JPH01224625A - Vortex flowmeter - Google Patents

Vortex flowmeter

Info

Publication number
JPH01224625A
JPH01224625A JP63052410A JP5241088A JPH01224625A JP H01224625 A JPH01224625 A JP H01224625A JP 63052410 A JP63052410 A JP 63052410A JP 5241088 A JP5241088 A JP 5241088A JP H01224625 A JPH01224625 A JP H01224625A
Authority
JP
Japan
Prior art keywords
vortex
flow
vortex generator
flow tube
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63052410A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Engineering Co Ltd
Original Assignee
Oval Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Engineering Co Ltd filed Critical Oval Engineering Co Ltd
Priority to JP63052410A priority Critical patent/JPH01224625A/en
Publication of JPH01224625A publication Critical patent/JPH01224625A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3209Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices
    • G01F1/3218Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices bluff body design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3259Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations

Abstract

PURPOSE:To enable high-sensitivity detection by forming the detecting element of a vortex detector by using a high polymer piezoelectric film. CONSTITUTION:A vortex generation body 2 is fixed in a flow pipe 1 on its diameter by heat clamping and so sectioned in the shape of an isosceles triangular columnar body which has its bottom surface on an upstream side and its vortex on a downstream side. A rectangular recessed part 21 is bored in the flank of the vortex generation body 2 and a piezoelectric detecting element 3 is embedded in the recessed part 21 almost in level with the flank of the vortex generation body 2. This element is constituted by sticking electrodes 32 made of metal foil on both top and reverse surfaces of the high polymer piezoelectric film 31, and lead wires are connected to the electrodes 32 to output a piezoelectric signal. Here, fluid which flows under constant fluid pressure generate Karman vortexes by passing by the vortex generation body 2 and varying pressure caused by the vortex generation generates a thickness- directional voltage difference as a signal proportional to the vortexes between the films 31 on both flanks of the vortex generation body 2, and this signal is outputted as a flow rate signal by a signal processing means.

Description

【発明の詳細な説明】 挟置じどW 本発明は、渦検出素子として、高分子圧電フィルムを用
いた渦検出器を装着した渦流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vortex flowmeter equipped with a vortex detector using a polymer piezoelectric film as a vortex detection element.

従来技術 カルマン渦流量計は、流管と、該流管の中に配設された
渦発生体と、該渦発生体に流れに比例して流出するカル
マン渦を検出する検出器とからなる本体部と、渦検出器
により検出された渦信号を処理して流量信号とする渦信
号処理手段とからなる簡単な構成で、広い流量範囲をデ
ジタル流量信号をもって計測する利点があることから流
量計の一つの主流になっている。
A conventional Karman vortex flowmeter has a main body that includes a flow tube, a vortex generator disposed in the flow tube, and a detector that detects the Karman vortex flowing out into the vortex generator in proportion to the flow. It has a simple configuration consisting of a vortex signal processing section and an eddy signal processing means that processes the vortex signal detected by the vortex detector to produce a flow rate signal, and has the advantage of measuring a wide flow rate range with a digital flow rate signal. It has become one of the mainstream.

渦流4I(計における渦検出手段として、流速に比例し
て発生するpt+%そのものを直接検出する方法と、渦
の発生による変動圧力から間接的に検出する方法とがあ
る。従来の渦検出手段では、直接検出方法として、渦に
伴って生ずる流れの変化を熱検出素子の抵抗変化または
超音波による変調等から求めるものがあり、間接検出方
法として、渦に伴って生ずる変動圧力を渦発生体と一体
的又は別体的に設けたひずみゲージ、圧り、4.>素子
、静電電磁又は光素子等を用いてひずみ量、変位にとし
て求めるものがある。直接的方法では検出素子が直接波
41す定流体に接触するので、長期間において流体に含
まれる微粒子、粘着物等により検出感度が低下する等の
問題があるので、検出素子が直接流体に接することのな
い間接検出方法、特に、流体計測システムにおいては、
ひずみゲージ、圧電素子等の検出素子を使用した渦流量
計が一般に利用されている。ひずみゲージは圧電素子に
比較して感度は低いが、インピーダンスが低いので、信
号処理において有利である。しかし小流域での感度が不
足するという欠点があるので近年は圧電素子を用いる渦
流量計が多見される。圧電素子による流量検出の方法は
、本出願人が提案した特開昭59−97007号公報に
開示されている。
As a vortex detection means in a vortex flow meter, there are two methods: one is to directly detect pt+% itself, which is generated in proportion to the flow velocity, and the other is to indirectly detect it from the fluctuating pressure caused by the generation of the vortex. Conventional vortex detection means Direct detection methods include detecting changes in flow caused by vortices from resistance changes in thermal detection elements or modulation by ultrasonic waves, while indirect detection methods detect fluctuating pressure caused by vortices from vortex generators. There are methods to determine the amount of strain and displacement using integrated or separate strain gauges, pressure elements, electrostatic electromagnetic or optical elements, etc. In the direct method, the sensing element detects direct waves. 41 Since the detection element comes into contact with a constant fluid, there are problems such as a decrease in detection sensitivity due to fine particles, sticky substances, etc. contained in the fluid over a long period of time. In fluid measurement systems,
Vortex flowmeters using detection elements such as strain gauges and piezoelectric elements are commonly used. Although strain gauges have lower sensitivity than piezoelectric elements, their low impedance makes them advantageous in signal processing. However, they have the disadvantage of lacking sensitivity in small areas, so in recent years, vortex flowmeters using piezoelectric elements have become more common. A method of detecting flow rate using a piezoelectric element is disclosed in Japanese Patent Laid-Open No. 59-97007, which was proposed by the present applicant.

該渦流量計は、長方形の弾性母材薄板の両側面に圧電素
子を貼着し、貼着した表面をセラミックスの高絶縁材で
被覆して得た圧電素子板を、渦の変動圧力を受圧する円
筒内に同軸で弾性母材が流れ方向に平行となるように挿
入し、挿入後はガラス等の絶縁材で固着してなる検出要
素を、渦発生体に同軸に穿設した中空軸にわずかな隙を
保って、一端固定して挿入し、該中空室に被測定流体と
連通ずるように穿孔した貫通口より導入される変動圧に
応動した検出要素内の圧電素子から出力される信号に基
づいて渦流量信号を発信するものである。
This vortex flowmeter is made by pasting piezoelectric elements on both sides of a rectangular thin elastic base plate, and covering the pasted surface with a high-insulating ceramic material.The piezoelectric element plate receives the fluctuating pressure of the vortex. The elastic base material is inserted coaxially into a cylinder parallel to the flow direction, and after insertion, the detection element, which is fixed with an insulating material such as glass, is attached to a hollow shaft coaxially drilled in the vortex generator. A signal output from a piezoelectric element within a detection element in response to fluctuating pressure introduced through a through hole that is inserted with one end fixed while maintaining a slight gap and communicated with the fluid to be measured in the hollow chamber. The vortex flow rate signal is transmitted based on the vortex flow rate signal.

従来例の問題点 上述の従来技術における圧電素子は、固体素子で、かつ
弾性母材を介して応力を伝達し、かつ高インピーダンス
素子であるから円筒内に挿入後も高絶縁材であるガラス
等で絶縁し固着するので、検出要素の剛性が高くなり、
高感度な圧電素子の特徴が+r+なわれ、封着に高温処
理するので生産性も悪く、高価となった。更に、圧電素
子が固体であるため、検出部位も限定されるので適用範
囲も限定されるという問題点があった。
Problems with the conventional technique The piezoelectric element in the conventional technique described above is a solid element, transmits stress through an elastic base material, and is a high impedance element, so even after it is inserted into a cylinder, it is difficult to use a highly insulating material such as glass. Since it is insulated and fixed, the rigidity of the sensing element is increased.
The high-sensitivity piezoelectric element has the characteristics of +r+, and since high temperature treatment is required for sealing, productivity is poor and the piezoelectric element is expensive. Furthermore, since the piezoelectric element is solid, the detection area is also limited, which limits the range of application.

問題解決−の」l聾 本発明はヒ記従来技術の問題点を解決するため、高感度
で柔軟な高分子圧電フィルムを渦検出素子として使用す
るもので、該高分子圧電フィルムが延伸方向及び厚み方
向に大きい圧電性を持つことを利用して渦流量計の用途
拡大を計ることを目的としたものであり、更には高感度
で柔軟な特性を利用して安価で高感度な渦流11(計を
提供することを他の目的とするものある。
In order to solve the problems of the prior art mentioned above, the present invention uses a highly sensitive and flexible polymeric piezoelectric film as a vortex detection element. The purpose is to expand the applications of vortex flowmeters by taking advantage of their large piezoelectric properties in the thickness direction, and furthermore, by taking advantage of their high sensitivity and flexible characteristics, they can be used to develop inexpensive and highly sensitive vortex flowmeters (11). There are others whose purpose is to provide a meter.

末−遮一里 高分子圧電フィルムは周知の通り、ポリフッ化ビニリデ
ン(PVDF)に代表されるような有極性高分子を分極
処理して得られた高分子エレクトレットと、高分子と強
誘電材セラミックス微粒子の混合物を分極処理して得ら
れる複合エレクトレッ1へ又はプラスチックフィルムに
セラミックス粒子を単一層にして埋め込んだ複合形とが
実用に供されている。前者におけるPVDFは(−CH
As is well known, polymer piezoelectric films are made of polymer electret obtained by polarization treatment of polar polymers such as polyvinylidene fluoride (PVDF), polymers and ferroelectric ceramics. A composite electret 1 obtained by polarizing a mixture of fine particles or a composite type in which ceramic particles are embedded in a single layer in a plastic film are in practical use. PVDF in the former is (-CH
.

−CF2−)nのポリマで、CF、の双極子が同一方向
に向いたβ結晶のPVDFは高温化で分極処理すること
により延伸方向、厚み方向において大きい圧電型性があ
ることが知られており、更に機械的には高分子の持つ柔
軟性と、加工性にφびれ、音η・pインピーダンスも低
く、電気的には、電圧出方係数(k定数)は、PZT 
(チタン酸ジルコン酸3イ4)、BaTi0.(チタン
酸バリウム)等の固体圧1′(τ素子より、同等以−1
;に大きく、Qが小さいので、機械的な共振が起こりに
くく、S/Hのすぐれた検出素子が得られる。後者の複
合材も同様な特性を有している。前記における高分子圧
電フィルムには両面に金Jfi箱の電極か貼着され、該
電極箔に導線を溶着して/B力される。
It is known that -CF2-)n polymer has β-crystalline PVDF, in which the dipoles of CF and CF are oriented in the same direction, and when polarized at high temperature, it exhibits large piezoelectric properties in the stretching direction and thickness direction. In addition, mechanically, the flexibility of the polymer, the processability, φ fins, sound η and p impedance are low, and electrically, the voltage output coefficient (k constant) is higher than that of PZT.
(zirconate titanate 3-4), BaTi0. (barium titanate) etc. solid pressure 1' (from τ element, equivalent to -1
; is large and Q is small, so mechanical resonance is less likely to occur and a detection element with excellent S/H can be obtained. The latter composite material also has similar properties. Gold Jfi box electrodes are attached to both sides of the polymer piezoelectric film in the above, and conductive wires are welded to the electrode foils and a /B force is applied.

第1図は、本発明の渦流量計の概要栴成の一例を示すも
ので、(a)図は、(b)図の矢視A−A断面図、(b
)図は、流址計を流れの後方より見た図、(c)図は(
b)図の矢視C−C断面図である。
FIG. 1 shows an example of the outline construction of the vortex flow meter of the present invention.
) Figure is a view of the flowmeter as seen from behind the flow, Figure (c) is (
b) It is a sectional view taken along the line CC in the figure.

図に才?いて、1は円筒形の流管で、渦発生体2は該流
管1内直径上に撓嵌め等により固着されるもので、断面
形状は上流側が底面であり後流側に頂点を持つ二等辺三
角形状をしている柱状体である。
Are you talented at drawings? 1 is a cylindrical flow tube, and the vortex generator 2 is fixed on the inner diameter of the flow tube 1 by a flexible fit or the like, and the cross-sectional shape is a two-dimensional shape with the bottom on the upstream side and the apex on the downstream side. It is a columnar body in the shape of an equilateral triangle.

該渦発生体の側面には矩形状の凹陥部21が穿設されて
おり、該凹陥部21には圧電検出要素3が渦発生体2の
側面とほぼ同一面となるように埋設されている。圧電検
出要素3は(d)図にしめすように前記の高分子圧電フ
ィルム31の表裏両面に金λIIt箔からなる電極32
を貼着して、該電極32にはリード線34が導出され、
圧電信号を出力する。高分子圧電フィルム31及び電極
32、リード線34の一部を含む検出要素全体を薄い絶
縁フィルム33により被覆しである。
A rectangular recess 21 is bored in the side surface of the vortex generator, and the piezoelectric detection element 3 is buried in the recess 21 so as to be substantially flush with the side surface of the vortex generator 2. . The piezoelectric detection element 3 has electrodes 32 made of gold λIIt foil on both the front and back surfaces of the polymer piezoelectric film 31, as shown in FIG.
is attached, and a lead wire 34 is led out from the electrode 32.
Outputs piezoelectric signals. The entire detection element including the polymer piezoelectric film 31, electrodes 32, and part of the lead wires 34 is covered with a thin insulating film 33.

次に、このように絶縁被’l<Iされ渦発生体2の凹陥
部21に埋設された圧電検出要素3の作用を述べる。
Next, the operation of the piezoelectric detection element 3 buried in the recessed part 21 of the vortex generator 2 and covered with insulation as described above will be described.

一定の流体圧力下において流れる流体は渦発生体を通過
することによりカルマン渦を発生し、この渦発生に伴う
変動圧力によって渦発生体2の両側面の高分子圧電フィ
ルム31の間には厚み方向に電圧差が渦に比例する信号
として発生し、これを図示しない信号処理手段による流
量信号として出力する。
Fluid flowing under a constant fluid pressure generates a Karman vortex by passing through the vortex generator, and due to the fluctuating pressure caused by this vortex generation, there is a gap in the thickness direction between the polymer piezoelectric films 31 on both sides of the vortex generator 2. A voltage difference is generated as a signal proportional to the eddy, and this is output as a flow rate signal by a signal processing means (not shown).

第2図は、第1図に記載した渦発生体2と同一外形寸法
の渦発生体に対して、埋設された圧電検出要素3の高分
子圧電フィルム31のもっ可撓性を最大限に生かし、よ
り高感度な渦検出を可能にする目的のため、圧電検出要
素3に対する導圧方式を改良する試みをしめす渦発生体
の形状を示すもので、(a)図は該渦発生体2の部分側
断面図である(b)図の矢視E−E断面図、(b)図は
(a)図のD−D矢視断面図である。即ち、断面二等辺
三角形状の渦発生体2の両側斜面に穿設された凹陥部2
1よりも小さい面積で空洞23を穿設して開口空洞23
とし、該開口空洞23に対して長辺に沿って上下方向に
穿設した開口溝22を連通して、開口空洞23内の圧力
が、渦発生体2の下流圧と等しい圧力に保つことにより
、凹陥部21に埋設された圧電検出要素3には交番変動
圧力が表裏両面から作用し、高分子圧電フィルム31の
厚み効果のみでなく圧電効果の高い延伸方向の圧電出力
を検出信号として利用できる。
FIG. 2 shows a vortex generator having the same external dimensions as the vortex generator 2 shown in FIG. , which shows the shape of a vortex generator that shows an attempt to improve the pressure conduction method for the piezoelectric detection element 3 in order to enable more sensitive vortex detection. FIG. 3B is a cross-sectional view taken along arrows EE in FIG. 3B, which is a partial side sectional view, and FIG. That is, the concave portions 2 are formed on both side slopes of the vortex generating body 2 having an isosceles triangular cross section.
Open cavity 23 is formed by boring cavity 23 with an area smaller than 1.
By communicating the opening groove 22 formed vertically along the long side with respect to the opening cavity 23, and maintaining the pressure inside the opening cavity 23 at the same pressure as the downstream pressure of the vortex generating body 2. , an alternating pressure is applied to the piezoelectric detection element 3 buried in the recessed part 21 from both the front and back surfaces, and not only the thickness effect of the polymer piezoelectric film 31 but also the piezoelectric output in the stretching direction, which has a high piezoelectric effect, can be used as a detection signal. .

第3図は、圧電検出要素3を渦発生体2に埋設するので
はなく渦発生体2の側面と流管1とで構成される流路断
面内Avにおいても、渦の発生に伴って交互に流速変化
が生じ、圧力差が生ずることを利用して、渦発生体2の
側面に対向する近傍の流管壁11に該流管壁11に沿っ
て、流管壁11と同一面となるように埋設し、各々の圧
電検出要素3に発生する信号電圧差を求めるようにした
、他の渦流量計を示すものであり、(a)図は該渦流量
計の流れの後流側から見た図、(b)図は、(、)図の
F−F矢視断面で、圧電検出要素3.3の信号電圧は、
流管1内を壁面11に沿って、流管外の端子34を介し
て図示しない信号処理手段に導かれる。
FIG. 3 shows that the piezoelectric detection element 3 is not embedded in the vortex generator 2, but is alternately arranged in the cross section of the flow path Av composed of the side surface of the vortex generator 2 and the flow tube 1 as vortices are generated. Taking advantage of the fact that a flow velocity change occurs and a pressure difference is generated, the flow tube wall 11 in the vicinity opposite to the side surface of the vortex generator 2 is moved along the flow tube wall 11 so that it becomes flush with the flow tube wall 11. This figure shows another vortex flowmeter which is buried in the same manner as shown in FIG. The view (b) is a cross section taken along the arrow F-F in the figure (,), and the signal voltage of the piezoelectric detection element 3.3 is
The signal is guided inside the flow tube 1 along the wall surface 11 via a terminal 34 outside the flow tube to a signal processing means (not shown).

第4図は、先に本出願人が提案した好適な渦発生体に本
発明における圧電検出要素3を適用した渦発生体2を示
すもので、(a)図は(b)図のG−G線断面図、(b
)図は該渦発生体2の部分側面図で、図において、渦発
生体は流れ方向からみて。
FIG. 4 shows a vortex generator 2 in which the piezoelectric detection element 3 of the present invention is applied to a suitable vortex generator previously proposed by the present applicant, and FIG. G-line sectional view, (b
) is a partial side view of the vortex generator 2, in which the vortex generator is viewed from the flow direction.

第1.2.3素子24.25.26からなる複合体であ
る。第1素子24は上流側に頂点を有する二等辺三角形
状の断面図であり、第2素子25は第1素子24の底面
に平行な辺であり、第3素子26は第2素子25に平行
な辺の対称位置から流れに平行した垂直版261を有す
るT字型の素子であり、各々の平面は等しい距lvQで
隔てられ、流れ方向から見た幅dはすべて等しい。流体
の流れに沿って、複合された渦発生体は一本の渦発生体
と同一な効果を持って強力な渦を発生し、この結果垂直
版261の両面に変動圧力が作用する。
It is a composite body consisting of 1.2.3 elements 24.25.26. The first element 24 is a cross-sectional view of an isosceles triangle having an apex on the upstream side, the second element 25 has a side parallel to the bottom of the first element 24, and the third element 26 has a side parallel to the second element 25. It is a T-shaped element with a vertical plate 261 parallel to the flow from the symmetrical position of its sides, each plane being separated by an equal distance lvQ, and all widths d seen in the flow direction being equal. Along the fluid flow, the combined vortex generator generates a strong vortex with the same effect as a single vortex generator, resulting in fluctuating pressure acting on both sides of the vertical plate 261.

本発明はこの変動圧力を、該垂直版261内に配設した
圧電検出要素3により検出するものであり、該圧電検出
要素3は垂直版261を貫通する矩形の貫通孔262内
に両端部を、該貫通孔262の上、下方向端部2621
を固設し、側辺部2622とはbずかの隙fを隔てられ
、圧電検出要素3は端部2621を両固定部とするはり
として中間部は自由に渦の変動圧力に応動する。以上に
述べた渦発生体2の装着される流管1の形状は、断面円
形でも、矩形のものでも可であることは、渦発生体は渦
流量計を構成する要素であることをみれば明らかである
In the present invention, this fluctuating pressure is detected by a piezoelectric detection element 3 disposed within the vertical plate 261, and the piezoelectric detection element 3 has both ends inserted into a rectangular through hole 262 penetrating the vertical plate 261. , upper and lower ends 2621 of the through hole 262
The piezoelectric detection element 3 is a beam with the end portions 2621 serving as both fixed portions, and the middle portion freely responds to the fluctuating pressure of the vortex. The shape of the flow tube 1 to which the vortex generator 2 described above is attached can be either circular or rectangular in cross section, considering that the vortex generator is an element constituting a vortex flowmeter. it is obvious.

第5図は、渦発生体2の後流側に渦検出板35を配設し
た他の発明をしめすもので、流管1は(a)図に示すよ
うに、整流格子52を装着した一定矩形断面の大口径流
入部51から後部に向がって連続した曲面53で絞られ
て一定矩形断面の小口径流出部54に連なる軸対称な本
体としたものであるが、本発明においては第1図に示し
た円形断面の流管1でもよい。渦検出板35は第1図(
d)に示した圧電検出要素3であり、第1図(b)はそ
の−例であり、下端部は流出部54の下壁(図示せず)
に嵌挿される下部固定ボス56の保持台561にビス等
で圧接固定され、上部は、上部固定ボス55の保持台5
51により、渦検出板35の流管5内における長さが正
しくLになるように上部固定ボス55の位置を調節して
、ビス等で該渦検出板35の上部を上部固定ボス55に
固定する。(c)図は(b)図の他の実施例を示す図で
、(b)図の実施例のように渦検出板35が流管5の上
、下端において固定されているのとは異なり、下部にお
いて、弾性支持され、上部においてのみ固定されている
ものである。図において、上、下部固定ボス57.58
は流管5の流出部54の上下壁部(図示せず)に固定さ
れるものであるが、この間隔は渦検出板35を両側部で
わずかな隙をもって保護、支持する金属棒61の端部に
設けられた皿状のストッパ611の位置で定められる。
FIG. 5 shows another invention in which a vortex detection plate 35 is disposed on the downstream side of the vortex generator 2, and the flow tube 1 is equipped with a rectifying grid 52 as shown in FIG. The main body is axially symmetrical, and is narrowed by a continuous curved surface 53 from a large-diameter inlet 51 with a rectangular cross section toward the rear, and continues to a small-diameter outlet 54 with a constant rectangular cross section. A flow tube 1 having a circular cross section as shown in FIG. 1 may be used. The vortex detection plate 35 is shown in FIG.
FIG. 1(b) is an example of the piezoelectric detection element 3 shown in FIG.
The upper part is fixed to the holding base 561 of the lower fixing boss 56 by screws etc.
51, adjust the position of the upper fixing boss 55 so that the length of the vortex detection plate 35 in the flow tube 5 becomes L correctly, and fix the upper part of the vortex detection plate 35 to the upper fixing boss 55 with screws or the like. do. (c) is a diagram showing another embodiment of the embodiment shown in (b), unlike the embodiment shown in (b) where the vortex detection plate 35 is fixed at the upper and lower ends of the flow tube 5. , which is elastically supported at the bottom and fixed only at the top. In the figure, upper and lower fixing bosses 57 and 58
are fixed to the upper and lower walls (not shown) of the outflow portion 54 of the flow tube 5, and this interval is determined by the end of the metal rod 61 that protects and supports the vortex detection plate 35 with a slight gap on both sides. It is determined by the position of a plate-shaped stopper 611 provided in the section.

該金属棒61のストッパ611の外側部に、該ストッパ
611と、ビス612で挟持固着される上、下固定ボス
57.58がある。渦検出板35は上部固定ボス57に
おいて固着されるが、下端部は、下部ボス58下部にお
いて、金属棒61.61に両端を支持されたばね板62
の中央部に固定された絶縁体からなる押え板63により
弾性支持され、一定の弾力で伸張されている。
On the outer side of the stopper 611 of the metal rod 61, there are upper and lower fixing bosses 57 and 58 which are clamped and fixed to the stopper 611 and screws 612. The vortex detection plate 35 is fixed at the upper fixed boss 57, and its lower end is attached to a spring plate 62 supported at both ends by metal rods 61, 61 at the lower part of the lower boss 58.
It is elastically supported by a presser plate 63 made of an insulator fixed to the center of the holder, and is stretched with a certain elasticity.

以上に述べた(b)、(C)図の渦検出板35は、基本
的には両端支持された耐振性の優れたものである。
The vortex detection plate 35 shown in FIGS. (b) and (C) described above is basically supported at both ends and has excellent vibration resistance.

第6図は、本発明における渦検出板35を流管5に簡易
に装着可能とするために渦流量計の構成を示す分解斜視
図で、流管5は第(5)図(a)に示した流管であり、
第5図と同様の作用をする部分には第5図の場合と同一
の符号を付し、各構成要素の説明は省く。流出部54の
土壁には渦発生体挿通孔541と渦検出抜挿通孔542
とが穿孔されており、各々の前記挿通孔541.542
には、センシングユニット70として板状体71に一体
的に固接された渦発生体2と渦検出板35とが挿通され
、流管5に対して所定の位置関係に収納され、渦流量計
を形成するもので、該センシングユニット70の鍔部7
11.712.713をアンプユニット80の鍔部81
1.812(図示せず)、813と共に流管5の鍔部5
44゜545および固定ねじ部543に重畳してビス8
14等の螺着手段により一体固定するものである。第6
図においては、渦発生体2と渦検出板35とをセンシン
グユニット70に並置したが、渦検出手段として、第1
図、第2図、第4図に示した渦発生体2の中に圧電検出
要素3が内蔵されているものであれば、センシングユニ
ット70に渦検出板35は不要であり、従って、渦検出
抜挿通孔542も不要である。
FIG. 6 is an exploded perspective view showing the configuration of a vortex flowmeter in order to easily attach the vortex detection plate 35 to the flow tube 5 according to the present invention, and the flow tube 5 is shown in FIG. The flow tube shown is
The same reference numerals as in FIG. 5 are given to parts having the same functions as in FIG. 5, and explanations of each component will be omitted. A vortex generator insertion hole 541 and a vortex detection extraction insertion hole 542 are provided in the earthen wall of the outflow portion 54.
and each of the insertion holes 541 and 542
The vortex generating body 2 and the vortex detection plate 35 integrally fixed to the plate-like body 71 as the sensing unit 70 are inserted through the vortex generator 2 and the vortex detection plate 35 are housed in a predetermined positional relationship with respect to the flow tube 5, and the vortex flowmeter The flange 7 of the sensing unit 70
11.712.713 to the flange 81 of the amplifier unit 80
1. Flange 5 of flow tube 5 along with 812 (not shown) and 813
44° 545 and the screw 8 overlapping the fixing screw part 543
They are integrally fixed by screwing means such as No. 14. 6th
In the figure, the vortex generator 2 and the vortex detection plate 35 are arranged side by side in the sensing unit 70, but the first
If the piezoelectric detection element 3 is built into the vortex generating body 2 shown in FIGS. The insertion/extraction hole 542 is also unnecessary.

効   果 上述のように、本発明における高分子圧電フィルムを用
いた渦検出要素をもった渦流量計においては、従来の過
変動圧力をひずみゲージ、固体圧電素子を用いた渦流量
計と対比し、ひずみゲージにはない高感度な検出を可能
とし、固体圧電素子にはない、可撓性をもった特性を生
かすことが可能となり、従来の素子では不可能であった
耐振特性の改善も、高分子圧電フィルムのもつ、それ自
身の低いQによる耐振部材であることにより、特別な配
慮をすることもなく具現できる。この点において、第5
図(、)、(b)、(c)に示した両端支持方式の渦検
出板は、従来方式の片持式のひずみゲージ方式等におい
てみられる外部振動の影響も受けることが少なく、特に
、気体計測等において優れた耐振特性の渦流量計を具現
でき、しかも安価な材料でもあることから安価な渦流量
計を提供することができる。
Effects As mentioned above, in the vortex flowmeter of the present invention having a vortex detection element using a polymer piezoelectric film, it is possible to detect excessively fluctuating pressure in comparison with a conventional strain gauge or a vortex flowmeter using a solid piezoelectric element. , enables highly sensitive detection not available with strain gauges, makes it possible to take advantage of flexible properties not found in solid piezoelectric elements, and improves vibration resistance properties that were not possible with conventional elements. Since the piezoelectric polymer film itself is a vibration-resistant member due to its low Q, it can be realized without special consideration. In this respect, the fifth
The double-end supported vortex detection plates shown in Figures (, ), (b), and (c) are less affected by external vibrations that are seen in conventional cantilever strain gauge systems, and in particular, It is possible to realize a vortex flowmeter with excellent vibration resistance in gas measurement, etc., and since it is made of inexpensive material, it is possible to provide an inexpensive vortex flowmeter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明における渦流量計を説明するための図
で、(a)図は(b)図のA−A矢視断面図、(b)図
は、流量計を流れの後方より見た図、(c)図は(b)
図のC−C矢視断面図、(d)図は圧電検出要素の詳細
を示す図、第2図は、本発明の他の実施例としての渦発
生体の構造を示す図で、(a)図は(b)図のE−E矢
視断面図、(b)図は(a)図のD−D矢視断面図、第
3図は、本発明の他の実施例を示す図で、(a)図は、
流量計を流れの後方より見た図、(b)図は(a)図の
F−F矢視断面図、第4図は1本発明の他の実施例を示
す図で、(a)図は(b)図のG−C矢視断面図、(b
)図は、渦発生体の部分側面図、第5図は、本発明の他
の実施例を示す図で、(b)図は(a)図における渦検
出板35の一例を示す図、(C)図は他の例を示す図、
(d)図は、(b)図のに−に矢視断面図、(e)図は
(C)図のM−M矢視断面図、第6図は、本発明による
渦流量計を具現する構成の一例を説明するための分解斜
視図である。 1.5・・・流管、2・・・渦発生体、3.35・・・
圧電検出要素、31・・・高分子圧電フィルム、32・
・・電極。 33・・・絶縁フィルム、34・・・リード線。 第1図 第2図 第  6  図 (0)     (b+ 第5図 (0〕 つと (b)(C)
FIG. 1 is a diagram for explaining the vortex flowmeter according to the present invention, in which (a) is a sectional view taken along the line A-A in FIG. The view is (c) and the view is (b).
A sectional view taken along the line C-C in the figure, (d) is a diagram showing details of the piezoelectric detection element, and FIG. 2 is a diagram showing the structure of a vortex generator as another embodiment of the present invention. ) is a cross-sectional view taken along line E-E in figure (b), figure (b) is a cross-sectional view taken along line D-D in figure (a), and FIG. 3 is a view showing another embodiment of the present invention. ,(a) The figure is
Figure (b) is a cross-sectional view taken along the line F-F in figure (a), and Figure 4 is a diagram showing another embodiment of the present invention. (b) is a sectional view taken along the line G-C in figure (b).
) is a partial side view of the vortex generator, FIG. 5 is a diagram showing another embodiment of the present invention, FIG. 5(b) is a diagram showing an example of the vortex detection plate 35 in FIG. C) The figure shows another example,
(d) is a sectional view taken along the line - in FIG. FIG. 1.5...flow tube, 2...vortex generator, 3.35...
Piezoelectric detection element, 31... Polymer piezoelectric film, 32.
··electrode. 33... Insulating film, 34... Lead wire. Figure 1 Figure 2 Figure 6 (0) (b+ Figure 5 (0) (b) (C)

Claims (1)

【特許請求の範囲】 1、被測定流体が流通する流管と、該流管内に流れに対
抗して配設された渦発生体と、流体の流れに応じて前記
渦発生体から発生するカルマン渦による変動圧力を検出
する渦検出器とからなり、該渦検出器により検出された
渦信号から流量を求める渦流量計において、前記渦検出
器の検出素子を高分子圧電フィルムにしたことを特徴と
した渦流量計。 2、渦発生体の形状を底面が流れに対向し、頂点が下流
側に位置する断面二等辺三角形状の柱状体とし、高分子
圧電フィルムの両面を樹脂膜等の可撓性絶縁膜で被覆し
た圧電検出要素を渦発生体の両側斜面と同一面となるよ
うに埋設したことを特徴とする渦流量計。 3、断面二等辺三角形状の渦発生体の両側斜面の少なく
とも一部を開口貫通して空洞となし、該開口空洞部と頂
辺に沿って上下方向に穿設した開口溝とを導通し、該開
口溝において被測定流体に連通したことを特徴とする請
求項2に記載の渦流量計。 4、渦発生体を含む流管断面近傍の流管両内壁に高分子
圧電フィルムを絶縁貼着したことを特徴とする渦流量計
。 5、渦発生体の形状を、断面が上流側に頂点を有する二
等辺三角形の第1素子と、該第1素子の底辺に平行で等
しい長さの辺である第2素子と、該第2素子に平行な辺
を持ち該辺の対称位置から流れに平行した垂直板を有す
るT字形の第3素子とからなる複合形で各々その辺が等
しい距離を隔てた柱状とする渦発生体において、前記第
3素子の垂直板内に両側面を絶縁処理した高分子圧電フ
ィルムを配設したことを特徴とする渦流量計。 6、渦発生体の後流の、該渦発生体に平行した流管直径
位置に流れに平行し、両側面を樹脂コーティング等によ
り絶縁処理して補強した高分子圧電フィルムを配設した
ことを特徴とする渦流量計。 7、流管を、整流格子を装着した一定矩形断面の大口径
流入部から後部に向かって連続した曲面で絞られて一定
矩形断面の小口径流出部に連なる軸対称の本体とし、該
本体の小口径流出部上面の少なくとも一部を開口し、該
開口部に請求項2又は3又は5又は6記載の渦発生体お
よび渦検出器を挿入可能にユニット装着したことを特徴
とする渦流量計。
[Claims] 1. A flow tube through which a fluid to be measured flows, a vortex generator disposed in the flow tube to oppose the flow, and a Karman generated from the vortex generator in accordance with the flow of the fluid. A vortex flowmeter comprising a vortex detector that detects fluctuating pressure due to vortices, and which determines the flow rate from the vortex signal detected by the vortex detector, characterized in that the detection element of the vortex detector is made of a polymer piezoelectric film. A vortex flowmeter with a 2. The shape of the vortex generator is a columnar body with an isosceles triangular cross section, with the bottom facing the flow and the apex located on the downstream side, and both sides of the polymer piezoelectric film are covered with a flexible insulating film such as a resin film. A vortex flowmeter characterized in that piezoelectric detection elements are embedded flush with both slopes of a vortex generator. 3. Opening passes through at least part of the slopes on both sides of the vortex generating body having an isosceles triangular cross section to form a cavity, and the opening cavity is electrically connected to an opening groove bored vertically along the top side; The vortex flowmeter according to claim 2, wherein the opening groove communicates with the fluid to be measured. 4. A vortex flowmeter characterized in that a polymer piezoelectric film is insulated and pasted on both inner walls of the flow tube near the cross section of the flow tube including the vortex generator. 5. The shape of the vortex generator has a first element whose cross section is an isosceles triangle with an apex on the upstream side, a second element whose sides are parallel to the base of the first element and have the same length, and a second element whose cross section is an isosceles triangle with an apex on the upstream side. In a composite vortex generator having a T-shaped third element having sides parallel to the element and a T-shaped third element having a vertical plate parallel to the flow from a symmetrical position of the side, each side is in the form of a column with equal distances between the elements, A vortex flowmeter characterized in that a polymer piezoelectric film whose both sides are insulated is disposed within the vertical plate of the third element. 6. A polymer piezoelectric film is placed parallel to the flow at a flow tube diameter position parallel to the vortex generator downstream of the vortex generator, and reinforced by insulating treatment with resin coating on both sides. Features of vortex flowmeter. 7. The flow tube is an axially symmetrical body in which a large-diameter inlet with a constant rectangular cross section equipped with a rectifying grid is constricted by a continuous curved surface toward the rear and connected to a small-diameter outlet with a constant rectangular cross section, and the main body is A vortex flowmeter characterized in that at least a portion of the upper surface of the small-diameter outflow portion is opened, and the vortex generator and vortex detector according to claim 2, 3, 5, or 6 are installed as a unit in an insertable manner in the opening. .
JP63052410A 1988-03-04 1988-03-04 Vortex flowmeter Pending JPH01224625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63052410A JPH01224625A (en) 1988-03-04 1988-03-04 Vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63052410A JPH01224625A (en) 1988-03-04 1988-03-04 Vortex flowmeter

Publications (1)

Publication Number Publication Date
JPH01224625A true JPH01224625A (en) 1989-09-07

Family

ID=12914016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63052410A Pending JPH01224625A (en) 1988-03-04 1988-03-04 Vortex flowmeter

Country Status (1)

Country Link
JP (1) JPH01224625A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013079043A1 (en) * 2011-11-28 2013-06-06 SIKA Dr. Siebert & Kühn GmbH & Co. KG Flow meter for sanitary fittings
EP3488192A4 (en) * 2016-07-21 2020-02-26 Micro Motion Inc. Vortex flowmeter with reduced process intrusion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013079043A1 (en) * 2011-11-28 2013-06-06 SIKA Dr. Siebert & Kühn GmbH & Co. KG Flow meter for sanitary fittings
EP3488192A4 (en) * 2016-07-21 2020-02-26 Micro Motion Inc. Vortex flowmeter with reduced process intrusion

Similar Documents

Publication Publication Date Title
US20040237645A1 (en) Oscillating hot wire or hot film flow sensor
GB2084324A (en) Vortex Shedding Fluid Flowmeter
JPH01224625A (en) Vortex flowmeter
JPH07198434A (en) Current meter
RU47097U1 (en) VORTEX FLOW METER SENSOR (OPTIONS)
JP2699743B2 (en) Pressure sensor
JPS6331726B2 (en)
JPS6032809B2 (en) Flow velocity flow measuring device
JPS5928342Y2 (en) force detector
JPS62195538A (en) Vibration type transducer
JPH0225446B2 (en)
JPS601381Y2 (en) Flow rate/flow rate detection device
JP3038497B2 (en) Piezoelectric differential pressure vortex sensor
JP3170362B2 (en) Fluid flow measurement device
JPS6244338Y2 (en)
JP3114411B2 (en) Vortex flow meter
JPS5832334B2 (en) Flow velocity flow measuring device
JPS6025528Y2 (en) Flow velocity flow measuring device
JPH06174509A (en) Karman vortex flowmeter
JPS5953489B2 (en) Flow velocity flow measuring device
JPH06160134A (en) Fluid vibration type flow meter
JPH0192617A (en) Vortex flowmeter
JP2011080844A (en) Fluid measuring sensor and fluid measuring instrument
JPH09119876A (en) Pressure sensor
JPS592324B2 (en) Flow velocity flow measuring device