上昇し
た温接点の温度が直ちに冷接点へも及んで冷接点を昇温
させてしまい、冷接点を基準温度に保つのはかなり困難
である。第5図では抵抗12.13でハウジング14を
加熱し、サーミスタ11等で制御して基準温度を得てい
るが、構成が複雑であり、しかも満足な結果は期待しに
くい。  ゛ また温接点群と冷接点群が接近していると、サーモパイ
ルへの入射赤外線は光学系で絞って温接点群にのみ照射
するようにする必要があるが、レンズ、反射鏡などの光
学系は小型化しにくい。
If the temperature of the cold junction changes during temperature measurement, this will result in an error, so it is necessary to maintain the temperature before starting temperature measurement (reference temperature), but if the interval between the cold and hot junctions is short, infrared irradiation will cause an error. The increased temperature of the hot junction immediately reaches the cold junction and causes the temperature of the cold junction to rise, making it quite difficult to maintain the cold junction at the reference temperature. In FIG. 5, the housing 14 is heated by resistors 12 and 13, and the reference temperature is obtained by controlling with the thermistor 11, etc., but the configuration is complicated and it is difficult to expect a satisfactory result.゛Also, if the hot junction group and the cold junction group are close to each other, it is necessary to narrow down the infrared rays incident on the thermopile with an optical system so that it irradiates only the hot junction group, but optical systems such as lenses and reflectors is difficult to downsize.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように従来の体温計は測温に時間がか\る、サーモ
パイル使用の赤外線型のものは迅速な測温が可能である
が、光学系を必要として、大型化する、冷接点を基準温
度に保つのが容易でない等の問題がある。
In this way, conventional thermometers take time to measure temperature, whereas infrared thermometers that use thermopiles can measure temperature quickly, but require an optical system, are larger, and require a cold junction to set the reference temperature. There are problems such as it is not easy to maintain.

本発明はか\る点を改善し、小型化に適した構造のサー
モパイルを開発し、これにより赤外線検出型の迅速な測
温ができる、簡潔な構造の小型温度計を提供することを
目的とするものである。
The purpose of the present invention is to improve these points, develop a thermopile with a structure suitable for miniaturization, and thereby provide a compact thermometer with a simple structure that can quickly measure temperature using infrared detection. It is something to do.

〔課題を解決するための手段〕[Means to solve the problem]

第1図に示すように本発明では細長い基体25〜27を
用い、これに異種金属からなる細線状熱電変換素子23
.24をジグザグ状に被着し、細長部材の一端に温接点
21、他端に冷接点22がくるようにする。
As shown in FIG. 1, in the present invention, elongated substrates 25 to 27 are used, and thin wire thermoelectric conversion elements 23 made of different metals are attached to the elongated substrates 25 to 27.
.. 24 in a zigzag pattern so that the hot junction 21 is at one end of the elongated member and the cold junction 22 is at the other end.

第1図(δ)では細長い基体25は綱長い短冊状の絶縁
性基板または半導体基板で、熱電変換素子23.24は
この基板の表面に被着される。第1図(blはこれを側
面から見た図で、図示のように細線状熱電変換素子23
.24は温接点21例の厚みが薄く、冷接点22側の厚
みが厚い。また基板25の温接点側の下部には溝が設け
られ、この溝には熱絶縁物28が充愼される。また複数
個の温接点21を覆って基板25の温接点側端部は赤外
線吸収膜29が被着される。
In FIG. 1 (δ), the elongated base 25 is an insulating substrate or a semiconductor substrate in the form of a long strip, and the thermoelectric conversion elements 23, 24 are attached to the surface of this substrate. FIG. 1 (bl is a side view of this, and as shown in the figure, a thin wire thermoelectric conversion element 23
.. 24, the thickness of the hot junction 21 example is thin, and the thickness on the cold junction 22 side is thick. Further, a groove is provided in the lower part of the hot junction side of the substrate 25, and this groove is filled with a thermal insulator 28. Further, an infrared absorbing film 29 is applied to the end of the substrate 25 on the hot contact side so as to cover the plurality of hot contacts 21 .

第1図(C1では基体は円形の絶縁性の管体26であり
、また第1図(d)では基体は角形の絶縁性の管体27
であり、細線状熱電変換素子23.24はこれらの管体
の外周面に被着される。これらの管体の温接点側も図示
しないが赤外線吸収膜で被覆する。
In FIG. 1 (C1, the base body is a circular insulating tube body 26, and in FIG. 1(d), the base body is a square insulating tube body 27.
The thin wire thermoelectric conversion elements 23 and 24 are attached to the outer peripheral surfaces of these tubes. Although not shown, the hot junction sides of these tubes are also coated with an infrared absorbing film.

第2図にこの長尺サーモパイル10aを使用した赤外線
温度計を示す。30は筒状筐体で、先端部は先細になり
、この先端部から温接点側を突出させて長尺サーモパイ
ル10aが該筐体30に取付けられる。32は信号処理
回路および表示部で、やはり筐体30に取付けられる。
FIG. 2 shows an infrared thermometer using this long thermopile 10a. Reference numeral 30 denotes a cylindrical casing, the tip of which is tapered, and the long thermopile 10a is attached to the casing 30 with the hot junction side protruding from the tip. Reference numeral 32 denotes a signal processing circuit and a display section, which are also attached to the housing 30.

表示部としては例えば英数字表示用の液晶表示器を用い
、これにより36.5°Cなどと表示し、これを外部か
ら見えるようにする。31は冷接点冷却用のフィンであ
り、33は筐体30の先細先端部を覆うキャップである
For example, a liquid crystal display for alphanumeric display is used as the display unit, and this displays 36.5° C. and the like so that it can be seen from the outside. 31 is a fin for cooling the cold junction, and 33 is a cap that covers the tapered tip of the housing 30.

第1図の長尺サーモパイルは、マスクを通して蒸着する
、全面蒸着したのちエツチングする(ホトリソグラフィ
による)、等の方法で製作できる。
The long thermopile shown in FIG. 1 can be manufactured by methods such as vapor deposition through a mask, full surface vapor deposition, and then etching (by photolithography).

第3図(a)では2枚の細長い絶縁性または半導体の基
板25a、25bを用い、基板25aの表面には異種金
属からなる細線状熱電変換素子の一方23とその一端の
接点部23aの複数個を上記方法で形成し、基板25b
の表面には異種金属からなる綱線状熱電素子の他方24
とその他端の接点部24aの複数個を上記方法で形成し
、これらを重ね合せてサーモパイルとする。即ち重ね合
わせると、上記他方24の他端の接点部24aに一方2
3の一端が当接して例えば温接点が形成され、また一方
23の一端の接点部23aに他方24の他端が当接して
本例では冷接点が形成されて、ジグザグ状の、熱電変換
素子対の複数個を直列接続した長尺サーモパイルが構成
される。重ね合せた後の基板25a、25bは接着剤な
どで接着して一体化する。
In FIG. 3(a), two elongated insulating or semiconductor substrates 25a and 25b are used, and on the surface of the substrate 25a, one side 23 of a thin wire thermoelectric conversion element made of different metals and a plurality of contact portions 23a at one end thereof are formed. The substrate 25b is formed by the above method.
The other side of the wire-like thermoelectric element 24 made of different metals is
and a plurality of contact portions 24a at the other end are formed by the above method, and these are overlapped to form a thermopile. That is, when overlapped, one 2 is attached to the contact portion 24a at the other end of the other 24.
For example, one end of 3 contacts the contact portion 23a of the other 23 to form a hot junction, and the other end of the other 24 contacts the contact portion 23a of the other 23 to form a cold junction in this example, thereby forming a zigzag-shaped thermoelectric conversion element. A long thermopile is constructed by connecting a plurality of pairs in series. The superimposed substrates 25a and 25b are bonded together with an adhesive or the like to be integrated.

また基体が絶縁性の基板の場合はこれら一体化された基
板を加工して円筒状基板26、角筒状基板27の状態と
なし接着して一体化してもよい。
Further, if the base body is an insulating substrate, these integrated substrates may be processed to form a cylindrical substrate 26 and a rectangular cylindrical substrate 27, which may be bonded and integrated.

このように加工すると熱電変換素子の本数が短冊状基体
の場合に比較して接点を多(することが出来るので、〔
作用〕の項でも述べるようにそれだけ長尺サーモパイル
としての感度を上げることが可能となる。
When processed in this way, the number of contact points of the thermoelectric conversion elements can be increased compared to the case of a strip-shaped substrate.
As described in the section ``Function'', it is possible to increase the sensitivity of the long thermopile accordingly.

〔作用〕[Effect]

第1図のサーモパイルは第2図のようにして使用すると
、キャップ33を外して先端部を例えば耳孔に挿入する
と、該耳孔が放出する赤外線を温接点群が受け、冷接点
群は室温に維持されるから冷/温接点には温度差が生じ
、熱起電力が発生する。この熱起電力は異種金属の対の
数に比例して、対数が多い程(温接点の数が多い程)大
きい。綜合熱起電力は冷接点側からリード線を通して信
号処理回路へ導かれ、その出力(体温信号)が表示部に
表示される。
When the thermopile shown in Fig. 1 is used as shown in Fig. 2, when the cap 33 is removed and the tip is inserted into the ear canal, the hot junction group receives the infrared rays emitted by the ear canal, and the cold junction group is maintained at room temperature. As a result, a temperature difference occurs at the cold/hot junction, and a thermoelectromotive force is generated. This thermoelectromotive force is proportional to the number of pairs of dissimilar metals, and increases as the logarithm increases (as the number of hot junctions increases). The combined thermoelectromotive force is guided from the cold junction side to the signal processing circuit through the lead wire, and its output (body temperature signal) is displayed on the display section.

このサーモパイルloaは第1図から明らかなように温
/冷接点が互い充分離れており、筐体30の先綱部で遮
蔽するという簡単な方法で、赤外線が温接点のみに照射
して、冷接点を含めてそれ以外には照射しないようにす
ることができ、これらの結果、冷接点を基準温度(室温
または、必要があれば別に制御された温度)に保つのが
容易になる。
As is clear from FIG. 1, in this thermopile loa, the hot/cold junctions are sufficiently far apart from each other, and by simply shielding them with the lead part of the casing 30, infrared rays irradiate only the hot junctions and cool them. It is possible to avoid irradiating anything else including the contacts, which makes it easier to maintain the cold junctions at a reference temperature (room temperature or a separately controlled temperature if necessary).

またこのサーモパイルは温接点側の熱電変換素子を薄く
、冷接点側の熱電変換素子を厚くしてお(ので、温接点
側の熱容量が小さくなって迅速な測温が容易になり、か
つ電気抵抗は冷接点側の厚い熱電素子によりそれ程大に
ならず、S/Nの向上、信号処理回路との整合上、有効
である。
In addition, this thermopile has a thin thermoelectric conversion element on the hot junction side and a thick thermoelectric conversion element on the cold junction side (as a result, the heat capacity on the hot junction side is small, making rapid temperature measurement easy, and the electrical resistance Because of the thick thermoelectric element on the cold junction side, it does not become so large, which is effective in improving the S/N ratio and matching with the signal processing circuit.

基板25に溝を作ってそこに熱絶縁物28を充填してお
くと、温接点側の基板を冷接点側の基板から熱的に分離
し、温接点21例の熱容量の低減に有効である。
By making a groove in the substrate 25 and filling it with a thermal insulator 28, the substrate on the hot junction side is thermally separated from the substrate on the cold junction side, which is effective in reducing the heat capacity of the hot junction 21 examples. .

また基体を管体26,27にし、その周面に熱電変換素
子23.24を被着、形成すると、平板状基板25に比
べて小スペースで広面積が得られ、多数の冷/温接点を
形成することができて、高感度、高出力のサーモパイル
を容易に提供できる。
Furthermore, by using tubes 26 and 27 as the substrates and attaching and forming thermoelectric conversion elements 23 and 24 on their peripheral surfaces, a large area can be obtained in a small space compared to the flat substrate 25, and a large number of cold/hot junctions can be formed. It is possible to easily provide a thermopile with high sensitivity and high output.

第3図(a)の製造法では、熱電変換素子対の一方、他
方を被着した基板25a、25bを重ね合せるだけでサ
ーモパイルが製作でき、工程の簡単化、製作迅速化が図
れる。第1図(blに示すように熱電変換素子に厚みを
持たせるには、例えばマスクを使用しての蒸着を2度行
ない、1回目は全体に2回目は温接点(列には蒸着され
ないように(マスクパターンをそのように決めて)蒸着
すればよい。
In the manufacturing method shown in FIG. 3(a), a thermopile can be manufactured by simply superimposing the substrates 25a and 25b on which one and the other of a pair of thermoelectric conversion elements are attached, thereby simplifying the process and speeding up the manufacturing process. In order to thicken the thermoelectric conversion element as shown in Figure 1 (bl), for example, vapor deposition is performed twice using a mask, the first time being applied to the entire surface, and the second time being applied to the hot junctions (so that the columns are not deposited). (by determining the mask pattern accordingly).

また第3図(blに示すように、冷接点側の熱電変換素
子には既存の厚みのある(バルク)熱電変換素子を用い
、温接点側の熱電変換素子を上述のように別途蒸着によ
って装造し、両者で目的のサーモパイルを構成すること
もできる。
In addition, as shown in Figure 3 (bl), an existing thick (bulk) thermoelectric conversion element is used as the thermoelectric conversion element on the cold junction side, and the thermoelectric conversion element on the hot junction side is mounted separately by vapor deposition as described above. It is also possible to construct a desired thermopile using both.

第1図(C) (dlのような管体つまり3次元基体の
場合の蒸着等の処理は厄介であるから、平板状の状態で
サーモパイルを作り、それを丸めてまたは折曲して管状
にすればよい。
Figure 1 (C) (Since vapor deposition and other processes are difficult for a tube like a dl, or a three-dimensional substrate, the thermopile is made in a flat plate shape and then rolled or bent into a tube shape. do it.

2枚の基板25a、25bを用いる代りに1枚の基板を
用い、これにマスクを通しての蒸着で先ず熱電変換素子
の一方23とその端子部23aを被着形成し、次いで再
びマスクを通しての蒸着を行なって熱電変換素子の他方
24とその端子部24aを被着形成して、サーモパイル
としてもよい。
Instead of using the two substrates 25a and 25b, one substrate is used, and one of the thermoelectric conversion elements 23 and its terminal portion 23a are first deposited on this substrate by vapor deposition through a mask, and then vapor deposition is performed again through the mask. Then, the other thermoelectric conversion element 24 and its terminal portion 24a may be adhered to form a thermopile.

勿論、基板が可とう性の高い絶縁性基板、例えばポリエ
チレン、ポリイミド等の場合は、これを丸めてまたは折
曲して管状としてもよい。
Of course, if the substrate is a highly flexible insulating substrate, such as polyethylene or polyimide, it may be rolled or bent into a tubular shape.

〔実施例〕〔Example〕

熱電変換素子23.24としてはアンチモン(Sb)、
インジウム(In)、ビスマス(Bi)などの金属、S
iドープ層などが適当である。熱電素子の温接点側の厚
みは1μm以下、冷接点側の厚みは5〜lOμmとする
。全長(冷/温接点間距離)は30m、うち薄い部分は
1(In、厚い部分は2(inである。このようにする
と、従来品の内部抵抗は約500にΩに比べ、100に
Ω以下にすることができる。
As the thermoelectric conversion elements 23 and 24, antimony (Sb),
Metals such as indium (In) and bismuth (Bi), S
An i-doped layer or the like is suitable. The thickness of the thermoelectric element on the hot junction side is 1 μm or less, and the thickness on the cold junction side is 5 to 10 μm. The total length (distance between cold and hot junctions) is 30 m, of which the thin part is 1 (in) and the thick part is 2 (in).In this way, the internal resistance of the conventional product is about 100 ohms, compared to about 500 ohms. It can be:

熱絶縁物28としてはポリイミド等が適当である。基体
25等にはシリコン(Si)、セラミックスガラスなど
を用いるが、熱絶縁性のよい基体であれば、溝を設けて
そこを熱絶縁物で充填し、熱絶縁することは省略してよ
い。
Polyimide or the like is suitable for the thermal insulator 28. Silicon (Si), ceramic glass, or the like is used for the base 25 and the like, but if the base has good thermal insulation, it may be unnecessary to provide a groove and fill it with a thermal insulator for thermal insulation.

冷却用のフィン31は電子冷却素子として、冷却制御に
より所定温度に積極的に維持するようにしてもよい。
The cooling fins 31 may be used as electronic cooling elements to actively maintain a predetermined temperature through cooling control.

赤外線吸収膜29は金魚、黒体スプレー塗料他である。The infrared absorbing film 29 is made of goldfish, black body spray paint, or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の長尺サーモパイルは冷/
温接点間距離を容易に充分とれ、測温中、冷接点を基準
温度に保つことが容易になる。また温接点の熱容量を小
にできるので、迅速な測温ができ、体温計に使用した場
合、光学系が不要で、視角が大なので耳孔などに挿入し
て使用すると、挿入角度が不揃いでもは一゛一定の測温
結果が得られる。
As explained above, the long thermopile of the present invention
It is easy to maintain a sufficient distance between the hot junctions, and it becomes easy to maintain the cold junctions at the reference temperature during temperature measurement. In addition, since the heat capacity of the hot junction can be reduced, temperature can be measured quickly.When used as a thermometer, an optical system is not required, and the viewing angle is large, so when used by inserting it into the ear canal, it can be used even if the insertion angle is uneven.゛Constant temperature measurement results can be obtained.

この構成により耳孔的温度測定を行なえば、より黒体条
件に近い放射温度計測が可能となる。
By performing ear canal temperature measurement with this configuration, it becomes possible to measure radiation temperature closer to a blackbody condition.

また基体を管状にすると、小スペースで多数の熱電変換
素子対を収容でき、高感度、高出力が容易に得られる。
Moreover, if the base body is made into a tube, a large number of thermoelectric conversion element pairs can be accommodated in a small space, and high sensitivity and high output can be easily obtained.

また耳孔なと狭い所への挿入が容易になる。It also makes it easier to insert into narrow places such as the ear canal.

また第3図の重ね合せ型の製作法は量産に適し、安価な
体温計の提供にを効である。
Furthermore, the stacked manufacturing method shown in FIG. 3 is suitable for mass production and is effective in providing inexpensive thermometers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の長尺サーモパイルの説明図、第2図は
本発明の赤外線体温計の説明図、第3図はサーモバイル
の製作法の説明図、第4図は従来のサーモパイルの説明
図、第5図は体温計の従来例の説明図である。 第1図〜第3図で、10aは長尺サーモバイル、21は
温接点、22は冷接点、23.24は熱電素子、25〜
27は基体、28は熱絶縁物、29は赤外線吸収膜、3
0は管状筐体、31は冷却用フィン、32は信号処理回
路及び表示部、25a。 25bは第1.第2の基板、23a、24aは接点部で
ある。 出 願 人  新日本製鐵株式会社 代理人弁理士  青 柳    稔 第1図 第2図 蒸着で作成した薄獲熱電素子 第3図 10:サーモハイル 第4図 と! −Fn 手続補正書(自発) 昭和63年6月15日 特許庁長官   小  川  邦  夫  殿1、事件
の表示 昭和63年特許願第50830号 2、発明の名称 長尺サーモバイルとその製造法 3、補正をする者 事件との関係   特許出願人 住所 東京都千代田区大手町二丁目6番3号名称 (6
65)新日本製鐵株式会社 代表者  齋  胚     裕 4、代  理  人   〒101   酋03 (8
63) 0220住 所  東京都千代田区岩本町3丁
目4番5号第−東ビル氏 名  (7017)弁理士 
 青  柳      稔・・−一−5°+m′E*’
n(7)8(t  “ゝ       ’e’、、、:
”、、、、、6、補正により増加する請求項の数   
な し       −一一一一ぢ0DkZJ 8、補正の内容 (1)明細書第3頁13行の「サーミスタ」を「サーミ
スタ又は水晶発振子」に補正する。 (2)同第4頁19行の「挿込」を「挿入」に補正する
。 (3)同第5頁15行の「(図示しない)を」を「(図
示しない)に」に補正する。 (4)同第6頁3行の「金属線を」を「金属線で」に補
正する。
Fig. 1 is an explanatory diagram of the long thermopile of the present invention, Fig. 2 is an explanatory diagram of the infrared thermometer of the present invention, Fig. 3 is an explanatory diagram of the thermopile manufacturing method, and Fig. 4 is an explanatory diagram of the conventional thermopile. , FIG. 5 is an explanatory diagram of a conventional example of a thermometer. 1 to 3, 10a is a long thermomobile, 21 is a hot junction, 22 is a cold junction, 23.24 is a thermoelectric element, 25-
27 is a base, 28 is a thermal insulator, 29 is an infrared absorbing film, 3
0 is a tubular housing, 31 is a cooling fin, 32 is a signal processing circuit and a display section, and 25a. 25b is the first. The second substrates 23a and 24a are contact portions. Applicant Nippon Steel Corporation Representative Patent Attorney Minoru Aoyagi Figure 1 Figure 2 Thin harvested thermoelectric element made by vapor deposition Figure 3 10: Thermohile Figure 4! -Fn Procedural amendment (voluntary) June 15, 1988 Director General of the Patent Office Kunio Ogawa 1, Indication of the case Patent Application No. 50830 of 1988 2, Title of the invention Long thermomobile and its manufacturing method 3 , Relationship with the case of the person making the amendment Patent applicant address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (6
65) Nippon Steel Corporation Representative Yutaka Sai 4, Agent 〒101 驋03 (8
63) 0220 Address No.-Higashi Building, 3-4-5 Iwamotocho, Chiyoda-ku, Tokyo Name (7017) Patent attorney
Minoru Aoyagi...-1-5°+m'E*'
n(7)8(t “ゝ 'e',,,:
”, , , , 6. Number of claims increased due to amendment
None -1111ぢ0DkZJ 8. Contents of amendment (1) "Thermistor" on page 3, line 13 of the specification is corrected to "thermistor or crystal oscillator." (2) Correct "insert" on page 4, line 19 to "insert". (3) On page 5, line 15, "(not shown)" is corrected to "(not shown)". (4) On page 6, line 3, "metal wire" is corrected to "metal wire."

Claims (1)

【特許請求の範囲】 1、細長い基体と、該基体に異種金属からなる細線状熱
電変換素子複数個を該基体の1端に温接点をまた他端に
冷接点をジグザグ状に被着してなる素子とを備えること
を特徴とする長尺サーモパイル。 2、細線状熱電変換素子は温接点側が薄く、冷接点側が
厚くされたことを特徴とする請求項1に記載の長尺サー
モパイル。 3、複数個の温接点は赤外線吸収膜で被覆され、この被
覆部の冷接点側近傍の基体に溝が設けられ該溝に熱絶縁
物が充填されたことを特徴とする請求項1〜2のいずれ
かに記載の長尺サーモパイル。 4、先端部が先細になった筒状筐体に、細長基体の一端
に複数個の温接点をまた他端に複数個の冷接点を形成し
てジグザグ状に細線状熱電変換素子を被着してなる長尺
サーモパイルの該温接点を該先端部より突出させて取付
け、また該長尺サーモパイルの出力に対する信号処理回
路および該信号処理回路の出力である温度を表示する表
示部を該筒状筐体に取付けてなることを特徴とする赤外
線温度計。 5、第1の短冊状絶縁性基板または半導体基板に、異種
金属からなる細線状熱電素子の一方の金属線とその一端
の接点部を複数個被着し、 第2の短冊状絶縁性基板または半導体基板に、異種金属
からなる細線状熱電変換素子の他方の金属線とその他端
の接点部を第1基板に被着した金属線と同数本被着し、 これら第1、第2の短冊状絶縁基板を、一方の金属線の
一端の接点部に他方の金属線の一端が当接し、他方の金
属線の他端の接点部に一方の金属線の他端が当接して、
ジグザグ状の熱電変換素子パターンが形成されるように
重ね合せる工程を有することを特徴とする長尺サーモパ
イルの製造法。 6、可とう性の高い絶縁性基板に異種金属からなる細線
状熱電変換素子複数個を1端に温接点をまた他端に冷接
点をジグザグ状に被着する工程と、該基板を円筒状また
は角筒状に加工接着する工程、を有することを特徴とす
る長尺サーモパイルの製造方法。
[Claims] 1. An elongated base, and a plurality of thin wire thermoelectric conversion elements made of different metals are attached to the base in a zigzag pattern, with a hot junction at one end and a cold junction at the other end of the base. A long thermopile characterized by comprising an element. 2. The long thermopile according to claim 1, wherein the thin wire thermoelectric conversion element is thin on the hot junction side and thick on the cold junction side. 3. Claims 1 to 2, characterized in that the plurality of hot junctions are covered with an infrared absorbing film, a groove is provided in the base near the cold junction side of the coating, and the groove is filled with a thermal insulator. A long thermopile according to any of the above. 4. Thin wire thermoelectric conversion elements are attached in a zigzag pattern to a cylindrical casing with a tapered tip, with multiple hot junctions formed at one end of the elongated base and multiple cold junctions formed at the other end. The hot junction of the long thermopile is mounted so as to protrude from the tip, and a signal processing circuit for the output of the long thermopile and a display section for displaying the temperature of the output of the signal processing circuit are attached to the cylindrical shape. An infrared thermometer characterized by being attached to a housing. 5. A first strip-shaped insulating substrate or a semiconductor substrate is coated with a plurality of one metal wire of a thin wire-shaped thermoelectric element made of different metals and a contact portion at one end thereof, and a second strip-shaped insulating substrate or The other metal wire and the contact portion at the other end of the thin wire thermoelectric conversion element made of different metals are adhered to the semiconductor substrate in the same number as the metal wires adhered to the first substrate, and these first and second strip-shaped The insulating substrate is placed in such a manner that one end of the other metal wire is in contact with the contact part of one end of the other metal wire, and the other end of one metal wire is in contact with the contact part of the other end of the other metal wire,
A method for manufacturing a long thermopile, comprising the step of overlapping them so that a zigzag-shaped thermoelectric conversion element pattern is formed. 6. A process of attaching a plurality of thin wire thermoelectric conversion elements made of different metals to a highly flexible insulating substrate in a zigzag pattern with a hot junction at one end and a cold junction at the other end, and forming the substrate into a cylindrical shape. Alternatively, a method for manufacturing a long thermopile, comprising the step of processing and adhering it into a rectangular tube shape.
JP5083088A 1988-03-04 1988-03-04 Long-sized thermopile and its manufacture Pending JPH01224630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5083088A JPH01224630A (en) 1988-03-04 1988-03-04 Long-sized thermopile and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5083088A JPH01224630A (en) 1988-03-04 1988-03-04 Long-sized thermopile and its manufacture

Publications (1)

Publication Number Publication Date
JPH01224630A true JPH01224630A (en) 1989-09-07

Family

ID=12869680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5083088A Pending JPH01224630A (en) 1988-03-04 1988-03-04 Long-sized thermopile and its manufacture

Country Status (1)

Country Link
JP (1) JPH01224630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292703A (en) * 2005-04-05 2006-10-26 Yoshinobu Abe Thermocouple

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246504A (en) * 1975-10-13 1977-04-13 Kureha Chem Ind Co Ltd Geared pump for hot asphalt and pitch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246504A (en) * 1975-10-13 1977-04-13 Kureha Chem Ind Co Ltd Geared pump for hot asphalt and pitch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292703A (en) * 2005-04-05 2006-10-26 Yoshinobu Abe Thermocouple
JP4671752B2 (en) * 2005-04-05 2011-04-20 可伸 安部 thermocouple

Similar Documents

Publication Publication Date Title
US7752909B2 (en) Flow sensor with non-contact temperature detecting means
KR100507716B1 (en) Thermopile sensor and radiation thermometer with a thermopile sensor
US6129673A (en) Infrared thermometer
CN101103907B (en) Thermal tympanic thermometer
EP0541697B2 (en) Radiation detector with remote temperature reference
US7497615B2 (en) Digital temperature sensor, and system and method for measuring temperature
US5695283A (en) Compensating infrared thermopile detector
TW201504603A (en) Method and system for measuring heat flux
JP2001116621A (en) Infrared sensor capable of stabilization of temperature and infrared thermometer having the same type sensor
US3232113A (en) Thermal parameter indicator
JPS6122676A (en) Thermoelectric sensor
JP2003057117A (en) Probe used for infrared thermometer
JPH09329499A (en) Infrared sensor and infrared detector
JPH01224630A (en) Long-sized thermopile and its manufacture
JPH0249124A (en) Thermopile
JPS645645B2 (en)
JPS6010138A (en) Heat flux measuring apparatus
JPH04299225A (en) Clinical thermometer
JP3388207B2 (en) Thermoelectric sensor device and method of manufacturing the same
JP3328408B2 (en) Surface temperature measurement method
JPS6177727A (en) Thermocouple type infrared detecting element
JPH0445056B2 (en)
JPH09113353A (en) Infrared detection element
JPH10290790A (en) Radiation thermometer
JPH11258040A (en) Thermopile type infrared ray sensor