JPH01224603A - Wide-range scanning type tunnel microscope - Google Patents

Wide-range scanning type tunnel microscope

Info

Publication number
JPH01224603A
JPH01224603A JP63049782A JP4978288A JPH01224603A JP H01224603 A JPH01224603 A JP H01224603A JP 63049782 A JP63049782 A JP 63049782A JP 4978288 A JP4978288 A JP 4978288A JP H01224603 A JPH01224603 A JP H01224603A
Authority
JP
Japan
Prior art keywords
probe
swing arm
actuator
sample
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63049782A
Other languages
Japanese (ja)
Inventor
Takafumi Yamada
啓文 山田
Toru Fujii
透 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nikon Corp filed Critical Agency of Industrial Science and Technology
Priority to JP63049782A priority Critical patent/JPH01224603A/en
Publication of JPH01224603A publication Critical patent/JPH01224603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To expand the scanning range of a probe by providing the probe atop of a swing arm which is supported at one corner through an elastic hinge and driving it finely. CONSTITUTION:An actuator 3 provided on a fixed part 1 consisting of a piezoelectric element is driven by an actuator driver 14 for scanning to drive the swing arm 2 provided to the fixed part 11 through the elastic hinge 1. Then the arm 2 enters circular motion on an XY surface above the fixed part 11 about the hinge 1, and consequently the probe 20 provided to a measuring head 5 makes a scan on the surface of a sample 10. Then a voltage which is developed by converting a tunnel current by a voltage converting circuit 12 so that the voltage is constant throughout the scanning is amplified by an actuator drive 13 for the probe and applied in a Z-directional actuator in the head 5; and the driving of the probe 20 is controlled to hold the distance between the sample 10 and probe 20 constant. Here, the quantity of control over the driving of the probe 20 and the quantity of the driving of the actuator 3 are displayed 15 to measure the surface shape of the sample 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 物質表面の形状−1極微細組織、表面物性を非接触で、
かつ高分解ス敵で観察てきる広範囲走査型トンネル顕微
鏡に関する。
[Detailed description of the invention] [Industrial field of application] Surface shape of substances - 1. Determination of ultrafine structure and surface properties without contact,
It also concerns a wide-range scanning tunneling microscope that can be observed using a high-resolution lens.

(従来の技術) 従来この腫の走査型トンネル顕微鏡は米国特許第434
3993号明細書によって公知である。走査型トンネル
!#11微鏡でトンネル電流を検出するために用いられ
る探針は圧電素子(ピエゾ素子)のPZTをx、y、z
方向に直交させたトライポットと呼ばれる微動機構を一
般的に用いている。すなわち、第6図に示すトライボッ
ドでは、探針20は、X。
(Prior art) The conventional scanning tunneling microscope for this tumor was disclosed in U.S. Patent No. 434.
No. 3,993. Scanning tunnel! #11 The probe used to detect tunnel current with a microscope is a piezoelectric element (PZT) x, y, z.
A fine movement mechanism called a tri-pot that is orthogonal to the direction is generally used. That is, in the tribod shown in FIG. 6, the probe 20 has an X shape.

Y、Zの3軸方向にそれぞれ配置されたPZT18.1
7.19で構成さレタアクチュエータを介して基台16
に固定されているゆなお、アクチュエータは、電気エネ
ルギーを供給すると運動エネルギーに変換する働らきな
するものである。X、Y方向のPZT18.17て探針
か測定サンプルを走査しZ方向のPZT19てサンプル
と探針との距離を制御してトンネル1rf、流を得てい
る。
PZT18.1 arranged in three axis directions of Y and Z respectively
7. Base 16 via the reta actuator composed of 19
The actuator, which is fixed to the motor, has the function of converting electrical energy into kinetic energy when supplied with it. PZTs 18 and 17 in the X and Y directions scan the probe or the measurement sample, and PZTs 19 in the Z direction control the distance between the sample and the probe to obtain a tunnel 1rf flow.

(発明か解決しようとする問題点) 上述の従来技術ては探針の走査範囲は圧電素子の変位そ
のものに限定されているため走査範囲か狭い(数#Lm
Xaルm)という問題点かあった。
(Problem to be solved by the invention) In the prior art described above, the scanning range of the probe is limited to the displacement itself of the piezoelectric element, so the scanning range is narrow (several #Lm
There was a problem called Xalm).

本発明は探針の走査範囲を拡大てこな用いて拡大した広
範囲走査型トンネル顕微鏡の提供を目的とする。
An object of the present invention is to provide a wide-range scanning tunneling microscope in which the scanning range of the probe is expanded.

c問題点を解決するだめの手段) 一ヒ記[1的を達成するために本発明は以下のような構
成を採用している。
c. Means for Solving Problems) Item 1. [In order to achieve object 1, the present invention employs the following configuration.

探針または測定サンプルの微動走査機構として、弾性ヒ
ンジを介して片端を支持されたスイングアームと、該ス
イングアームな駆動させるアクチュエータと、前記スイ
ングアームの先端に前記探針またはサンプルを微小駆動
させるように設けた測定ヘッドとから成る微動走査機構
を使用している。
The probe or measurement sample micro-movement scanning mechanism includes a swing arm supported at one end via an elastic hinge, an actuator for driving the swing arm, and a tip of the swing arm for micro-movement of the probe or sample. The system uses a fine scanning mechanism consisting of a measuring head mounted on the

〔作用〕[Effect]

スイングアームの片端を弾性ヒンジを介して支持されて
いるのてスイングアームの弾性ヒンジな中心とした円弧
運動はXY面内に限られる。スイングアームを駆動させ
るアクチュエータの位置(駆動点4)を変えることで、
探針の動きの拡大率(レバー比に相当)を任、αに変え
ることかできる。
Since one end of the swing arm is supported via an elastic hinge, the arc movement of the swing arm around the elastic hinge is limited within the XY plane. By changing the position of the actuator that drives the swing arm (drive point 4),
The magnification rate of the probe movement (corresponding to the lever ratio) can be changed to α or α.

〔実施例〕〔Example〕

第1[′Jiは本発明の第1実施例を示す斜視図である
1. ['Ji] is a perspective view showing a first embodiment of the present invention.

スイングアーム2は弾性ヒンジlを介して固定部11と
一体に設けられている。圧電素rから成るアクチュエー
タ3をスイングアーム2の側面を駆動するように固定部
111.:設ける。スイングアームの先端に測定ヘッド
5を取り付け、該ヘッドに探針20を取り付ける。ヘッ
ド5内のZ方向アクチュエータ(圧電素子)によって探
針20はZ方向に微小駆動される。固定部ll上にa置
された測定用導電性サンプル10の表面と探針20との
間をトンネル’iff流か流れるように近接させておく
。探針とサンプル間に電位差を加えるとトンネル’il
t流か流れ1両者間の間隔に対し敏感である。
The swing arm 2 is provided integrally with the fixed part 11 via an elastic hinge l. A fixed part 111. :establish. A measurement head 5 is attached to the tip of the swing arm, and a probe 20 is attached to the head. The probe 20 is minutely driven in the Z direction by a Z direction actuator (piezoelectric element) within the head 5 . The probe 20 and the surface of the conductive sample 10 for measurement placed a on the fixed part 11 are brought close to each other so that the probe 20 flows like a tunnel flow. Tunneling occurs when a potential difference is applied between the tip and the sample.
It is sensitive to the spacing between either stream t or stream 1.

アクチュエータ3を走査用アクチュエータトライバ14
で駆動してスイングアーム2をWIA動すると、スイン
グアーム2は固定部11に対してXY面内で弾性ヒンジ
lを中心として円運動をし、これによって測定ヘッドに
設けた探針20がサンプルlOの面上を走査する。アン
プル面を走査中トンネル電流が一定になるようにトンネ
ル電流を電流電圧変換回路12で電圧に変換し、この電
圧な探針用アクチュエータトライバ13て増幅して測定
ヘッド5内のZ方向アクチュエータに加えて探針20の
駆動をコントロールしてサンプルlOと探針20との距
離を一定に保つ。表示装置15に探針駆動の制御漬とア
クチュエータ3の駆動j五とを表示することてサンプル
の表面性状(凸凹なと)を測定する。
Actuator driver 14 for scanning actuator 3
When the swing arm 2 is moved in WIA by driving with scan over the surface. The tunnel current is converted into a voltage by the current-voltage conversion circuit 12 so that the tunnel current remains constant while scanning the ampoule surface, and this voltage is amplified by the probe actuator driver 13 and sent to the Z-direction actuator in the measurement head 5. In addition, the drive of the probe 20 is controlled to keep the distance between the sample IO and the probe 20 constant. The surface texture (unevenness) of the sample is measured by displaying the probe drive control mode and the drive mode of the actuator 3 on the display device 15.

第2図は第11Jの平面図である。弾性ヒンジlをてこ
の支点とし、アクチュエータ3の駆動点4まての距離を
愛2測定ヘッド5の探針まての距離をLとあられすと、
アクチュエータ3の先端に設けた測定ヘッド(探針)の
XY面内の円j!lllはてこ比L/iを任意に変える
ことで任意の大きさに変えることかできる。このとき弾
性ヒンジlはX方向の外力にのみ変位を生しY方向のガ
タは皆無である。このため探針20の走査軌跡の再現性
か極めて高い、なお、第1図で探針を固定しサンプルを
XY面内で動かす構造とすることも可能である。
FIG. 2 is a plan view of No. 11J. Using the elastic hinge l as the fulcrum of the lever, and assuming that the distance from the driving point 4 of the actuator 3 is A2 and the distance from the probe of the measuring head 5 to L is,
Circle j in the XY plane of the measurement head (probe) provided at the tip of actuator 3! lll can be changed to any size by arbitrarily changing the leverage ratio L/i. At this time, the elastic hinge 1 is displaced only by the external force in the X direction, and there is no backlash in the Y direction. Therefore, the reproducibility of the scanning trajectory of the probe 20 is extremely high. Note that it is also possible to use a structure in which the probe is fixed as shown in FIG. 1 and the sample is moved within the XY plane.

第3UAは本発明の第2の実施例の斜視図である。第1
図の斜視図に示す構造において。
The third UA is a perspective view of the second embodiment of the present invention. 1st
In the structure shown in the perspective view of the figure.

スイングアーム2とスイングアーム9を弾性ヒンジ6を
介して一体として、スイングアーム9を駆動するアクチ
ュエータ7をスインクアーム2に固定しである。スイン
グアーム9の先端に測定ヘッド5を設けている。すなわ
ちX7面内で同一構造を2つ接続している。
The swing arm 2 and the swing arm 9 are integrated through an elastic hinge 6, and an actuator 7 for driving the swing arm 9 is fixed to the swing arm 2. A measurement head 5 is provided at the tip of the swing arm 9. In other words, two identical structures are connected within the X7 plane.

第4図は第3図の平面図である。第4図において弾性ヒ
ンジlをてこの支点とし、アクチュエータ3の駆動点4
までの距離をAX、探針まての距離をLXとし、さらに
弾性ヒンジ6をてこの支点とし、アクチュエータフの駆
動点8まての距離を見Y、探針までの距離をLYとあら
れすとスイングアーム9の先端に設けた探針のXY而面
の円運動用はX方向実施例の場合に比べてY方向に第1
図と同様な構造を加えることでX7面内の走査範囲かさ
らに広がる。
FIG. 4 is a plan view of FIG. 3. In FIG. 4, the elastic hinge l is used as the fulcrum of the lever, and the driving point 4 of the actuator 3 is
The distance to the tip is AX, the distance to the probe is LX, the elastic hinge 6 is used as a fulcrum, the distance to the drive point 8 of the actuator tough is Y, and the distance to the probe is LY. The circular movement of the probe provided at the tip of the swing arm 9 in the XY plane is faster in the Y direction than in the X direction embodiment.
By adding a structure similar to the one shown in the figure, the scanning range within the X7 plane is further expanded.

第2実施例において測定ヘッド5とサンプル10の位置
を交換して探針を固定しサンプルをX7面内で動かす構
造とすることも可能である。
In the second embodiment, it is also possible to have a structure in which the positions of the measurement head 5 and the sample 10 are exchanged so that the probe is fixed and the sample is moved within the X7 plane.

また、Δ11定ヘッド5の取付個所に3軸(X、Y、X
方向)の連動機能をもった。微小なトライポット、チュ
ーフスキャナ等を付加配置することによって広範囲な面
の中から任意の微小領域の高速精密測定を行うことも口
f能である。
In addition, 3 axes (X, Y,
(direction) interlocking function. It is also possible to carry out high-speed and precise measurement of any minute area within a wide range of surfaces by additionally arranging minute tripods, tube scanners, etc.

第5図は本発明の第3実施例を示す斜視[Aである。1
1+11定ヘツト5をXY而面のX方向に円運動させる
構成と、ΔIII定サンプすlOをX7面内のY方向に
円運動させる構成とを組みあわせたものである。すなわ
ち、X方向に同一構造を2つ接続している。
FIG. 5 is a perspective view [A] showing a third embodiment of the present invention. 1
This is a combination of a configuration in which the 1+11 constant head 5 is moved circularly in the X direction of the XY plane and a configuration in which the ΔIII constant sample lO is circularly moved in the Y direction in the X7 plane. That is, two identical structures are connected in the X direction.

Z方向ΔI4定用測定ヘッド5をスイングアーム2の先
端に取付けてサンプル10のX方向の走査を行い、サン
プル10はスイングアーム9の先端に位置されているか
らY方向の走査をうける。この第3実施例においても測
定ヘッド5とサンプルlOの取付位置を交換して探針を
固定しサンプルを動かず構造とすることも可能である。
The Z direction ΔI4 measurement head 5 is attached to the tip of the swing arm 2 to scan the sample 10 in the X direction, and since the sample 10 is located at the tip of the swing arm 9, it is scanned in the Y direction. In this third embodiment as well, it is possible to change the mounting positions of the measurement head 5 and the sample 1O to fix the probe and to create a structure in which the sample does not move.

なお、探針のX7面内の運動量はX、Y両方向共溶2実
施例の場合と同じく広がる。
Incidentally, the momentum of the probe in the X7 plane spreads as in the case of the second embodiment of co-melting in both the X and Y directions.

(発明の効果) 弾性ヒンジを用いた簡単な構造のヒガタが皆無て、走査
軌跡の再現性がきわめて高い。
(Effects of the Invention) The simple structure using elastic hinges has no higata, and the reproducibility of the scanning locus is extremely high.

てこの原理を採用した拡大てこ構造のため広範囲の走査
か可能である。
A wide range of scanning is possible due to the expanding lever structure that uses the lever principle.

尚、この微動走査機構は1本来の走査に使用するたけて
なく、測定ヘッドに3軸の運動機能を付加することによ
り、測定位置の精密設定にも使用できる利点がある。
Note that this fine movement scanning mechanism is not only used for primary scanning, but also has the advantage that it can also be used for precise setting of measurement positions by adding a three-axis movement function to the measurement head.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の第1実施例の斜視図、平面図
である。第3図、第4図は本発明の第2実施例の斜視図
、平面図である。第5図は本発明の第3実施例の斜視図
である。 第6図は従来のトライボッド構造の斜視図である。 (主要部分の符号の説明)
1 and 2 are a perspective view and a plan view of a first embodiment of the present invention. 3 and 4 are a perspective view and a plan view of a second embodiment of the present invention. FIG. 5 is a perspective view of a third embodiment of the present invention. FIG. 6 is a perspective view of a conventional tri-body structure. (Explanation of symbols of main parts)

Claims (1)

【特許請求の範囲】 1、探針または測定サンプルの微動走査機構として、弾
性ヒンジを介して片端を支持されたスイングアームと該
スイングアームをXY面内で駆動させるアクチュエータ
と、 前記スイングアームの先端に前記探針またはサンプルを
Z方向に微小駆動させるように設けた測定ヘッドとから
成る微動走査機構を使用したことを特徴とする広範囲走
査型トンネル顕微鏡。 2、微動走査機構のスイングアームの先端に、該スイン
グアームの移動に対し同一面内で直交方向に移動する如
く片端を弾性ヒンジで支持された別のスイングアームを
接続したことを特徴とする請求項1記載の走査型トンネ
ル顕微鏡。
[Claims] 1. As a fine movement scanning mechanism for a probe or a measurement sample, a swing arm whose one end is supported via an elastic hinge, an actuator for driving the swing arm in the XY plane, and a tip of the swing arm. 1. A wide range scanning tunneling microscope characterized in that a fine movement scanning mechanism is used. 2. A claim characterized in that another swing arm supported by an elastic hinge at one end is connected to the tip of the swing arm of the fine movement scanning mechanism so as to move in the same plane and in a direction orthogonal to the movement of the swing arm. The scanning tunneling microscope according to item 1.
JP63049782A 1988-03-04 1988-03-04 Wide-range scanning type tunnel microscope Pending JPH01224603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63049782A JPH01224603A (en) 1988-03-04 1988-03-04 Wide-range scanning type tunnel microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63049782A JPH01224603A (en) 1988-03-04 1988-03-04 Wide-range scanning type tunnel microscope

Publications (1)

Publication Number Publication Date
JPH01224603A true JPH01224603A (en) 1989-09-07

Family

ID=12840730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63049782A Pending JPH01224603A (en) 1988-03-04 1988-03-04 Wide-range scanning type tunnel microscope

Country Status (1)

Country Link
JP (1) JPH01224603A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03235005A (en) * 1990-02-09 1991-10-21 Olympus Optical Co Ltd Scanning tunneling microscope
US5298975A (en) * 1991-09-27 1994-03-29 International Business Machines Corporation Combined scanning force microscope and optical metrology tool
US5321977A (en) * 1992-12-31 1994-06-21 International Business Machines Corporation Integrated tip strain sensor for use in combination with a single axis atomic force microscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03235005A (en) * 1990-02-09 1991-10-21 Olympus Optical Co Ltd Scanning tunneling microscope
US5298975A (en) * 1991-09-27 1994-03-29 International Business Machines Corporation Combined scanning force microscope and optical metrology tool
US5321977A (en) * 1992-12-31 1994-06-21 International Business Machines Corporation Integrated tip strain sensor for use in combination with a single axis atomic force microscope
US5345816A (en) * 1992-12-31 1994-09-13 International Business Machine Corp. Integrated tip strain sensor for use in combination with a single axis atomic force microscope

Similar Documents

Publication Publication Date Title
US7501615B2 (en) Flexure assembly for a scanner
JP2839543B2 (en) Displacement generator
US5107114A (en) Fine scanning mechanism for atomic force microscope
JPS62130302A (en) Method and device for forming image of surface of sample
US5253516A (en) Atomic force microscope for small samples having dual-mode operating capability
WO1989007259A3 (en) Integrated scanning tunneling microscope
JPH0212381B2 (en)
GB2157091A (en) Piezoceramic servo-drive for producing translational motion, especially for application to ring laser mirrors
JPH01219602A (en) Large stroke scanning type tunnel microscope
US4837445A (en) Coarse adjusting device of scanning tunneling microscope
JP2010217153A (en) Probe for scanning type probe microscope, and scanning type probe microscope
JPH01224603A (en) Wide-range scanning type tunnel microscope
JP3497359B2 (en) Probe control device
JP3776084B2 (en) Micro positioning device
JP2004257844A (en) Highly precise micro-movement apparatus
JP3369892B2 (en) Positioning device for micro positioning device
CN212277149U (en) Electron microscope in-situ sample rod with high-resolution multi-dimensional manipulation and electrical measurement
JP4074218B2 (en) Moving stage device and scanning probe microscope
JPH0894780A (en) X-y-theta fine movement stage
JP2000155085A (en) Interatomic force microscope prober and interatomic force microscope
JP2691460B2 (en) Tunnel current detector
JP3114902B2 (en) High-resolution and high-precision measuring device using a scanning tunneling microscope
JP2005010058A (en) Moving stage device and scanning probe microscope
JP4997633B2 (en) Nano actuator
JPH02203205A (en) Three-dimensional actuator and scanning type tunnel microscope device