JPH01223785A - Manufacture of composite piezoelectric material - Google Patents

Manufacture of composite piezoelectric material

Info

Publication number
JPH01223785A
JPH01223785A JP63050356A JP5035688A JPH01223785A JP H01223785 A JPH01223785 A JP H01223785A JP 63050356 A JP63050356 A JP 63050356A JP 5035688 A JP5035688 A JP 5035688A JP H01223785 A JPH01223785 A JP H01223785A
Authority
JP
Japan
Prior art keywords
composite
piezoelectric
piezoelectric material
forming material
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63050356A
Other languages
Japanese (ja)
Inventor
Kazutoshi Ayusawa
鮎沢 一年
Toru Arai
徹 荒井
Toyosaku Sato
佐藤 豊作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP63050356A priority Critical patent/JPH01223785A/en
Publication of JPH01223785A publication Critical patent/JPH01223785A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0655Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element of cylindrical shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To easily form a composite piezoelectric material having large anisotropy of piezoelectric characteristics by a method wherein a laminated body is made by winding a piezoelectric material and a composite material including bulking agent around a core which is dissipated when baked, and this body is baked. CONSTITUTION:A piezoelectric material is PZT(lead titanate zirconate), for example, and a material 11 as a green sheet having specified thickness is obtained by a slurry for molding. A composite material 15 including filler 13 is separately prepared. Then the material 11 obtained as a green sheet and the composite material 15 are laminated. Under appropriate temperature the material 11 and the composite material 15 are applied with pressure by a roll so that they can be conformed with each other, and a laminated body 17 is obtained. Then the laminated body 17 is wound around a core 19 of a hollow cylinder made of organic synthetic resin, for example, until specified thickness is reached to obtain a product 21. The product 21 is baked under temperature of approx. 600 to 700 deg.C. This eliminates filler 13 and realizes a composite piezoelectric material 25 consisting of PZT and air in voids 23 formed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば水中マイクロホンの送波器又は受波
器等に用いて好適な複合圧電体の製造方法に関するもの
で、特に、圧電材料と、この圧電材料の誘電率とは異な
る誘電率を有する物質とを含ませて成る複合圧電体の製
造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a composite piezoelectric material suitable for use in, for example, a transmitter or receiver of an underwater microphone, and in particular, relates to a method for manufacturing a composite piezoelectric material suitable for use in, for example, a transmitter or receiver of an underwater microphone. The present invention relates to a method of manufacturing a composite piezoelectric body including a substance having a dielectric constant different from that of the piezoelectric material.

(従来の技術) 従来より、音響センサの送受波器等の材料として種々の
圧電材料が使用されているが、センサ感度の向上を図る
ため、圧電特性の異方性が大きい材料が望まれでいる。
(Prior art) Various piezoelectric materials have been used as materials for transducers and the like of acoustic sensors, but in order to improve sensor sensitivity, materials with large anisotropy in piezoelectric properties are desired. There is.

この大きな異方性を得る方法としては、有機材料(例え
ばエポキシ樹脂、ウレタン樹脂等)中に圧電磁器粉末を
混合させる方法や、圧電磁器棒を所定間隔で配列させ、
これら圧電磁器棒間に上述のような樹脂を充填させる方
法があった。
Methods for obtaining this large anisotropy include mixing piezoelectric ceramic powder into an organic material (e.g., epoxy resin, urethane resin, etc.), arranging piezoelectric ceramic rods at predetermined intervals,
There has been a method of filling the spaces between these piezoelectric ceramic rods with resin as described above.

また、他の方法としては、例えば、特公昭59−149
10号公報に開示されているように、圧電材料のグリー
ンシートにスリットを予め形成し、このスリット付きの
グリーンシートを積層させた俊これを焼結させ、スリッ
ト部分に圧電体の誘電率とは異なる誘電率を有する物質
例えば空気或いは有機物を充填させて複合化する技術が
あった。
In addition, as another method, for example,
As disclosed in Publication No. 10, slits are formed in advance in a green sheet of piezoelectric material, and the green sheets with slits are laminated and sintered, and the dielectric constant of the piezoelectric material is determined at the slit portion. There is a technique of filling materials with different dielectric constants, such as air or organic materials, to create a composite material.

(発明が解決しようとする課題) しかしながら、上述した圧電材料と樹脂とを複合化させ
で得た複合圧電体は、例えば水中マイクロッオンとしで
使用する場合のハイドロスタティック定数例えば体積感
度9hは大きいけれども、圧電材料こ樹脂との密着性が
弱く、しばしば剥離等が生じるという問題点かあった。
(Problems to be Solved by the Invention) However, although the composite piezoelectric material obtained by combining the piezoelectric material and resin described above has a large hydrostatic constant, such as a volume sensitivity of 9 h, when used as an underwater micro-on, for example, The piezoelectric material has a problem in that its adhesion to the resin is weak and peeling often occurs.

また、特公昭59−14910号公報に開示されている
方法の場合、機械的な技術を用いてスリットをグリーン
シートに予め形成する必要があるため、接合圧電体の製
造工数の増加や、製造時の取り扱いが難しい。これがた
め、実質的に、量産化、延いては製造コストの低減を図
ることが難しいという問題が有った。
In addition, in the case of the method disclosed in Japanese Patent Publication No. 59-14910, it is necessary to form slits in the green sheet in advance using mechanical technology, which increases the number of man-hours for manufacturing the bonded piezoelectric body and is difficult to handle. For this reason, there has been a problem in that it is difficult to achieve mass production and further reduce manufacturing costs.

この発明は上述した点に鑑みなされたものであり、従っ
てこの発明の目的は、感度の高い音響センサを構成する
ことか出来るように、圧電特性の異方性か大きな複合圧
電体を簡易に製造することが出来る方法を提供すること
にある。
The present invention has been made in view of the above points, and therefore, an object of the present invention is to easily manufacture a composite piezoelectric material with large anisotropy of piezoelectric properties so as to be able to construct a highly sensitive acoustic sensor. The goal is to provide a method that allows you to do so.

(課題を解決するための手段) この目的の達成を図るため、この発明の複合圧電体の製
造方法によれば、圧電材料と、この圧電材料の誘電率と
は異なる誘電率を有する物質との複合圧電体を製造する
に当り、 圧電材料よりなる形成材に充填材を含ませて複合形成材
を作製する工程と、 焼成により消失する芯体に、前述した形成材と上述の複
合形成材とを積層して巻き取って成形体を構成した債、
この成形体1j8焼成する工程とを含むことを特徴とし
ている。
(Means for Solving the Problem) In order to achieve this object, according to the method for manufacturing a composite piezoelectric material of the present invention, a piezoelectric material and a substance having a dielectric constant different from that of the piezoelectric material are combined. In manufacturing a composite piezoelectric body, there are two steps: a step of impregnating a filler into a forming material made of piezoelectric material to create a composite forming material, and a step of adding the above-mentioned forming material and the above-mentioned composite forming material to a core that disappears by firing. A bond formed by laminating and rolling up a molded body,
The method is characterized in that it includes a step of firing the molded body 1j8.

また、この発明の方法の実施に当っては、上述した充填
材を有機物または無機物として行なうのか好適である。
Further, when carrying out the method of the present invention, it is preferable to use the above-mentioned filler as an organic substance or an inorganic substance.

(作用) 上述したこの発明の構成によれば、例えば有機物または
無機物から成る充填材を圧電材料から成る形成材に含ま
せた複合形成材と、上述の形成材とを積層状態として芯
体に巻き取り、成形体を得る。この際、成形体の焼成温
度で消失する材料により芯体を構成しておく。
(Function) According to the above-described structure of the present invention, a composite material in which a filler made of an organic or inorganic material is included in a material made of a piezoelectric material and the above-mentioned material are layered and wound around a core. to obtain a molded body. At this time, the core is made of a material that disappears at the firing temperature of the molded body.

従って、例えば、成形体の焼成温度で消失する有機物ま
たはその他の材料により充填材を構成する場合、上述の
成形体を焼成して得られる複合圧電体の、複合形成材か
ら成る層に相当する部分には空気から成る空孔が形成さ
れる。
Therefore, for example, when the filler is composed of an organic substance or other material that disappears at the firing temperature of the molded body, the portion of the composite piezoelectric body obtained by firing the molded body that corresponds to the layer made of the composite forming material A pore consisting of air is formed in the .

これに対して、例えば上述の充填材として、成形体の焼
成温度で消失しない無機物またはその他の材料を用いた
場合には、複合圧電体の、複合形成材から成る部分には
充填材が残存することと成る。
On the other hand, if an inorganic substance or other material that does not disappear at the firing temperature of the molded body is used as the above-mentioned filler, for example, the filler will remain in the part of the composite piezoelectric body made of the composite forming material. That's what happens.

(実施例) 以下、図面を参照してこの発明の実施例につき説明する
。尚、説明に用いる各図は、この発明を理解出来る程度
に概略的に示しであるにすぎず、従って、各構成成分の
形状、寸法、配置関係はもとより、数値例は以下説明す
る実施例に限定されるものではない、また、各図におい
て同様な構成成分については、同一の符号を付して示し
である。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the figures used in the explanation are merely illustrative to the extent that this invention can be understood, and therefore, the shapes, dimensions, arrangement relationships, and numerical examples of each component are not included in the embodiments described below. This is not intended to be limiting, and similar components in each figure are designated by the same reference numerals.

尚、この発明の方法を適用出来る複合圧電体は種々のも
のが考えられるか、この実施例では、圧電材料をPZT
 (チタン酸ジルコン酸鉛)とし、このPZTの誘電率
とは異なる誘電率を有する物質が成形体の焼成温度で消
失する場合と、残存する場合とに分けて特定の条件を例
示しで説明する。また、これら充填材を構成する材料に
より、得られる複合圧電体の構成は異なったものと成る
が、製造工程としては共通に扱うことができる。これが
ため、以下の説明においては、重複説明を回避する目的
で、焼成後における充填材の消失と残存とを包括的に表
現して示すこととする。
Various composite piezoelectric materials can be considered to which the method of the present invention can be applied; in this example, the piezoelectric material is PZT.
(lead zirconate titanate), and specific conditions will be explained by illustrating cases in which a substance having a dielectric constant different from that of PZT disappears at the firing temperature of the molded body, and cases in which it remains. . Further, although the configuration of the resulting composite piezoelectric body differs depending on the materials constituting these fillers, the same manufacturing process can be used. Therefore, in the following description, in order to avoid redundant explanation, the disappearance and remaining of the filler after firing will be expressed in a comprehensive manner.

ます、圧電材料としたPZTの形成材の一例として、P
ZTよりなるグリーンシートを用いた場合の作製工程に
つき説明する。
As an example of a forming material of PZT as a piezoelectric material, P
The manufacturing process using a green sheet made of ZT will be explained.

始めに、化学的にそれぞれ高純度な、Pb0(−酸化!
8) 、TiO2(二酸化チタン)及びZr02(二酸
化ジルコニウム)を、Pb(2r−Ti)03の組成比
に合わせて、各々、所定量秤量する。然る後、従来周知
のセラミックス工程に従い、ポットミルを用いで、これ
らの混合粉を純水と共に約20時間に亙って混合する。
First, each chemically highly pure Pb0(-oxidized!
8) Weigh predetermined amounts of TiO2 (titanium dioxide) and Zr02 (zirconium dioxide), respectively, in accordance with the composition ratio of Pb(2r-Ti)03. Thereafter, these mixed powders are mixed with pure water for about 20 hours using a pot mill according to a conventionally known ceramic process.

続いて、上述した混合物を脱水乾燥し、約900〜10
00℃の温度で約2時間に亙って仮焼することにより、
仮焼物を得る。この後、再びボットミルを用い、上述の
仮焼物に純水を加えて粉砕し、脱水乾燥してPZTの仮
焼物を得る。
Subsequently, the above-mentioned mixture is dehydrated and dried to give about 900 to 10
By calcining at a temperature of 00℃ for about 2 hours,
Obtain a calcined product. Thereafter, using the Bot mill again, pure water is added to the above-mentioned calcined product, which is pulverized and dehydrated and dried to obtain a PZT calcined product.

次に、上述の仮焼粉100(9)に対して、純水20(
9)及び解膠剤(藁−工業薬品■製、rセラモD−+3
4Jl (商品8乃2.5(9)を添加する。然る後、
ポットミルを用いて、これら混合物を約4〜5時間に亙
って混合する。
Next, to the above calcined powder 100 (9), pure water 20 (
9) and peptizer (manufactured by Wara-Kogyo Yakuhin ■, rCeramo D-+3
4Jl (Add product 8-2.5 (9). After that,
The mixtures are mixed using a pot mill for about 4-5 hours.

続いて、上述の混合物に対しで、バインダ(第一工業薬
品■製、Ii’セラモT8−13.71 (商品名))
40(9)、可塑剤(第一工業薬品■製、Ii’セラモ
P−17、U (商品名))5(9)、消泡剤(第一工
業薬品■製、ii′アシチフロスFa02.o (商品
名))0.2(9)!加え、ボールミル中で約20時間
に亙ってざらに混合を行ない、PZTがら成る形成材用
スラリーが得られる。
Next, a binder (manufactured by Daiichi Kogyo Yakuhin ■, Ii'Ceramo T8-13.71 (trade name)) was added to the above mixture.
40(9), plasticizer (manufactured by Daiichi Kogyo Yakuhin ■, Ii' Ceramo P-17, U (trade name)) 5 (9), antifoaming agent (manufactured by Daiichi Kogyo Yakuhin ■, ii' Acitiflos Fa02.o (Product name))0.2(9)! In addition, rough mixing is carried out in a ball mill for about 20 hours to obtain a forming material slurry consisting of PZT.

また、これとは別に、前述したPZTの仮焼粉100(
9)に対して、純水30(9)、前述の解膠剤4 (9
) 、前述のバインダ60(C1)、前述の可塑剤10
(9)、前述の消泡剤0.4(9)及び有機物から成る
充填材の一例としてポリエチレン粒子(粒径100〜5
00(u m) ) 30 (9) fir、用いて、
同様な工程を経て、PZTがら成る複合形成材用スラリ
ーを調製した。尚、前述したように、この工程において
、充填材は他の材料であっても同様な手順で行なうこと
ができる。
In addition, apart from this, the above-mentioned PZT calcined powder 100 (
9), pure water 30 (9), and the above-mentioned deflocculant 4 (9)
), the above-mentioned binder 60 (C1), the above-mentioned plasticizer 10
(9), polyethylene particles (particle size 100-5
00(um) ) 30 (9) fir, using
A slurry for a composite forming material made of PZT was prepared through a similar process. Incidentally, as described above, in this step, even if other materials are used as the filler, the same procedure can be carried out.

以下、図面を参照して、この発明の製造方法に係る実施
例につき詳細に説明する。
Hereinafter, embodiments of the manufacturing method of the present invention will be described in detail with reference to the drawings.

第1図(A)〜(E)は、この発明の詳細な説明するた
め、各工程毎(こ斜視的に示す概略的な説明図である。
FIGS. 1(A) to 1(E) are schematic explanatory diagrams (shown in perspective) for each step in order to explain the present invention in detail.

また、これら図中、説明の理解を容易とするため、構成
成分の一部分を切り欠いて示してあり、断面を示すハツ
チングは省略する。
Further, in these figures, in order to facilitate understanding of the explanation, some of the constituent components are shown cut away, and hatching indicating the cross section is omitted.

ます、前述の手順を経て得られた形成材用スラリーによ
り、周知のドクターブレード装置を用いて、例えば0,
2〜0.3(mm)程度の所定の厚さを有するグリーン
シートとしての形成材11を得る(第1図(A))。
First, using the slurry for forming material obtained through the above-mentioned procedure, using a well-known doctor blade device, for example, 0,
A forming material 11 as a green sheet having a predetermined thickness of about 2 to 0.3 (mm) is obtained (FIG. 1(A)).

また、これとは別に、複合形成材用スラリーにより、同
様にして、充填材13ヲ含ませた複合形成材15が得ら
れる(第1図(B))。
Separately from this, a composite forming material 15 containing a filler 13 is obtained in the same manner using a slurry for a composite forming material (FIG. 1(B)).

次いで、グリーンシートとして得られた形成材11及び
複合形成材15ヲ重ね合わせる。然る後、これら形成材
11と複合形成材15とが適度に馴染むように、任意好
適な温度下、ロールにより加圧して積層体17とし、第
1図(C)に示す状態を得る。
Next, the forming material 11 obtained as a green sheet and the composite forming material 15 are overlapped. Thereafter, the forming material 11 and the composite forming material 15 are pressurized with rolls at an arbitrary suitable temperature so that they suitably blend together to form a laminate 17, resulting in the state shown in FIG. 1(C).

続いて、例えば有機合成樹脂から成り、円筒状(中空)
の芯体19ヲ用意し、当該芯体19に対しで、設計に応
じた所定の厚さと成るまで、上述の積層体17ヲ巻き取
り、第1図(D)に示す状態の成形体21を得る。
Next, for example, it is made of organic synthetic resin and has a cylindrical (hollow) shape.
A core body 19 is prepared, and the above-described laminate 17 is wound around the core body 19 until it has a predetermined thickness according to the design, and a molded body 21 in the state shown in FIG. 1(D) is formed. obtain.

上述した芯体19としては、断面形状が円でなくても柱
状または筒状の四角形、その他の設計に応じた任意の形
状とすることが出来る。また、この芯体19の材料とし
ては上述の有機合成樹脂に限定されるものではなく、復
工程の焼成時に、何等かの形態で消失してしまうような
材料、ロウ或いはその他の任意好適な材料を用いるのも
好適である。
The above-mentioned core body 19 may have a cross-sectional shape other than a circle, but may be a columnar or cylindrical quadrangle, or any other shape depending on the design. Furthermore, the material of the core body 19 is not limited to the above-mentioned organic synthetic resin, but may also be a material that disappears in some form during the firing process, wax, or any other suitable material. It is also suitable to use

このようにして巻き取られた円筒状の成形体21を構成
する各層(形成材11または複合形成材15に相当する
部分)は、芯体19の半径方向に亙って交互に配設され
た状態となっている。
The layers (portions corresponding to the forming material 11 or the composite forming material 15) constituting the cylindrical molded body 21 wound up in this manner are arranged alternately in the radial direction of the core body 19. It is in a state.

尚、上述した工程のうち、例えば第1図(C)を参照し
て説明した積層体17の作製、及び第1図(D)を参照
して説明した成形体21の作製においては、製品として
の複合圧電体の、前述した形成材11と複合形成材15
との間に相当する部分に発生する剥離や亀裂等を考慮す
る必要を生じる場合が有る。このような場合、例えば積
層体17の作製時には、前述したように、ローラを用い
て加圧する場合を例示して説明したが、形成材11と複
合形成材15との周に、前述したバインダ等を塗布して
行なうのも好適である。また、成形体21の作製時にお
いては′、上述したバインダ等の塗布のほか、積層体1
7に張力をかけながら巻き取ったり、所定の好適形状を
有する型を用いて加圧しでも良い。
Of the above-mentioned steps, for example, in the production of the laminate 17 explained with reference to FIG. 1(C) and the production of the molded body 21 explained with reference to FIG. 1(D), as a product The above-described forming material 11 and composite forming material 15 of the composite piezoelectric body
There may be cases where it is necessary to consider peeling, cracks, etc. that occur in the corresponding part between the two. In such a case, for example, when producing the laminate 17, as described above, the case where pressure is applied using a roller has been described as an example, but the above-mentioned binder etc. It is also suitable to perform this by coating. In addition, when producing the molded body 21, in addition to applying the binder described above, the laminate 1
7 may be wound up while applying tension, or may be pressurized using a mold having a predetermined suitable shape.

次に、上述した成形体21ヲ、例えば送受信器の使用周
波数等によって決められた長さとなるようにカッタ等の
適当な方法で切断して長さを調整する。
Next, the length of the above-mentioned molded body 21 is adjusted by cutting it with a suitable method such as a cutter so that it has a length determined by, for example, the operating frequency of the transmitter/receiver.

続いて、上述した成形体21ヲ、約600〜700℃の
範囲程度の温度で数時間に亙って焼成する。
Subsequently, the above-described molded body 21 is fired at a temperature in the range of approximately 600 to 700° C. for several hours.

この問、グリーンシートの調製時に加えたバインダ等、
芯体19或いは、この実施例にあ1プる充填材13とし
てのポリエチレン粒子が消失する。この実施例では、充
填材13が焼成により消失する材料を用いているため、
第1図(E )に示すように、空孔23が形成された、
PZTと空気との複合圧電体25が得られる。
In this question, the binder etc. added when preparing the green sheet,
The core 19 or the polyethylene particles as the filler 13 in this embodiment disappear. In this example, since the filler 13 uses a material that disappears by firing,
As shown in FIG. 1(E), holes 23 are formed.
A composite piezoelectric material 25 of PZT and air is obtained.

この場合、複合圧電体25において、PZTと空孔との
比は複合形成材用スラリーの調製時に充填材13の添加
量を制御することによつ異方′iを調節することができ
、さらに積層体17を構成するに当って、形成材11と
複合形成材15との相対的な厚さを調節することによっ
ても、複合圧電体の異方性を容易に制御することが出来
る。
In this case, in the composite piezoelectric body 25, the anisotropy 'i of the ratio of PZT to pores can be adjusted by controlling the amount of the filler 13 added when preparing the slurry for the composite forming material. When configuring the laminate 17, the anisotropy of the composite piezoelectric body can also be easily controlled by adjusting the relative thicknesses of the forming material 11 and the composite forming material 15.

尚、上述した実施例では、ドクターブレード法によりグ
リーンシートを形成する場合につき説明したかこれを他
の任意好適な技術により形成しても良い。
In the above-described embodiments, the green sheet is formed by the doctor blade method, but it may be formed by any other suitable technique.

以上、この発明の実施例につき説明したか、この発明の
方法は、上述の実施例にのみ限定されるものではない。
Although the embodiments of the present invention have been described above, the method of the present invention is not limited to the above embodiments.

例えば、上述の実施例では圧電材料tPZTとした例で
説明したか、この圧電材料は他の好適なものに変更して
も、この発明の製造方法を適用できること明らかである
For example, in the above-described embodiment, the piezoelectric material tPZT was used, but it is clear that the manufacturing method of the present invention can be applied even if the piezoelectric material is changed to another suitable material.

また、中空の充填材として、粒状のポリエチレンを用い
た場合につき説明したが、ポリエチレン以外の材料から
なり、焼成時に、実質的に消失する他の充填材であって
も良く、形状も、粒状に限定されるものではない。
In addition, although the case where granular polyethylene is used as the hollow filler has been described, other fillers that are made of materials other than polyethylene and that substantially disappear during firing may be used, and the shape may also be granular. It is not limited.

さらに、既に説明したように、この発明は、焼成時に消
失を伴なう充填材のみに限定して効果が得られるもので
はない。係る材料として、例えば炭化珪素、ジルコニア
、アルミナ等の無機物から構成され、任意好適な形状を
有する充填材としても、この発明を適用し、強度的に優
れた複合圧電体を簡単かつ容易に製造し得る。
Furthermore, as already explained, the effects of the present invention are not limited to fillers that disappear during firing. The present invention can also be applied to fillers made of inorganic materials such as silicon carbide, zirconia, alumina, etc. and having any suitable shape as such materials, and a composite piezoelectric body with excellent strength can be easily and easily produced. obtain.

これら材料、形状、寸法、配M関係、数値的条件または
その他の条件は、この発明の目的の範囲内で、設計に応
じ、任意好適な変更及び変形を行ない得ること明らかで
ある。
It is clear that these materials, shapes, dimensions, dimensional relationships, numerical conditions, and other conditions can be arbitrarily and appropriately changed and modified according to the design without departing from the scope of the present invention.

(発明の効果) 上述した説明からも明らかなように、この発明の複合圧
電体の製造方法によれば、有機物または無機物から成る
充填材を圧電材料から成る形成材に含ませた複合形成材
と、上述の形成材とを積層状態として芯体に巻き取り、
成形体を得る。
(Effects of the Invention) As is clear from the above explanation, according to the method for manufacturing a composite piezoelectric material of the present invention, a composite forming material in which a filler made of an organic or inorganic material is included in a forming material made of a piezoelectric material. , the above-mentioned forming material is wound around a core body in a laminated state,
Obtain a molded body.

従って、芯材として、成形体の焼成温度で消失する材料
または当該焼成温度で残存する材料を、設計に応じて任
意好適に選択することにより、用途に応じた複合圧電体
を簡単かつ容易に得ることができる。
Therefore, by appropriately selecting a material that disappears at the firing temperature of the compact or a material that remains at the firing temperature as the core material depending on the design, a composite piezoelectric body suitable for the purpose can be easily and easily obtained. be able to.

さらに、充填材の大きさ若しくは形状、及び充填材を含
ませる密度、方向等を種々変更することによって、圧電
特性の異方性を容易に調節することか出来るという効果
も得られる。
Furthermore, by variously changing the size or shape of the filler, the density of the filler, the direction, etc., it is possible to easily adjust the anisotropy of the piezoelectric properties.

これがため、感度の高い音響センサを構成することが出
来るような、圧電特性の異方性が大きな複合圧電体を簡
易に製造することが出来る。
Therefore, it is possible to easily manufacture a composite piezoelectric material having a large anisotropy of piezoelectric properties, which can constitute a highly sensitive acoustic sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(E)は、この発明の複合圧電体の製造
方法を示す概略的工程図である。 11・・・・形成材、13・・・・充填材、15・・・
・複合形成材17・・・・積層体、19・・・・芯体、
21・・・・成形体23・・・・空孔、25・・・・複
合圧電体。 特許出願人    沖電気工業株式会社実施例の説明図 第1図 GC) 実施例の説明図 第1図
FIGS. 1(A) to 1(E) are schematic process diagrams showing a method for manufacturing a composite piezoelectric body of the present invention. 11...forming material, 13...filling material, 15...
- Composite forming material 17... Laminated body, 19... Core body,
21... Molded body 23... Holes, 25... Composite piezoelectric body. Patent applicant: Oki Electric Industry Co., Ltd.Explanatory diagram of the embodiment (Figure 1 GC) Figure 1 (GC)

Claims (1)

【特許請求の範囲】[Claims] (1)圧電材料と、該圧電材料の誘電率とは異なる誘電
率を有する物質との複合圧電体を製造するに当り、 圧電材料よりなる形成材に充填材を含ませて複合形成材
を作製する工程と、 焼成により消失する芯体に、前記形成材と前記複合形成
材とを積層して巻き取って成形体を構成した後、該成形
体を焼成する工程と を含むことを特徴とする複合圧電体の製造方法。
(1) When manufacturing a composite piezoelectric body of a piezoelectric material and a substance having a dielectric constant different from that of the piezoelectric material, a filler is included in a forming material made of a piezoelectric material to produce a composite forming material. and a step of laminating the forming material and the composite forming material on a core that disappears by firing and winding them to form a molded body, and then firing the molded body. Method for manufacturing composite piezoelectric material.
JP63050356A 1988-03-03 1988-03-03 Manufacture of composite piezoelectric material Pending JPH01223785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63050356A JPH01223785A (en) 1988-03-03 1988-03-03 Manufacture of composite piezoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63050356A JPH01223785A (en) 1988-03-03 1988-03-03 Manufacture of composite piezoelectric material

Publications (1)

Publication Number Publication Date
JPH01223785A true JPH01223785A (en) 1989-09-06

Family

ID=12856619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63050356A Pending JPH01223785A (en) 1988-03-03 1988-03-03 Manufacture of composite piezoelectric material

Country Status (1)

Country Link
JP (1) JPH01223785A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048621A3 (en) * 1998-03-26 1999-11-25 Exogen Inc Arrays made from flexible transducer elements
JP2002111093A (en) * 2000-09-28 2002-04-12 Matsushita Electric Ind Co Ltd Piezoelectric and its producing method and ultrasonic probe comprising it
US6983521B2 (en) * 2002-01-02 2006-01-10 Omron Corporation Method of manufacturing a strain element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048621A3 (en) * 1998-03-26 1999-11-25 Exogen Inc Arrays made from flexible transducer elements
EP1481738A2 (en) * 1998-03-26 2004-12-01 Exogen Inc. Ultrasonic arrays of flexible piezoelectric transducer elements
EP1481738A3 (en) * 1998-03-26 2006-05-10 Exogen Inc. Ultrasonic arrays of flexible piezoelectric transducer elements
JP2002111093A (en) * 2000-09-28 2002-04-12 Matsushita Electric Ind Co Ltd Piezoelectric and its producing method and ultrasonic probe comprising it
US6983521B2 (en) * 2002-01-02 2006-01-10 Omron Corporation Method of manufacturing a strain element

Similar Documents

Publication Publication Date Title
Akdogan et al. Piezoelectric composites for sensor and actuator applications
Bandyopadhyay et al. Processing of piezocomposites by fused deposition technique
US4726099A (en) Method of making piezoelectric composites
Lang et al. Solid freeform fabrication of piezoelectric sensors and actuators
US4227111A (en) Flexible piezoelectric composite transducers
Lous et al. Fabrication of piezoelectric ceramic/polymer composite transducers using fused deposition of ceramics
Tressler et al. Functional composites for sensors, actuators and transducers
US4686409A (en) Porous adaptation layer in an ultrasonic applicator
US4933230A (en) Piezoelectric composites
US20020161301A1 (en) Matching layer having gradient in impedance for ultrasound tranducers
Safari et al. Rapid prototyping of novel piezoelectric composites
Safari et al. Development of fine‐scale piezoelectric composites for transducers
JP2005005797A (en) Radome
CN106475296B (en) A kind of thickness mode piezoelectricity sky coupling energy converter based on double matching layer structures
JPH01223785A (en) Manufacture of composite piezoelectric material
JPS6193800A (en) Manufacture of array ultrasonic antenna
US6145410A (en) Bandsaw blade
Safari Novel piezoelectric ceramics and composites for sensor and actuator applications
RU2005121496A (en) METHOD FOR MAKING THERMAL PROTECTIVE COATING FOR A SOLID FUEL ROCKET ENGINE AND A ROCKET ENGINE MADE WITH THE APPLICATION OF THIS METHOD
Livneh et al. Development of fine scale PZT ceramic fiber/polymer shell composite transducers
Brennan et al. Fabrication of electroceramic components by layered manufacturing (LM)
JPH07250399A (en) Porous piezoelectric ceramic vibrator and its manufacture
JPH01208880A (en) Manufacture of composite piezoelectric element
JP2974815B2 (en) Ultrasonic vibrator and manufacturing method thereof
CN105390608B (en) The preparation method of spiral shape leadless piezoelectric composite material