JPH01224283A - Production of inorganic cured form - Google Patents

Production of inorganic cured form

Info

Publication number
JPH01224283A
JPH01224283A JP63050368A JP5036888A JPH01224283A JP H01224283 A JPH01224283 A JP H01224283A JP 63050368 A JP63050368 A JP 63050368A JP 5036888 A JP5036888 A JP 5036888A JP H01224283 A JPH01224283 A JP H01224283A
Authority
JP
Japan
Prior art keywords
autoclave
curing
gas
atmosphere
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63050368A
Other languages
Japanese (ja)
Other versions
JPH0451516B2 (en
Inventor
Junsuke Haruna
春名 淳介
Katsuhide Kaneko
兼子 勝英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63050368A priority Critical patent/JPH01224283A/en
Publication of JPH01224283A publication Critical patent/JPH01224283A/en
Publication of JPH0451516B2 publication Critical patent/JPH0451516B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To obtain the title dense cured form at low cost by curing in an autoclave a blend comprising siliceous material and calcareous material in a CO2-contg. atmosphere to develop mechanical strength in a short time. CONSTITUTION:A blend comprising powdery siliceous material and calcareous material is formed. Thence, the resulting formed product is cured in an autoclave under a CO2-contg. gas atmosphere to develop mechanical strength in a short time, thus obtaining the objective densed cured form at low cost.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は建材などに使用される無機硬化体の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a method for producing an inorganic cured body used for building materials and the like.

(従来の技術) 建築材料のうち、石灰およびセメント等の石灰質原料と
バインダーとして珪砂、珪石等の硅酸質原料と混合した
ものが、多々製造されているが、それはその製造方法等
が比較的簡便であり、且つその製品が不燃性建材として
、種々の良好な特性を有しているからである(以下のよ
うな建材をセメント系建材と称する。)。
(Prior art) Among building materials, many are manufactured by mixing calcareous raw materials such as lime and cement with silica raw materials such as silica sand and silica stone as binders, but the manufacturing method etc. is relatively difficult. This is because it is simple and the product has various good properties as a noncombustible building material (the following building materials are referred to as cement-based building materials).

このようなセメント系建材の製造法として、例えば特開
昭57−196754号公報に示されるように高温高圧
水蒸気養生(以下オークレープ養生と称す)するものが
ある。
As a manufacturing method for such cement-based building materials, there is a method of high-temperature, high-pressure steam curing (hereinafter referred to as oak crepe curing), as disclosed in, for example, Japanese Patent Application Laid-Open No. 57-196754.

(発明の解決しようとする課題) しかしこのようなセメント系建材もその用途が高級化す
るにつれて、その欠点が目立ちっつある、即ち軽量化し
た場合の強度不足、或いはその補強材としてガラス繊維
を使用した場合のガラス腐食、或いは経時した場合の白
華現象、或は寒冷地での凍結融解等がその欠点の例とし
て挙げられる。そうしたことから、このセメント系建材
の欠点を補うべく、各人、各社がかなりの努力をしてき
た。その一つの方向がセメント系建材から焼成建材への
転換がある。なるほど、焼成建材は上記セメント系建材
の欠点を補う点が多いが、その反面、焼成工程を経る為
に技術的、或いはコスト的な壁にぶつかり、必ずしもセ
メント系建材を凌駕するまでには至っていない。一方セ
メント系建材の分野でも、上記欠点を改善する施策も検
討されている。本発明はこれらの施策の一つに数えられ
るべきもので、養生方法を改善により、養生時間の短縮
、発現強度の上昇、或は硬化体の緻密化(耐吸水性)等
を図るものである。
(Problem to be solved by the invention) However, as the use of such cement-based building materials becomes more sophisticated, their shortcomings are becoming more noticeable, such as insufficient strength when lightweight, or the need to use glass fiber as a reinforcing material. Examples of disadvantages include glass corrosion during use, efflorescence over time, and freezing and thawing in cold regions. For this reason, various people and companies have made considerable efforts to compensate for the shortcomings of this cement-based building material. One direction is the shift from cement-based building materials to fired building materials. It is true that fired building materials compensate for many of the drawbacks of cement-based building materials, but on the other hand, they have not necessarily surpassed cement-based building materials because they run into technical and cost barriers due to the firing process. . On the other hand, measures to improve the above-mentioned drawbacks are also being considered in the field of cement-based building materials. The present invention should be counted as one of these measures, and aims to shorten the curing time, increase the developed strength, or make the hardened material denser (water absorption resistance) by improving the curing method. .

(課題を解決するための手段・作用) 本発明は、粉末状の硅酸質原料と石灰質原料を主原料と
し、これを成形後、CO□含有ガス雰囲気中でオートク
レーブ養生し、硬化させることを要旨とし、更にオート
クレーブ養生に際しては、処理容器内雰囲気を予めCO
2含有ガスで置換した後オートクレーブ養生する。又処
理容器内において、オートクレーブ養生後、その冷却時
にCO2含有ガスを吹込んで養生する。オートクレーブ
養生後、処理容器内雰囲気をCO2含有ガスで置換して
再度オートクレーブ養生するいずれかの方法によって行
うことを特徴とした無機硬化体の製造方法である。
(Means and effects for solving the problem) The present invention uses powdered silica raw materials and calcareous raw materials as main raw materials, and after molding, autoclave curing in a CO□-containing gas atmosphere to harden them. In addition, during autoclave curing, the atmosphere inside the processing container should be adjusted to CO2 in advance.
After purging with gas containing 2, autoclave curing. Further, in the processing container, after curing in an autoclave, CO2-containing gas is blown into the processing container during cooling. This method of producing an inorganic cured product is characterized in that after curing in an autoclave, the atmosphere inside the processing container is replaced with a CO2-containing gas and curing is carried out again in an autoclave.

一般にセメント、或いはセメント以外の珪酸カルシウム
は、水との共存下がCO2と接触すると以下の反応が起
こるとされている。
Generally, when cement or calcium silicate other than cement comes into contact with CO2 in the coexistence of water, it is said that the following reaction occurs.

CaO−3iO,+)120+co、 mcaco、+
SiO□・nH,0この反応により生成される(:aC
O8,及び5in2・n)1.0はバインダーたり得る
ものであり、それが生成されることにより、セメントの
場合と同様な強度発現を呈する。又上記反応の速度はセ
メント水和反応、或いは水熱反応と比較して圧倒的に大
きく、従って所定の強度を得るための養生時間は通常法
と比較して短くすることができる。しかしこのCO,ガ
ス処理による強度発現方法の欠点は、その養生されるべ
き成型物の寸法、特に厚みが厚くなるにつれて、その成
型物の内部までCO2ガスが拡散していくのに時間がか
かったり、或いは成型物表面に緻密なCaCO5被膜が
生成されて、ガスの内部拡散が阻害されてしまうことで
ある0本発明者等の経験から厚み10〜15++u*以
上の成型物の場合にはCO2ガス養生のみでは所定の強
度を得ることができない。
CaO-3iO,+)120+co, mcaco,+
SiO□・nH,0 produced by this reaction (:aC
O8, and 5in2·n)1.0 can be a binder, and when it is produced, it exhibits strength similar to that of cement. Further, the speed of the above reaction is overwhelmingly higher than that of cement hydration reaction or hydrothermal reaction, and therefore the curing time for obtaining a predetermined strength can be shortened compared to the conventional method. However, the disadvantage of this method of developing strength through CO and gas treatment is that as the size, especially the thickness, of the molded product to be cured increases, it takes time for the CO2 gas to diffuse into the interior of the molded product. Alternatively, a dense CaCO5 film may be formed on the surface of the molded product, inhibiting the internal diffusion of gas.From the experience of the present inventors, CO2 gas is It is not possible to obtain the required strength through curing alone.

そこで本発明者等はこの対策として、水熱養生と上記C
O2ガス養生とを組合わせることを考えた。この方法に
よれば、成型物表面はCO2ガス養生、及び水熱養生に
よる強度発現が起こり、成型物内部では水熱養生による
強度発現が同時に起こり、且つ成型物表面は緻密なCa
CO,被膜が生成される為に、吸水性、或いは凍結融解
性の優れた硬化体(建材)が製造できるようになった。
Therefore, the present inventors proposed hydrothermal curing and the above-mentioned C.
We considered combining it with O2 gas curing. According to this method, strength development occurs on the surface of the molded product through CO2 gas curing and hydrothermal curing, and strength development occurs simultaneously on the inside of the molding due to hydrothermal curing, and the surface of the molded product is made of dense Ca.
Because CO and a film are produced, it has become possible to produce hardened bodies (building materials) with excellent water absorption or freeze-thaw properties.

又その製品が高級化するにつれて、白華現象等の欠点が
目立つが、本発明を用いて製造した製品はその表面が緻
密なCaCO5被膜で覆われ、従って白華現象の原因物
質であるにaGO3がその経時で生成されるようなこと
がない為に、白華現象を殆ど起こさないことも判った。
In addition, as the products become more sophisticated, defects such as efflorescence become more noticeable, but the surface of the products manufactured using the present invention is covered with a dense CaCO5 film, and therefore aGO3, which is the causative agent of the efflorescence phenomenon, becomes more noticeable. It was also found that because there is no formation of efflorescence over time, the efflorescence phenomenon hardly occurs.

又、CO2ガス養生と水熱養生とを合わせ行うことの経
済性については、そのC(hガス源としてCO2を含有
した燃焼排ガスを用いることにより解決される。
Furthermore, the economic efficiency of combining CO2 gas curing and hydrothermal curing can be solved by using combustion exhaust gas containing CO2 as the C(h gas source).

又本発明は水熱養生とCO2ガス養生との組合わせ方法
も同時に提示している。この組合わせ方はその建材の用
途により変化させて考えるべきで、例えば成形物表面に
緻密なCa(:03被膜を形成することにより吸水性、
あるいは凍結融解性を改善したいのであれば、水熱養生
完了後に602含有ガスを常圧下で吹き込めば達成され
るし、又発現強度の改善を図るのが目的であれば、CO
3含有ガスを昇圧し、水熱養生中に吹き込めば達成され
るであろう。又、養生時間を短縮したいのであれば、水
熱養生を開始する前にCO2含有ガスでオートクレーブ
内部を置換するという方法をとれば容易にその目的は達
成できる。
The present invention also presents a method of combining hydrothermal curing and CO2 gas curing. The method of combination should be changed depending on the use of the building material. For example, by forming a dense Ca(:03) film on the surface of the molded product, water absorption and
Alternatively, if you want to improve the freeze-thaw properties, you can achieve this by blowing 602-containing gas under normal pressure after hydrothermal curing, and if you want to improve the developed strength, CO
This could be achieved by increasing the pressure of the 3-containing gas and injecting it during hydrothermal curing. Furthermore, if it is desired to shorten the curing time, this objective can be easily achieved by replacing the inside of the autoclave with CO2-containing gas before starting hydrothermal curing.

本発明に用いられる粉末原料としては、硅酸、珪石等の
硅酸質原料と石灰およびセメント系等の石灰質原料、或
はγ−2Cao−5i02を主組成とした還元期の電気
炉スラグ、合成γ−2CaO・5in2等である。
The powder raw materials used in the present invention include silicic acid raw materials such as silicic acid and silica stone, calcareous raw materials such as lime and cement, or electric furnace slag in the reduction stage mainly composed of γ-2Cao-5i02, synthetic γ-2CaO・5in2, etc.

(実施例) 粉末原料として (a)セメント:硅酸=70:30(重量%)(d)生
石灰:硅酸=60:40(重量%)の4種類配合したも
のを、−水分約20%添加した後、充分混練し、10m
5 (φ)X15mm(J2)にプレス成形した。
(Example) A mixture of four types of powder raw materials: (a) cement: silicic acid = 70:30 (wt%), (d) quicklime: silicic acid = 60:40 (wt%), - about 20% moisture After adding, knead thoroughly and
5 (φ) x 15 mm (J2).

養生方法として、 (A)従来法のオートクレーブ(水熱反応のみ)(オー
トクレーブ処理圧力、io時間)(B)処理容器内雰囲
気を予めCO2濃度を約20%含有した燃焼排ガスで置
換した後オートクレーブ(オートクレーブ−5時間、1
0時間) (C)オートクレーブ養生後CO2濃度約20%含有し
た燃焼排ガスを処理容器内に吹込んで冷却させながら養
生(オートクレーブ=5時間、10時間、冷却時間3時
間) (D)オートクレーブ養生後、処理容器内雰囲気をCO
,濃度約50%含有ガスで置換して再度オートクレーブ
(前段のオートクレーブ−4時間、9時間、後段の60
2雰囲気のオートクレーブ処理圧力) のCO□雰囲気でオートクレーブ処理圧力5kg/cm
2.10kg/cm”で実施した。その硬化体の圧潰強
度の測定結果を表に示す。
As a curing method, (A) Conventional autoclave (hydrothermal reaction only) (autoclave processing pressure, io time) (B) Autoclave after replacing the atmosphere inside the processing container with combustion exhaust gas containing approximately 20% CO2 concentration ( Autoclave - 5 hours, 1
0 hours) (C) After autoclave curing, combustion exhaust gas containing about 20% CO2 concentration is blown into the processing container and cured while cooling (autoclave = 5 hours, 10 hours, cooling time 3 hours) (D) After autoclave curing, The atmosphere inside the processing container is CO
, autoclave again with gas containing about 50% concentration (first stage autoclave - 4 hours, 9 hours, second stage 60 hours)
Autoclave processing pressure in CO□ atmosphere (2 atmosphere autoclave processing pressure) 5kg/cm
2.10 kg/cm''. The results of measuring the crushing strength of the cured product are shown in the table.

圧潰強度測定結果 (単位:kg/cm2)上記表から
明らかの如く、通常のオートクレーブ法と比較してco
2含有ガスと共存させたオートクレーブ法では、同じ原
料においてその強度発現は著しく大きくなることが判る
Crushing strength measurement results (unit: kg/cm2) As is clear from the table above, the co
It can be seen that in the autoclave method in which the material is coexisted with a gas containing 2, the strength development is significantly increased for the same raw material.

(発明の効果) 以上の如く本発明法によれば、建材などに使用される無
機硬化体の製造を、従来法に比べ強度発現、を短時間で
行うことができ、低コストで緻密化が図られる等の優れ
た効果を有する。   。
(Effects of the Invention) As described above, according to the method of the present invention, inorganic cured bodies used for building materials can be produced in a shorter time than conventional methods, and can be densified at low cost. It has excellent effects such as: .

Claims (1)

【特許請求の範囲】 1 粉末状の硅酸質原料と石灰質原料を主原料とし、こ
れを成形後、CO_2含有ガス雰囲気中でオートクレー
ブ養生し、硬化させることを特徴とする無機硬化体の製
造方法。 2 処理容器内雰囲気を予めCO_2含有ガスで置換し
た後、オートクレーブ養生することを特徴とする請求項
1記載の無機硬化体の製造方法。 3 処理容器内において、オートクレーブ養生後、その
冷却時にCO_2含有ガスを吹込んで養生することを特
徴とする請求項1記載の無機硬化体の製造方法。 4 オートクレーブ養生後、処理容器内雰囲気をCO_
2含有ガスで置換して再度オートクレーブ養生すること
を特徴とする請求項1記載の無機硬化体の製造方法。
[Claims] 1. A method for producing an inorganic cured product, which uses powdered siliceous raw materials and calcareous raw materials as main raw materials, which is molded and then cured in an autoclave in a CO_2-containing gas atmosphere to be cured. . 2. The method for producing an inorganic cured product according to claim 1, wherein the atmosphere in the processing container is replaced with a CO_2-containing gas in advance, and then autoclave curing is carried out. 3. The method for producing an inorganic cured product according to claim 1, wherein after curing in an autoclave, CO_2-containing gas is blown into the processing container during cooling. 4 After autoclave curing, change the atmosphere inside the processing container to CO_
2. The method for producing an inorganic cured product according to claim 1, wherein the autoclave is cured again after replacing with a gas containing 2-containing gas.
JP63050368A 1988-03-03 1988-03-03 Production of inorganic cured form Granted JPH01224283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63050368A JPH01224283A (en) 1988-03-03 1988-03-03 Production of inorganic cured form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63050368A JPH01224283A (en) 1988-03-03 1988-03-03 Production of inorganic cured form

Publications (2)

Publication Number Publication Date
JPH01224283A true JPH01224283A (en) 1989-09-07
JPH0451516B2 JPH0451516B2 (en) 1992-08-19

Family

ID=12856945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63050368A Granted JPH01224283A (en) 1988-03-03 1988-03-03 Production of inorganic cured form

Country Status (1)

Country Link
JP (1) JPH01224283A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206788A (en) * 2000-01-21 2001-07-31 A & A Material Corp Building board
JP2008120641A (en) * 2006-11-14 2008-05-29 Tokyo Institute Of Technology Method for producing calcium silicate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206788A (en) * 2000-01-21 2001-07-31 A & A Material Corp Building board
JP2008120641A (en) * 2006-11-14 2008-05-29 Tokyo Institute Of Technology Method for producing calcium silicate

Also Published As

Publication number Publication date
JPH0451516B2 (en) 1992-08-19

Similar Documents

Publication Publication Date Title
EP2418187A2 (en) Dry mixture for manufacturing cellular fibro concrete and method therefor
KR20230162898A (en) Method for manufacturing carbonated precast concrete products with improved durability
JPS6363505B2 (en)
JP6563270B2 (en) Cementitious hardened body and method for producing the same
JPH01224283A (en) Production of inorganic cured form
CN115894075A (en) Carbonized product and preparation method and application thereof
US9957197B1 (en) Porous geopolymers
KR20100112800A (en) Cement binder composition, super ultra high strength precast concrete composition and method for producing super ultra high strength precast concrete goods using the same
JPS6042263A (en) Manufacture of cement moldings
RU2120926C1 (en) Raw mix for manufacturing non-autoclave cellular concrete of natural hardening, and method of manufacturing products from cellular concrete
JP3618001B2 (en) Porous open cell concrete molded body and method for producing the same composite
KR920000153B1 (en) Concrete having high-strength and preparation method thereof
KR20190121057A (en) Method for manufacturing geopolymer using metakaolin
JP3090085B2 (en) Manufacturing method of cement ceramic products
US935616A (en) Vitrified cement product and process of making same.
JP2527152B2 (en) Ceramic product and its manufacturing method
KR100474964B1 (en) The composition for height-intensity compound of cement
JPS62265160A (en) Manufacture of alc
JPS6152116B2 (en)
JPS6021839A (en) Manufacture of cement moldings
JPH07291701A (en) Production of coal ash caked compact
KR870000655B1 (en) Method for producing a cement products
SU1557131A1 (en) Method of manufacturing calcareous brick
JPS6230653A (en) Manufacture of ceramic-like material
Williams Artificial silicates