JPH01224255A - Composite material and production thereof - Google Patents

Composite material and production thereof

Info

Publication number
JPH01224255A
JPH01224255A JP63325736A JP32573688A JPH01224255A JP H01224255 A JPH01224255 A JP H01224255A JP 63325736 A JP63325736 A JP 63325736A JP 32573688 A JP32573688 A JP 32573688A JP H01224255 A JPH01224255 A JP H01224255A
Authority
JP
Japan
Prior art keywords
parent metal
carbide
boron
metal
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63325736A
Other languages
Japanese (ja)
Other versions
JP2667484B2 (en
Inventor
Terry D Claar
テリー・デニス・クラー
Gerhard H Schiroky
ジャーハード・ハンス・シロキー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxide Technology Co LP
Original Assignee
Lanxide Technology Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxide Technology Co LP filed Critical Lanxide Technology Co LP
Publication of JPH01224255A publication Critical patent/JPH01224255A/en
Application granted granted Critical
Publication of JP2667484B2 publication Critical patent/JP2667484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/652Directional oxidation or solidification, e.g. Lanxide process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

PURPOSE: To inexpensively obtain a high-strength composite material contg. desired ratios of a boride and carbide by making the heated melt of parent metal penetrate into a mass contg. boron carbide to react with it and to form the boride of the parent metal, then subjecting the parent metal to a carburization treatment to convert the remaining parent metal into a carbide.
CONSTITUTION: The parent metal (e.g.; Zr or Ti) is heated to a temp. above its m.p. in an inert atmosphere to form the molten parent metal body. The molten parent metal body is then brought into contact with the mass contg. the boron carbide and is penetrated into the mass, by which the molten parent metal is brought into reaction with the boron carbide and the boron-contg. compd. of the parent metal is formed. In addition, the penetration and the reaction are continued for a sufficient time, by which the self-supporting body contg. the boron-contg. compd. of the parent metal is produced. The self-supporting body is exposed to the carburization environment to convert the parent metal remaining in the self-supporting body to the carbide of the parent metal, to obtain the composite material.
COPYRIGHT: (C)1989,JPO

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、浸炭法を使用することによりZrB2−Zr
C−Zr複合材料体の如き複合材料体を製造する新規な
方法及びかかる方法により製造された新規な製品に係る
。より詳細には本発明は、溶融親金属を炭化ホウ素を含
む床又は塊内に反応を伴なって浸透させることにより形
成された一種又はそれ以上のホウ素含有化合物(例えば
ホウ化物又はホウ化物及び炭化物)及び随意の一種又は
それ以上の不活性の充填材を含む複合材料体を修正する
方法に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides ZrB2-Zr by using carburizing method.
The present invention relates to a new method of manufacturing composite bodies, such as C-Zr composite bodies, and to new products made by such a process. More particularly, the present invention relates to one or more boron-containing compounds (e.g., borides or borides and carbides) formed by reactively infiltrating a molten parent metal into a bed or mass containing boron carbide. ) and optionally one or more inert fillers.

従来の技術 近年従来は金属が適用されていた構造的用途に対しセラ
ミックを使用することに関する関心が高まってきている
。かかる関心は耐食性、硬度、耐摩耗性、弾性係数、耐
熱性の如き幾つかの性質に関し金属に比してセラミック
が優れていることによる。
BACKGROUND OF THE INVENTION In recent years, there has been increasing interest in using ceramics for structural applications that traditionally were metals. This interest is due to the superiority of ceramics over metals in several properties such as corrosion resistance, hardness, abrasion resistance, elastic modulus, and heat resistance.

しかしかかる目的でセラミックを使用することに対する
主要な制限は所望のセラミック構造体を製造する容易さ
及びコストの問題である。例えばホットプレス、反応を
伴なう焼結、反応を伴なうホットプレス等の方法により
ホウ化物セラミック体を製造することがよく知られてい
る。ホウ化物セラミック体を製造する点に於て上述の方
法によりある程度の成功が納められているが、稠密なホ
ウ素含有化合物を製造するより一層有効で経済的な方法
が必要とされている。
However, a major limitation to the use of ceramics for such purposes is the ease and cost of manufacturing the desired ceramic structure. It is well known to produce boride ceramic bodies by methods such as hot pressing, reactive sintering, reactive hot pressing, and the like. Although some success has been achieved with the methods described above in producing boride ceramic bodies, there is a need for a more effective and economical method of producing dense boron-containing compounds.

更に構造的用途にセラミックを使用することに対する第
二の主要な制限は、セラミックが靭性(即ち損傷に対す
る許容性や耐破壊性)に欠けるということである。かく
して靭性が不足していることにより比較的穏やかな引張
り応力が存在する用途に於てセラミックが急激に且容易
に大きく損傷することがある。またかくして靭性が不足
していることはモノリスのホウ化物セラミック体に於て
一般的である。
Additionally, a second major limitation to the use of ceramics in structural applications is that ceramics lack toughness (ie, damage tolerance or fracture resistance). This lack of toughness can cause ceramics to rapidly and easily become severely damaged in applications where relatively mild tensile stresses are present. This lack of toughness is also common in monolithic boride ceramic bodies.

上述の如き問題を解消する一つの方法は、例えばサーメ
ットや金属マトリックス複合材料の如く、金属と組合せ
てセラミックを使用することである。
One way to overcome the problems described above is to use ceramics in combination with metals, such as cermets or metal matrix composites.

かかる公知の方法の目的は、セラミックの最良の性質(
例えば硬度や剛性)と金属の最良の性質(例えば延性)
との組合せを得ることである。ホウ化物の製造に於ては
サーメットの領域に於てある程度の成功が納められてい
るが、ホウ化物を含有する材料を製造するより一層有効
で経済的な方法が必要とされている。
The aim of such known methods is to obtain the best properties of the ceramic (
e.g. hardness or stiffness) and the best properties of the metal (e.g. ductility)
The goal is to obtain a combination of Although some success has been achieved in the production of borides in the cermet area, there is a need for more efficient and economical methods of producing boride-containing materials.

関連特許出願 ホウ化物を含有する材料の製造に関連する多くの上述の
如き問題が1987年7月15日付にて出願され本願出
願人と同一の譲受人に譲渡された米国特許出願第073
,533号に於て取扱われている。
RELATED PATENT APPLICATIONS Many of the above-described problems relating to the manufacture of boride-containing materials are addressed in U.S. Patent Application No. 073, filed July 15, 1987, and assigned to the same assignee as the present applicant.
, No. 533.

以下の定義は上述の米国特許出願第073.533号に
於て使用されており、本願に於ても同様に適用される。
The following definitions were used in the above-mentioned US patent application Ser. No. 073.533 and apply equally to this application.

「親金属」とは、多結晶の酸化反応生成物、即ち親金属
のホウ化物や親金属の他のホウ素化合物の対する前駆体
である金属(例えばジルコニウム)を意味し、純粋又は
比較的純粋の金属、不純物や合金成分を含有する市販の
金属、前駆体金属が主要な成分である合金等を含み、成
る特定の金属が親金属(例えばジルコニウム)として言
及される場合には、その金属は特に断らない限りかかる
定義にて解釈されなければならない。
"Parent metal" means a metal (e.g., zirconium) that is a polycrystalline oxidation reaction product, i.e., a precursor to a parent metal boride or other boron compound of the parent metal, and is pure or relatively pure. When a particular metal is referred to as a parent metal (e.g. zirconium), it is specifically Unless otherwise specified, such definitions shall be used.

「親金属のホウ化物」及び「親金属のボロ化合物」とは
、炭化ホウ素と親金属との間の反応により形成されたホ
ウ素を含有する反応生成物を意味し、親金属とホウ素と
の二元化合物及び三元又はそれ以上の元の化合物を含む
ものである。
"Parent metal boride" and "parent metal borocompound" refer to boron-containing reaction products formed by the reaction between boron carbide and parent metal; It includes the original compound and ternary or more original compounds.

「親金属の炭化物」とは、炭化ホウ素と親金属との反応
により形成される炭素を含有する反応生成物を意味する
"Parent metal carbide" means a carbon-containing reaction product formed by the reaction of boron carbide and a parent metal.

前述の米国特許出願第073,533号の開示内容を端
的に要約すると、炭化ホウ素の存在下に於ける親金属の
浸透及び反応プロセス(即ち反応を伴う浸透)を利用す
ることにより自己支持セラミック体が製造される。特に
炭化ホウ素の床、即ち塊が溶融親金属により浸透され、
炭化ホウ素の床はその全体が炭化ホウ素よりなっていて
よく、これにより親金属の一種又はそれ以上のホウ素含
有化合物を含む自己支持体が形成され、ホウ素含有化合
物は親金属のホウ化物、親金属のボロ化合物、又はこれ
らの両方を含み、また典型的には親金属の炭化物を含ん
でいる。また溶融親金属を浸透させるべき炭化ホウ素の
塊も炭化ホウ素と混合された一種又はそれ以上の不活性
の充填材を含んでいてよいことが記載されている。従っ
て不活性の充填材を組合せることにより、親金属の反応
を伴う浸透により形成されたマトリックスを有する複合
材料体が形成され、この場合マトリックスは少くとも一
種のホウ素含有化合物を含み、またマトリックスは親金
属の炭化物を含み、マトリックスは不活性の充填材を埋
込んだ状態にある。更に上述の何れの実施例(即ち充填
材を含む実施例及び充填材を含まない実施例)に於ても
最終的な複合材料体は元の親金属の少くとも一種の金属
成分としての残留金属を含んでいてよい。
To briefly summarize the disclosure of the aforementioned U.S. patent application Ser. is manufactured. In particular, a bed or mass of boron carbide is penetrated by molten parent metal;
The boron carbide bed may consist entirely of boron carbide, thereby forming a self-supporting body containing one or more boron-containing compounds of the parent metal, the boron-containing compounds being borides of the parent metal, or both, and typically contains a carbide of the parent metal. It is also stated that the mass of boron carbide to be impregnated with the molten parent metal may also contain one or more inert fillers mixed with the boron carbide. Therefore, by combining an inert filler, a composite body is formed with a matrix formed by reactive infiltration of the parent metal, where the matrix contains at least one boron-containing compound, and where the matrix contains at least one boron-containing compound; It contains a parent metal carbide, and the matrix is embedded with an inert filler. Furthermore, in any of the embodiments described above (i.e., embodiments with fillers and embodiments without fillers), the final composite body contains residual metal as at least one metal component of the original parent metal. may contain.

広義には、前述の米国特許出願第073,533号に記
載された方法に於ては、実質的に不活性の環塊内に於て
炭化ホウ素を含む塊が成る特定の温度範囲内にて溶融さ
れて溶融金属又は溶融合金の塊に隣接して又はこれと接
触した状態に配置される。溶融金属は炭化ホウ素め塊に
浸透し、炭化ホウ素と反応して少くとも一種の反応生成
物を形成する。炭化ホウ素は少くとも部分的に溶融金属
により還元され、これによりプロセスの温度条件下に於
て親金属のホウ素含有化合物(例えば親金属のホウ化物
)やボロ化合物を形成する。また典型的には親金属の炭
化物が形成され、また場合によっては親金属のボロ化合
物が形成される。反応生成物の少くとも一部は溶融金属
と接触した状態に維持され、溶融金属はウィック作用、
即ち毛細管作用により未反応の炭化ホウ素へ向けて吸引
され輸送される。かくして輸送された金属は親金属の追
加のホウ化物、炭化物、若しくはボロ化合物を形成し、
セラミック体の形成は親金属又は炭化ホウ素が完全に消
費されるまで、又は反応温度が反応温度以外の温度に変
化されるまで継続される。
Broadly speaking, the method described in the aforementioned U.S. patent application Ser. It is molten and placed adjacent to or in contact with a mass of molten metal or alloy. The molten metal penetrates the boron carbide mass and reacts with the boron carbide to form at least one reaction product. The boron carbide is at least partially reduced by the molten metal, thereby forming parent metal boron-containing compounds (eg, parent metal borides) and boro compounds under the temperature conditions of the process. Further, typically, a carbide of the parent metal is formed, and in some cases, a borocompound of the parent metal is formed. At least a portion of the reaction products are maintained in contact with the molten metal, and the molten metal undergoes wicking,
That is, it is attracted and transported toward unreacted boron carbide by capillary action. The metal thus transported forms additional borides, carbides, or borocompounds of the parent metal;
Formation of the ceramic body continues until the parent metal or boron carbide is completely consumed or the reaction temperature is changed to a temperature other than the reaction temperature.

形成される構造体は親金属の一種又それ以上のホウ化物
、親金属のボロ化合物、親金属の炭化物、金属(前述の
米国特許出願第073,533号に記載されている如く
合金や金属間化合物を含む)、空孔、又はそれらの任意
の組合せを含んでいる。
The structures formed may include one or more borides of the parent metal, borocompounds of the parent metal, carbides of the parent metal, metals (such as alloys or intermetallic compounds as described in the aforementioned U.S. Patent Application No. 073,533). compounds), pores, or any combination thereof.

更にこれらの幾つかの相は複合材料体全体に亙り一次元
又はそれ以上の次元にて互いに接続されていてもよく、
また互いに接続されていなくてもよい。炭化ホウ素体の
初期の密度、炭化ホウ素、親金属、及び親金属の合金の
相対量、炭化ホウ素内の充填材の量、温度及び時間の如
き一つ又はそれ以上の条件を変化させることにより、ホ
ウ素含有化合物(即ちホウ化物及びボロ化合物)、炭素
含有化合物、及び金属相の最終的な体積率を制御するこ
とができる。
Furthermore, these several phases may be connected to each other in one or more dimensions throughout the composite body;
Further, they may not be connected to each other. By varying one or more conditions such as the initial density of the boron carbide body, the relative amounts of boron carbide, the parent metal, and the alloy of the parent metal, the amount of filler within the boron carbide, temperature, and time; The final volume fraction of boron-containing compounds (ie, borides and borocompounds), carbon-containing compounds, and metal phases can be controlled.

前述の米国特許出願第073,533号に於て使用され
た典型的な環境、即ち雰囲気は、プロセス条件下に於て
比較的不活性又は反応性を有しないものであった。特に
例えばアルゴンガスや真空が好ましいプロセス雰囲気で
あることが記載されている。更にジルコニウムが親金属
として使用される場合には、得られる複合材料はニホウ
化ジルコニウム、炭化ジルコニウム、残留金属ジルコニ
ウムを含んでいることが記載されている。また親金属と
してのアルミニウムが前述の米国特許出願に記載された
プロセスに使用されると、A13B48C2、A I 
B  C、若しくはAlB24C4の如きアルミニウム
のボロ炭化物が形成され、親金属としてのアルミニウム
及び親金属の未反応の酸化されていない他の成分が残存
することが記載されている。前述の米国特許出願のプロ
セス条件に使用されるに適したものとして記載されてい
る他の親金属として、ケイ素、チタン、ハフニウム、ラ
ンタン、鉄、カルシウム、バナジウム、ニオブ、マグネ
シウム、ベリリウムがある。
The typical environment or atmosphere used in the aforementioned US patent application Ser. No. 073,533 was relatively inert or non-reactive under the process conditions. In particular, it is stated that, for example, argon gas or vacuum are preferred process atmospheres. Furthermore, it is stated that when zirconium is used as the parent metal, the resulting composite material contains zirconium diboride, zirconium carbide, and residual metallic zirconium. Also, when aluminum as the parent metal is used in the process described in the aforementioned US patent application, A13B48C2, A I
It is described that a borocarbide of aluminum such as B C or AlB24C4 is formed, leaving aluminum as the parent metal and other unreacted, unoxidized components of the parent metal. Other parent metals described as suitable for use in the process conditions of the aforementioned US patent applications include silicon, titanium, hafnium, lanthanum, iron, calcium, vanadium, niobium, magnesium, and beryllium.

かくして前述の米国特許出願第073,533号には、
上述の従来技術の欠点の多くを解決し、これにより長年
月に亙る要求を充足する新規な方法及びかかる新規な方
法により形成される新規な材料が開示されている。
Thus, the aforementioned U.S. Patent Application No. 073,533 includes:
A new method and new materials formed by the new method are disclosed that overcome many of the deficiencies of the prior art discussed above and thereby satisfy long-standing needs.

発明の概要 本発明は、従来技術の上述の如き問題に鑑み、これらの
問題を解決すべく開発されたものである。
SUMMARY OF THE INVENTION The present invention has been developed in view of the above-mentioned problems of the prior art and to solve these problems.

本発明によれば、複合材料体中に存在する親金属の量を
修正する方法が得られる。特に親金属の量は複合材料体
(従って複合材料体中の残留親金属)を浸炭環境(例え
ばガス状浸炭種や固体炭素物質)に曝すことにより修正
又は制御され、浸炭環境により残留親金属の組成が修正
され、これにより残留親金属の性質が修正される。更に
形成される複合材料体の性質も修正される。ジルコニウ
ム、チタン、ハフニウムの如き親金属は本発明による浸
炭プロセスにより処理されるに非常に適している。本願
に於ては、これ以降ZBC複合材料体と呼ばれるZrB
2−ZrC−Zr複合材料体が主として説明される。特
にZBC複合材料体が説明されるが、同様の製造工程が
チタンやハフニウムを親金属とする複合材料体にも適用
されてよい。
The present invention provides a method for modifying the amount of parent metal present in a composite body. In particular, the amount of parent metal can be modified or controlled by exposing the composite body (and thus the residual parent metal in the composite body) to a carburizing environment (e.g. gaseous carburizing species or solid carbon material), whereby the carburizing environment removes the residual parent metal. The composition is modified, thereby modifying the properties of the remaining parent metal. Furthermore, the properties of the composite body formed are also modified. Parent metals such as zirconium, titanium, and hafnium are well suited to be treated by the carburizing process of the present invention. In this application, ZrB, hereinafter referred to as ZBC composite material body
A 2-ZrC-Zr composite body will primarily be described. Although ZBC composite bodies are specifically described, similar manufacturing processes may be applied to composite bodies having titanium or hafnium as parent metals.

広義には、前述の米国特許出願第073,533号に記
載された方法に従ってZBC複合材料が形成された後、
そのZBCI合材料金材料な耐火容器内に収容された黒
鉛又は炭素ドナー物質の床内に埋込まれる。次いでZB
C複合材料及び床が充填された耐火容器が例えばアルゴ
ン雰囲気を有する抵抗電気炉内にて加熱される。加熱中
少量のH,O又はOr!が反応に供されるようになるも
のと考えられる。かかる少量のH,Oや〇二はアルゴン
ガス中に本来的に存在し、或いは黒鉛の床やZBC複合
材料より放出される。かくしてZBC複合材料が加熱さ
れると、黒鉛の床内の炭素が酸素と反応してガス状浸炭
種を形成する。また例えばCOとCO2との混合気やH
:とCHAとの混合気の如き浸炭種の直接的な供給源が
設けられてもよい。浸炭種よりの炭素はZBC複合材料
中のZrC相中に溶解し、次いで炭素は気孔拡散−x メカニズムによりZBC複合材料全体に亙り輸送される
。かくして炭素は残留親金属と接触して親金属の追加の
炭化物相を形成するよう輸送される(例えばジルコニウ
ムが親金属である場合には、ZrC相が浸炭処理により
形成される)。し−x かし黒鉛の床よりの炭素の一部は直接Z r Ct□相
中に拡散される。
Broadly, after the ZBC composite is formed according to the method described in the aforementioned U.S. Patent Application No. 073,533,
The ZBCI composite is embedded within a bed of graphite or carbon donor material contained within a refractory container made of gold material. Then ZB
The refractory container filled with the C composite material and the bed is heated, for example, in a resistance electric furnace with an argon atmosphere. A small amount of H, O or Or! during heating. It is thought that the molecule becomes available for reaction. Such small amounts of H, O, and O2 are naturally present in the argon gas or are released from the graphite bed or ZBC composite. Thus, when the ZBC composite is heated, the carbon within the graphite bed reacts with oxygen to form gaseous carburizing species. For example, a mixture of CO and CO2 or H
A direct source of carburizing species may be provided, such as a mixture of : and CHA. Carbon from the carburized species is dissolved into the ZrC phase in the ZBC composite, and the carbon is then transported throughout the ZBC composite by a pore diffusion-x mechanism. The carbon is thus transported to contact the remaining parent metal to form an additional carbide phase of the parent metal (for example, if zirconium is the parent metal, a ZrC phase is formed by the carburizing process). A portion of the carbon from the bed of graphite is diffused directly into the Z r Ct□ phase.

かかる浸炭はそれにより残留親金属相を例えばより硬度
が高くより一層耐熱性の高い相に転換し得るので有利で
ある。特に高温強度が必要とされる用途に於ては、ZB
C複合材料は残留親金属相の融点又はそれ以上の温度に
於て強度を喪失し始める。ZBCI合材料金材料プロセ
スによって後処理することにより、親金属相は親金属の
炭化物に転換される(例えば親金属としてのジルコニウ
ムはZrCに転換される)。前述の米国特許出願第07
3,533号に記載された方法に従って製造されたZB
C複合材料中に残存する親金属の量は約5〜40vo1
%である。ZBC複合材料を浸炭種に曝すことにより、
残留親金属としてのジルコニウムの量は例えば約O〜2
 vo1%に低減される。
Such carburization is advantageous because it allows the residual parent metal phase to be converted into, for example, a harder and more heat-resistant phase. Especially in applications where high temperature strength is required, ZB
C composites begin to lose strength at temperatures at or above the melting point of the residual parent metal phase. By post-processing with the ZBCI composite gold material process, the parent metal phase is converted to a carbide of the parent metal (for example, zirconium as parent metal is converted to ZrC). Referenced U.S. Patent Application No. 07
ZB manufactured according to the method described in No. 3,533
The amount of parent metal remaining in the C composite material is approximately 5 to 40 vol.
%. By exposing ZBC composite material to carburizing species,
The amount of zirconium as residual parent metal is e.g.
Reduced to vo1%.

修正されたZBC複合材料は例えばノズルインサートの
如き航空宇宙の構成要素にとって有用である。何故なら
ば、金属含有量が低いことによりZBC複合材料体の高
い靭性や耐熱衝撃性を太き(犠牲にすることな(従来よ
り考えらでいた温度よりも高い温度の用途に於てZBC
複合材料を使用することができるからである。かくして
本発明の浸炭処理は、耐高温エロージヨン性を有し、良
好な熱衝撃特性を有し、例えば2000〜2700℃の
温度に於て比較的高い高温強度を有することが必要とさ
れる用途に特に適用可能なものである。
The modified ZBC composite material is useful for aerospace components such as nozzle inserts. This is because the low metal content increases the high toughness and thermal shock resistance of ZBC composites (without sacrificing them).
This is because composite materials can be used. Thus, the carburizing treatment of the present invention is suitable for applications requiring high temperature erosion resistance, good thermal shock properties, and relatively high high temperature strength at temperatures of, for example, 2000 to 2700°C. Particularly applicable.

更に本発明の浸炭プロセスは時間に依存するので、ZB
C複合材料体上に浸炭された領域、即ち浸炭表面相を形
成することができる。かくしてZBC複合材料の内部が
高い金属含有量を有し、従って高い破壊靭性を有するこ
とを確保しつつ、ZBCI合材料体材料体の耐摩耗性を
向上させることができる。かかるZBC複合材料体は腐
食及び二ローションを受ける種々の工業用ポンプのため
の耐摩板、耐摩リング、インペラインサートの製造に特
に適用可能なものである。特に金属ジルコニウムは強い
酸に対する非常に高い耐食性を有するが、金属それ自身
の摩耗特性は良好ではない。
Furthermore, since the carburizing process of the present invention is time dependent, ZB
A carburized region, ie a carburized surface phase, can be formed on the C composite body. The wear resistance of the ZBCI composite body can thus be improved while ensuring that the interior of the ZBC composite material has a high metal content and therefore a high fracture toughness. Such ZBC composite bodies are particularly applicable to the manufacture of wear plates, wear rings, impeller inserts for various industrial pumps that are subject to corrosion and turbulence. In particular, metallic zirconium has very high corrosion resistance against strong acids, but the wear properties of the metal itself are not good.

かくしてZBC1i合材料体金材料体ることにより、耐
食性を有するZBC複合材料の周りに耐摩耗性に優れた
セラミックの外面を形成することができる。更に実質的
に全ての金属ジルコニウムがZ「C1−8相に転換され
、浸炭が継続されると、ZrC1−X相中の炭素含有量
を増大させることができる(例えば約ZrCを約ZrC
にするこ0.58     0.98 とができる)。かかる転換が誘発されると、ZBC複合
材料の硬度及び耐熱性が向上するものと考えられる。
Thus, by using the ZBC1i composite material, a ceramic outer surface having excellent wear resistance can be formed around the ZBC composite material having corrosion resistance. Furthermore, if substantially all of the metallic zirconium is converted to the Z'C1-8 phase and carburization is continued, the carbon content in the ZrC1-X phase can be increased (e.g. from about ZrC to about ZrC).
0.58 0.98 ) It is believed that when such a conversion is induced, the hardness and heat resistance of the ZBC composite improve.

かくして本発明の方法及び本発明の方法により製造され
る新規な複合材料体はZBC複合材料体の用途を更に拡
張する。
The method of the present invention and the novel composite bodies produced by the method of the present invention thus further extend the uses of ZBC composite bodies.

以下に本発明を実施例について詳細に説明する。The present invention will be described in detail below with reference to examples.

実施例 本発明は、セラミック複合材料体の性質、特に親金属と
してのジルコニウム、ハフニウム又はチタンを炭化ホウ
素の塊内へ反応を伴って浸透させることにより製造され
たセラミック複合材料体の性質を後処理としての浸炭処
理により修正することができるという発見に基くもので
ある。浸炭処理はZBCI合材料体の一部又は実質的に
全ての部分の微細組織、従って機械的性質を変化させる
EXAMPLES The present invention provides post-processing techniques for the properties of ceramic composite bodies, particularly those produced by reactive infiltration of zirconium, hafnium or titanium as parent metal into a mass of boron carbide. This is based on the discovery that it can be modified by a carburizing process. The carburizing process changes the microstructure and thus the mechanical properties of some or substantially all of the ZBCI composite body.

前述の米国特許出願第073,533号に従って製造方
法されたZBC複合材料体はその複合材料体をガス状浸
炭種に曝すことにより修正される。
A ZBC composite body manufactured in accordance with the aforementioned US patent application Ser. No. 073,533 is modified by exposing the composite body to a gaseous carburizing species.

床内に埋込み、黒鉛の床の少くとも一部を制御された雰
囲気の炉内にて水分又は酸素と反応させることにより生
成される。但し炉の雰囲気は主たる成分としてアルゴン
の如き非反応性のガスを含んでいなければならないo 
Matheson Gas proaucts。
embedded within the bed and produced by reacting at least a portion of the graphite bed with moisture or oxygen in a controlled atmosphere furnace. However, the atmosphere in the furnace must contain a non-reactive gas such as argon as a main component.
Matheson Gas products.

I nc、より供給されるアルゴンガスを使用すること
により好ましい結果が得られる。アルゴンガス中に存在
する不純物が浸炭種を形成するために必要な02を供給
するのか否かは明らかではなく、またアルゴンガスは黒
鉛の床又はZBC複合材料体内の成分の成る態様の蒸発
により発生された不純物を含む搬送体としてのみ作用す
るのか否かも明らかではない。更にガス状浸炭種はZB
C複合材料体の加熱中に制御された雰囲気の炉内へ直接
導入されてもよい。
Favorable results are obtained by using argon gas supplied by Inc. It is not clear whether the impurities present in the argon gas provide the necessary O2 to form the carburized species, and the argon gas may be generated by evaporation of the graphite bed or the constituent aspects of the components within the ZBC composite body. It is also unclear whether it acts only as a carrier containing impurities. Furthermore, the gaseous carburizing type is ZB.
C may be introduced directly into the controlled atmosphere furnace during heating of the composite body.

ガス状浸炭種が制御された雰囲気の炉内に導入されると
、ガス状浸炭種が緩く充填された黒鉛粉末中に埋込まれ
たZBC複合材料体の表面の少くとも一部に接触し得る
態様にてレイアップが設計されなければならない。浸炭
種中の炭素や黒鉛の床よりの炭素は互(1に接続された
炭化ジルコニウム相中に溶解し、炭化ジルコニウム相は
もし必要ならば空格子拡散プロセスによりZBCm合材
料合材実体的に全ての領域に亙り溶解した炭素を輸送す
る。残留する親金属ジルコニウム中への炭素の拡散は非
常に緩慢である。かくして炭化ジルコニウム相が存在し
なければZBC複合材料体中に残存する全ての金属ジル
コニウムに炭素を溶解させることは非常に長い時間を要
するので実際的ではなく或いは不経済である。炭化ジル
コニウム相中への炭素の拡散及び金属ジルコニウム相中
への炭素の拡散は両方とも時間に依存する。しかし炭化
ジルコニウム相中に於ける炭素の輸送速度は金属ジルコ
ニウム相中に於ける炭素の輸送速度よりも遥かに速い。
When the gaseous carburizing species is introduced into the controlled atmosphere furnace, the gaseous carburizing species may contact at least a portion of the surface of the ZBC composite body embedded in the loosely packed graphite powder. The layup must be designed accordingly. The carbon in the carburizing species and the carbon from the graphite bed are dissolved in the mutually connected zirconium carbide phase, and the zirconium carbide phase is dissolved into the ZBCm composite material by a vacancy diffusion process if necessary. The diffusion of carbon into the remaining parent metallic zirconium is very slow. Thus, in the absence of a zirconium carbide phase, all remaining metallic zirconium in the ZBC composite body It would be impractical or uneconomical to dissolve the carbon into the zirconium carbide phase because it would take a very long time.The diffusion of carbon into the zirconium carbide phase and the diffusion of carbon into the metallic zirconium phase are both time dependent. However, the transport rate of carbon in the zirconium carbide phase is much faster than that in the metallic zirconium phase.

望ましい量の炭素がZBCI合材料体材料体中され残留
する親金属ジルコニウムに接触すると、親金属ジルコニ
ウムはZrCに転換される。かかる転換は望ましい。何
故ならば、かくして修正されたZBC複合材料は曲げ強
さや靭性を殆ど損うことなく高い硬度及び弾性係数を有
するようになるからである。更にZBC複合複合材料金
属含有量が減少するので、高温特性も改善される。5〜
30vo1%の残留親金属を含むZBC複合材料は後処
理としての浸炭処理により、ZBC複合複合材料金存す
る親金属の量が約0〜2vo1%、典型的には約0.5
〜2 vo1%になるよう修正され得ることが見出され
た。かくして大質的に全ての親金属(但し典型的には約
4.5〜28 vo1%の親金属)をジルコニウムより
ZrCに転換することができる。
When the desired amount of carbon is introduced into the ZBCI composite body and contacts the remaining parent metal zirconium, the parent metal zirconium is converted to ZrC. Such a transformation is desirable. This is because the ZBC composite thus modified has high hardness and elastic modulus with little loss of bending strength or toughness. Furthermore, since the ZBC composite metal content is reduced, the high temperature properties are also improved. 5~
The ZBC composite material containing 30vol% residual parent metal is carburized as a post-treatment to reduce the amount of parent metal remaining in the ZBC composite material to about 0 to 2vo1%, typically about 0.5%.
It was found that it could be modified to be ~2 vol%. Thus, substantially all of the parent metal (but typically about 4.5-28 vol. % parent metal) can be converted from zirconium to ZrC.

更にZBCI合材料体を浸炭種に曝す時間及び浸炭プロ
セスが生じる温度を制御することにより、ZBC複合材
料体の外面に浸炭された領域、即ち浸炭層を形成するこ
とができる。かかるプロセスにより金属含有量が比較的
高く破壊靭性が比較的高いZBC132合材料のコアを
囲繞する硬く耐摩耗性に優れた表面が形成される。
Additionally, by controlling the time that the ZBCI composite body is exposed to the carburizing species and the temperature at which the carburizing process occurs, a carburized region, ie, a carburized layer, can be formed on the outer surface of the ZBC composite body. This process creates a hard, wear-resistant surface surrounding a core of ZBC132 composite material with relatively high metal content and relatively high fracture toughness.

要するに、典型的には約5〜30vo1%の残留親金属
ジルコニウムを含むZBC複合材料を、少くとも成る程
度の水分又は酸素を与えるアルゴン雰囲気中に於て約5
〜48時間に亙り約1500〜2200℃の温度にて作
動する制御された雰囲気の炉内にて浸炭種に曝すことに
より、ZBC1fi合材料が浸炭材料てより一層好まし
い複合材料体となることが解った。
Briefly, a ZBC composite material, typically containing about 5 to 30 vol.% of residual parent metal zirconium, is heated in an argon atmosphere providing at least some moisture or oxygen.
Exposure to carburizing species in a controlled atmosphere furnace operating at temperatures of approximately 1500-2200° C. for a period of ~48 hours has shown that the ZBC1fi composite material becomes a more desirable composite body than the carburized material. Ta.

下記の例は本発明の一例であり、この例は複合材料体、
特にZBCf2合材料体合材料理としての浸炭処理の種
々の局面を説明するためのものであり、本発明の範囲を
限定するものではない。
The example below is an example of the present invention, which includes a composite body,
This is particularly intended to explain various aspects of carburizing treatment as a ZBCf2 composite material composite material, and is not intended to limit the scope of the present invention.

例 米国特許出願第073,533号に記載された例1に従
ってZBC複合材料体が製造された。下記の表1の左欄
はかくして形成されたZBC複合材料体の種々の機械的
性質を示している。次いでZBC複合材料体の全ての面
がアセトン及びエタノールにて超音波を使用して脱脂さ
れた。次いでZBC複合材料体は約75μの平均粒径を
有する高純度の黒鉛粉末の床内に埋込まれた。黒鉛粉末
はLonza、 Inc、より販売され、KS−75な
る商品名が付されたものであった。黒鉛粉末の床は黒鉛
鋳型(Union Carbideより販売されている
Grade ATJ )内に貯容された。次いで鋳型の
上面に黒鉛製のカバープレートが被せられた。次いで黒
鉛粉末中に埋込まれたZBC複合材料体を含む組立体が
雰囲気が遮断された抵抗加熱炉内に配置された。炉内の
雰囲気はMatheson Gas Products
、 Inc。
EXAMPLE A ZBC composite body was prepared according to Example 1 described in US Patent Application No. 073,533. The left column of Table 1 below shows various mechanical properties of the ZBC composite bodies thus formed. All sides of the ZBC composite body were then degreased using ultrasound in acetone and ethanol. The ZBC composite body was then embedded in a bed of high purity graphite powder having an average particle size of approximately 75μ. The graphite powder was sold by Lonza, Inc. and had the trade name KS-75. A bed of graphite powder was stored in a graphite mold (Grade ATJ sold by Union Carbide). A graphite cover plate was then placed on top of the mold. The assembly, including the ZBC composite body embedded in graphite powder, was then placed in an atmosphere-blocked resistance heating furnace. The atmosphere inside the furnace is Matheson Gas Products.
, Inc.

より供給されたアルゴンであった。まず炉が室温に於て
lXl0−’Torrに脱気され、しかる後アルゴンに
て充填された。次いで炉がlXl0−”Torrの圧力
に減圧され、その減圧状態にて約500℃の温度に加熱
された。次いで炉は再度アルゴンにて充填され、アルゴ
ンは約1.&/minの流量にて流れる状態に維持され
、約2psi  (140g / cd )の圧力に維
持された。次いで炉は6時間かけて約1750℃の温度
に加熱され、次いで1750℃に約12時間維持された
。次いで炉は約6時間冷却された。冷却後浸炭されたZ
BC複合材料が炉より取出され、グリッドブラスティン
グにより過剰の黒鉛粉末が除去された。
The argon was supplied by The furnace was first evacuated to 1X10-'Torr at room temperature and then filled with argon. The furnace was then evacuated to a pressure of 1X10-'' Torr and heated under vacuum to a temperature of approximately 500°C. The furnace was then again filled with argon at a flow rate of approximately 1. It was kept flowing and maintained at a pressure of about 2 psi (140 g/cd). The furnace was then heated to a temperature of about 1750 °C over 6 hours and then maintained at 1750 °C for about 12 hours. The furnace was then heated to a temperature of about 1750 °C for about 12 hours. It was cooled for about 6 hours. Z was carburized after cooling.
The BC composite was removed from the furnace and excess graphite powder was removed by grid blasting.

下記の表1の右欄は浸炭処理が行われた後に於けるZB
C複合材料の機械的性質を示している。
The right column of Table 1 below shows the ZB after carburizing treatment.
C shows the mechanical properties of the composite material.

残留親金属ジルコニウムの量が約10vo1%より約0
. 5 vo1%に低減されており、硬度、弾性係数、
剪断係数の何れも増大していることが解る。
The amount of residual parent metal zirconium is less than about 10vol% and about 0%.
.. 5 vo1%, hardness, elastic modulus,
It can be seen that both shear coefficients are increasing.

但し曲げ強さはある程度犠牲になっているが、約500
 M P aの曲げ強さは多くの航空宇宙の用途にとっ
て十分な値である。
However, the bending strength is sacrificed to some extent, but it is approximately 500
The bending strength of M Pa is sufficient for many aerospace applications.

表  1 浸炭前   浸炭後 Zn含有jl (vo1%)   9.9   0.5
硬度(HRA)     80.6  81.9(HK
)      10i1  1388弾性係数(GPa
)    364   442剪断係数(GPa)  
  158   1844点曲げ強さ(MPa)  8
75   497以上に於ては本発明を特定の実施例に
ついて詳細に説明しへたが、本発明はかかる実施例に限
定されるものではなく、本発明の範囲内にて他の種々の
実施例が可能であることは当業者にとって明、らかであ
ろう。
Table 1 Before carburizing After carburizing Zn content jl (vo1%) 9.9 0.5
Hardness (HRA) 80.6 81.9 (HK
) 10i1 1388 Modulus of elasticity (GPa
) 364 442 Shear modulus (GPa)
158 1844 point bending strength (MPa) 8
75 497 Although the present invention has been described in detail with respect to specific embodiments above, the present invention is not limited to such embodiments, and various other embodiments may be employed within the scope of the present invention. It will be obvious to those skilled in the art that this is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に従って処理されるよう黒鉛粉末の床2
内に埋込まれ耐火容器1内に収容されたZBC複合材料
体3を示す解図的断面図である。 1・・・耐火容器、2・・・黒鉛粉末の床、3・・・Z
BC複合材料体 特許出願人  ランキサイド・テクノロジー・カンパニ
ー参エル・ピー
FIG. 1 shows a bed 2 of graphite powder to be treated according to the present invention.
1 is an illustrative cross-sectional view showing a ZBC composite material body 3 embedded within and housed within a fireproof container 1; FIG. 1...Fireproof container, 2...Graphite powder floor, 3...Z
BC composite material patent applicant: Lanxide Technology Company, L.P.

Claims (2)

【特許請求の範囲】[Claims] (1)第一の複合材料体を製造することを含む自己支持
体の製造方法にして、 親金属を選定する工程と、 実質的に不活性の雰囲気中にて前記親金属をその融点以
上の温度に加熱して溶融親金属体を形成し、前記溶融親
金属体を炭化ホウ素を含む塊と接触させる工程と、 溶融親金属を前記炭化ホウ素の塊内に浸透させて前記溶
融親金属を前記炭化ホウ素と反応させ、これにより少く
とも一種のホウ素含有化合物を形成するに十分な時間に
亙り前記温度を維持する工程と、 親金属の少くとも一種のホウ素含有化合物を含む前記自
己支持体を製造するに十分な時間に亙り前記浸透及び反
応を継続させる工程と、 前記自己支持体を浸炭環境に曝し、これにより前記自己
支持体中に残存する親金属を親金属の炭化物に転換する
工程と、 を含む製造方法。
(1) A method for manufacturing a self-supporting body comprising manufacturing a first composite material body, comprising the steps of selecting a parent metal, and heating the parent metal at a temperature above its melting point in a substantially inert atmosphere. heating to a temperature to form a molten parent metal body and contacting the molten parent metal body with a mass containing boron carbide; and infiltrating the molten parent metal into the boron carbide mass to bring the molten parent metal into contact with the boron carbide mass. maintaining said temperature for a sufficient period of time to react with boron carbide, thereby forming at least one boron-containing compound; and producing said self-supporting body comprising at least one boron-containing compound of a parent metal. and exposing the self-supporting body to a carburizing environment, thereby converting the parent metal remaining in the self-supporting body to a carbide of the parent metal. manufacturing methods including.
(2)ジルコニウムとチタンとハフニウムとよりなる群
より選択され実質的に0.5〜2vol%の量にて存在
する金属層と、境界まで延在する三次元的に互いに接続
されたセラミック相とを含み、前記セラミック相はジル
コニウムの炭化物とチタンの炭化物とハフニウムの炭化
物とよりなる群より選択された炭化物を含み、更に前記
炭化物に対応する金属のホウ化物を含み、前記ホウ化物
は小板状の組織を有する複合材料。
(2) A metal layer selected from the group consisting of zirconium, titanium, and hafnium and present in an amount of substantially 0.5 to 2 vol%, and a three-dimensionally interconnected ceramic phase extending to the boundary. , the ceramic phase includes a carbide selected from the group consisting of a zirconium carbide, a titanium carbide, and a hafnium carbide, and further includes a metal boride corresponding to the carbide, the boride having a platelet shape. A composite material with a structure of
JP63325736A 1987-12-23 1988-12-23 Composite material and method for producing the same Expired - Lifetime JP2667484B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US137,382 1980-04-04
US07/137,382 US4915736A (en) 1987-12-23 1987-12-23 Method of modifying ceramic composite bodies by carburization process and articles produced thereby

Publications (2)

Publication Number Publication Date
JPH01224255A true JPH01224255A (en) 1989-09-07
JP2667484B2 JP2667484B2 (en) 1997-10-27

Family

ID=22477170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63325736A Expired - Lifetime JP2667484B2 (en) 1987-12-23 1988-12-23 Composite material and method for producing the same

Country Status (30)

Country Link
US (1) US4915736A (en)
EP (1) EP0322346B1 (en)
JP (1) JP2667484B2 (en)
KR (1) KR890009809A (en)
CN (1) CN1035281A (en)
AT (1) ATE87604T1 (en)
AU (1) AU620832B2 (en)
BG (1) BG60372B1 (en)
BR (1) BR8806735A (en)
CA (1) CA1317317C (en)
CS (1) CS276909B6 (en)
DD (1) DD283367A5 (en)
DE (1) DE3879908T2 (en)
DK (1) DK707588A (en)
FI (1) FI93348C (en)
HU (1) HUT63134A (en)
IE (1) IE62841B1 (en)
IL (1) IL88576A (en)
IN (1) IN169718B (en)
MX (1) MX166360B (en)
NO (1) NO885540L (en)
NZ (1) NZ227463A (en)
PH (1) PH25593A (en)
PL (1) PL158307B1 (en)
PT (1) PT89319B (en)
RO (1) RO107121B1 (en)
RU (1) RU1794075C (en)
TR (1) TR26136A (en)
YU (1) YU233388A (en)
ZA (1) ZA889566B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180697A (en) * 1987-07-15 1993-01-19 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
IL86947A (en) * 1987-07-15 1992-08-18 Lanxide Technology Co Ltd Process for preparing self-supporting bodies and products made thereby
US5296417A (en) * 1987-07-15 1994-03-22 Lanxide Technology Company, Lp Self-supporting bodies
US5162098A (en) * 1987-12-23 1992-11-10 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5298051A (en) * 1987-12-23 1994-03-29 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5143870A (en) * 1987-12-23 1992-09-01 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US4978644A (en) * 1989-01-13 1990-12-18 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US4904446A (en) * 1989-01-13 1990-02-27 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US5238883A (en) * 1989-01-13 1993-08-24 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5149678A (en) * 1989-01-13 1992-09-22 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5104029A (en) * 1989-01-13 1992-04-14 Lanxide Technology Company, Lp Method of bonding a ceramic composite body to a second body and articles produced thereby
US5372178A (en) * 1989-01-13 1994-12-13 Lanxide Technology Company, Lp Method of producing ceramic composite bodies
IL92396A0 (en) * 1989-01-13 1990-07-26 Lanxide Technology Co Ltd Method of producing ceramic composite bodies
US5187128A (en) * 1989-01-13 1993-02-16 Lanxide Technology Company, Lp Process for preparing self-supporting bodies
US5250324A (en) * 1990-06-25 1993-10-05 Lanxide Technology Company, L.P. Method for forming a surface coating using powdered solid oxidants and parent metals
US5112654A (en) * 1990-06-25 1992-05-12 Lanxide Technology Company, Lp Method for forming a surface coating
US5232040A (en) * 1990-07-12 1993-08-03 Lanxide Technology Company, Lp Method for reducing metal content of self-supporting composite bodies and articles formed thereby
JPH05509076A (en) * 1990-07-12 1993-12-16 ランキサイド テクノロジー カンパニー,リミティド パートナーシップ Ceramic composite with reduced metal content
US5154425A (en) * 1990-10-19 1992-10-13 Lanxide Technology Company, Lp Composite golf club head
US5458480A (en) * 1990-12-05 1995-10-17 Newkirk; Marc S. Tooling materials for molds
US5166105A (en) * 1990-12-10 1992-11-24 Lanxide Technology Company, Lp Process for preparing self-supporting ceramic composite bodies and bodies produced thereby
US5500182A (en) * 1991-07-12 1996-03-19 Lanxide Technology Company, Lp Ceramic composite bodies with increased metal content
US5435966A (en) * 1991-07-12 1995-07-25 Lanxide Technology Company, Lp Reduced metal content ceramic composite bodies
US5750450A (en) * 1996-01-08 1998-05-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ablation resistant zirconium and hafnium ceramics
EP3273313A1 (en) 2016-07-19 2018-01-24 The Swatch Group Research and Development Ltd. Cladding element with metallic appearance, with integrated communication system
CN106542802A (en) * 2016-10-21 2017-03-29 安徽青花坊瓷业股份有限公司 A kind of case-carbonizing crockery and its preparation technology
CN112521157A (en) * 2020-12-24 2021-03-19 西北工业大学 Ultrahigh-temperature ceramic matrix composite and preparation method thereof
CN113943161A (en) * 2021-11-25 2022-01-18 王耀民 Ti (BCN) powder and preparation method thereof

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2741822A (en) * 1951-01-29 1956-04-17 Carborundum Co Preparation of refractory products
US3255027A (en) * 1962-09-07 1966-06-07 Du Pont Refractory product and process
US3298842A (en) * 1963-03-22 1967-01-17 Du Pont Process for preparing hollow refractory particles
US3296002A (en) * 1963-07-11 1967-01-03 Du Pont Refractory shapes
US3419404A (en) * 1964-06-26 1968-12-31 Minnesota Mining & Mfg Partially nitrided aluminum refractory material
US3473987A (en) * 1965-07-13 1969-10-21 Du Pont Method of making thin-walled refractory structures
US3421863A (en) * 1966-03-04 1969-01-14 Texas Instruments Inc Cermet material and method of making same
US3437468A (en) * 1966-05-06 1969-04-08 Du Pont Alumina-spinel composite material
US3789096A (en) * 1967-06-01 1974-01-29 Kaman Sciences Corp Method of impregnating porous refractory bodies with inorganic chromium compound
US3473938A (en) * 1968-04-05 1969-10-21 Du Pont Process for making high strength refractory structures
US3864154A (en) * 1972-11-09 1975-02-04 Us Army Ceramic-metal systems by infiltration
US3973977A (en) * 1973-11-01 1976-08-10 Corning Glass Works Making spinel and aluminum-base metal cermet
CH654031A5 (en) * 1983-02-10 1986-01-31 Alusuisse METHOD FOR PRODUCING SOLID CATHODES.
ATE53863T1 (en) * 1983-02-16 1990-06-15 Moltech Invent Sa SINTERED METAL-CERAMIC COMPOSITES AND THEIR PRODUCTION.
NZ211405A (en) * 1984-03-16 1988-03-30 Lanxide Corp Producing ceramic structures by oxidising liquid phase parent metal with vapour phase oxidising environment; certain structures
NZ212704A (en) * 1984-07-20 1989-01-06 Lanxide Corp Producing self-supporting ceramic structure
US4851375A (en) * 1985-02-04 1989-07-25 Lanxide Technology Company, Lp Methods of making composite ceramic articles having embedded filler
US4605440A (en) * 1985-05-06 1986-08-12 The United States Of America As Represented By The United States Department Of Energy Boron-carbide-aluminum and boron-carbide-reactive metal cermets
US4655830A (en) * 1985-06-21 1987-04-07 Tomotsu Akashi High density compacts
US4731118A (en) * 1986-06-25 1988-03-15 Scm Metal Products, Inc. High impact strength power metal part and method for making same
US4702770A (en) * 1985-07-26 1987-10-27 Washington Research Foundation Multipurpose boron carbide-aluminum composite and its manufacture via the control of the microstructure
US4793859A (en) * 1985-07-31 1988-12-27 General Electric Company Infiltration of mo-containing material with silicon
US4777014A (en) * 1986-03-07 1988-10-11 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US4718941A (en) * 1986-06-17 1988-01-12 The Regents Of The University Of California Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets
IL86947A (en) * 1987-07-15 1992-08-18 Lanxide Technology Co Ltd Process for preparing self-supporting bodies and products made thereby

Also Published As

Publication number Publication date
BG60372B1 (en) 1994-11-15
IE883826L (en) 1989-06-23
KR890009809A (en) 1989-08-04
BG86484A (en) 1993-12-24
CA1317317C (en) 1993-05-04
NZ227463A (en) 1990-11-27
TR26136A (en) 1994-01-06
PL276564A1 (en) 1989-08-21
ATE87604T1 (en) 1993-04-15
EP0322346A3 (en) 1990-07-18
IE62841B1 (en) 1995-03-08
IL88576A (en) 1992-08-18
FI93348C (en) 1995-03-27
PT89319B (en) 1993-08-31
DE3879908T2 (en) 1993-09-09
ZA889566B (en) 1990-08-29
EP0322346A2 (en) 1989-06-28
NO885540L (en) 1989-06-26
DK707588A (en) 1989-06-24
YU233388A (en) 1990-06-30
JP2667484B2 (en) 1997-10-27
IL88576A0 (en) 1989-07-31
DK707588D0 (en) 1988-12-20
US4915736A (en) 1990-04-10
EP0322346B1 (en) 1993-03-31
RO107121B1 (en) 1993-09-30
PL158307B1 (en) 1992-08-31
RU1794075C (en) 1993-02-07
PH25593A (en) 1991-08-08
DE3879908D1 (en) 1993-05-06
CS276909B6 (en) 1992-09-16
NO885540D0 (en) 1988-12-14
CN1035281A (en) 1989-09-06
AU620832B2 (en) 1992-02-27
HUT63134A (en) 1993-07-28
IN169718B (en) 1991-12-14
DD283367A5 (en) 1990-10-10
AU2676288A (en) 1989-06-29
MX166360B (en) 1993-01-04
FI885928A (en) 1989-06-24
PT89319A (en) 1989-12-29
FI93348B (en) 1994-12-15
BR8806735A (en) 1989-08-29
CS859388A3 (en) 1992-03-18

Similar Documents

Publication Publication Date Title
JP2667484B2 (en) Composite material and method for producing the same
JP2911939B2 (en) Method for producing self-supporting ceramic composite
JPH05311274A (en) Self-supporting composite ceramic body
JPH0375273A (en) Manufacturing self-supporting body
JPH02283668A (en) Preparation of self-supporting body
JPH02275764A (en) Production of self-supporting body and product produced thereby
US5165463A (en) Directional solidification of metal matrix composites
JP2703589B2 (en) Method for manufacturing self-supporting body
US5149678A (en) Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5614308A (en) Macrocomposite bodies
US5162098A (en) Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
JP2911936B2 (en) Method for producing ceramic composite
US5437833A (en) Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
JP2911937B2 (en) Method for bonding a ceramic composite to a second object and articles made thereby
US5143870A (en) Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5120684A (en) Pressure assisted technique for forming self-supporting composite bodies and articles formed thereby
US5264401A (en) Pressure assisted technique for forming self-supporting composite bodies and articles formed thereby