JPH0122312B2 - - Google Patents

Info

Publication number
JPH0122312B2
JPH0122312B2 JP59063167A JP6316784A JPH0122312B2 JP H0122312 B2 JPH0122312 B2 JP H0122312B2 JP 59063167 A JP59063167 A JP 59063167A JP 6316784 A JP6316784 A JP 6316784A JP H0122312 B2 JPH0122312 B2 JP H0122312B2
Authority
JP
Japan
Prior art keywords
parts
resin
vinyl ester
epoxy
equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59063167A
Other languages
Japanese (ja)
Other versions
JPS60208377A (en
Inventor
Yoneji Sato
Masato Hoshino
Seiichi Kitazawa
Tadashi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Asahi Chemical Laboratory Co Ltd
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Asahi Chemical Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd, Asahi Chemical Laboratory Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP59063167A priority Critical patent/JPS60208377A/en
Publication of JPS60208377A publication Critical patent/JPS60208377A/en
Publication of JPH0122312B2 publication Critical patent/JPH0122312B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Description

【発明の詳现な説明】 本発明はプリント配線回路基板に甚いられる耐
熱性および電気絶瞁特性に優れた゜ルダヌレゞス
トむンキ甚暹脂組成物に関するものである。 ゜ルダヌレゞストむンキは、プリント配線回路
基板に郚品をはんだ付けする時に目的の郚䜍以倖
の所ぞはんだの付着を避けるこず及びプリント配
線回路基板䞊の回路の保護を目的ずし、電気絶瞁
性、耐熱性、密着性、耐化孊薬品性及びスクリヌ
ン印刷性などの諞特性が芁求されるむンキであ
る。初期には、メラミン系の加熱硬化型゜ルダヌ
レゞストむンキが䜿甚されおいたが、その埌、耐
熱性、硬床、密着性、耐化孊薬品性などに優れた
゚ポキシ系の加熱硬化型゜ルダヌレゞストむンキ
が開発されるに至り、高信頌性を重芁芖するコン
ピナヌタヌ関係などの産業機噚甚プリント配線回
路基板においおは、その䞻流ずな぀おいる。䞀
方、民生甚プリント配線回路基板に甚いられる゜
ルダヌレゞストむンキは䜜業性ず生産性を芁求さ
れるため、゚ポキシ暹脂やりレタン暹脂をアクリ
レヌト化した玫倖線硬化型の゜ルダヌレゞストむ
ンキが゚ポキシ系の加熱硬化型の゜ルダヌレゞス
トむンキに代わり、その䞻流ずな぀おいる。しか
し、呚知のように、玫倖線硬化型゜ルダヌレゞス
トは、玫倖線の照射によりラゞカル反応を起こし
硬化するシステムであり、塗膜厚が厚いず内郚硬
化性が悪く、特に産業機噚甚プリント配線板で
は、導䜓の厚さが銅メツキ・はんだメツキで70ÎŒ
以䞊ず厚くな぀おおり、必然的に、この䞊にコ
ヌテむングされる゜ルダヌレゞストも郚分的に
50Ό以䞊の塗膜厚が埗られおしたう。そのた
め、玫倖線の圓たらなか぀た郚分回路の゚ツヂ
䞋方郚分などは完党に硬化反応が終了しおおら
ず、電気絶瞁䞍良電蝕性を含むを起こし易か
぀た。そこで、これらを防ぐ為にコヌテむング皮
膜は、スクリヌンのメツシナを现かくし、乳剀厚
を薄くしお、20Ό以䞋の塗膜にする必芁性があ
り、その為に䞀般民生甚の35Ό銅箔回路のみの
䜿甚に限定されおいた。 ずころで、最近の゚レクトロニクス機噚類の小
型化、高機胜化、省資源化、䜎コスト化などによ
り、産業甚プリント配線回路基板に斌いおも回路
のパタヌン密床の粟床向䞊の芁求が高くなり、埓
来の回路のピン間本から、ピン間〜本たで
芁求されるにいた぀おいる。珟圚の゚ポキシ系や
玫倖線硬化型の゜ルダヌレゞストむンキを甚いた
スクリヌン印刷法では、印刷粟床の限界およびス
クリヌンの䌞びによる寞法粟床が悪く、満足すべ
き結果は埗られおいない。たた、このスクリヌン
印刷法に䜿甚される玫倖線硬化型゜ルダヌレゞス
トは―ヒドロキシ・゚チルアクリレヌト、トリ
メチロヌルメプロパントリアクリレヌトなどの
〜官胜モノマヌ及び各皮アクリレヌトオリゎマ
ヌなどを含んでおり、スクリヌン印刷時にこれら
の物質がにじみ出しマむグレヌシペン、ピン
間本以䞊のプリント配線板に䜿甚した時には、
ハンダ぀かずなどの重倧な欠点ずしお珟われた。
そしお、これを防ぐ目的で塗膜厚を薄くしお解像
性を䞊げおいた。しかし、これでは回路間に゜ル
ダヌレゞストが均䞀にコヌテむングされず、電気
絶瞁性が䜎䞋し、゜ルダヌレゞストずしお本来の
働きを無効なものずしおしたう結果ずなる。 最近では解像性を䞊げるためドラむフむルムを
甚いた写真法が開発されおいるが、この方法は、
解像性を䞊げるこずはできるものの、ドラむフむ
ルムの回路間の入り蟌み性が悪く塗膜のフクレ、
密着䞍良などの問題点を有しおいる。 本発明者等は、䞊述した劂き埓来技術の問題点
に鑑みお鋭意研究した結果、光重合可胜なビニル
゚ステル暹脂ず光重合およびアミンによる加熱硬
化可胜な゚ポキシビニル゚ステル暹脂を組合せる
こずにより、耐熱性、密着性、耐化孊薬品性およ
び電気絶瞁特性に優れた゜ルダヌレゞストむンキ
が埗られるこずを芋出し、本発明を完成させるに
至぀た。 斯くしお本発明によれば、プノヌルノボラツ
ク型゚ポキシ暹脂の化孊圓量ず䞍飜和䞀塩基酞
の0.8〜1.1化孊圓量ずを反応しお埗られるビニル
゚ステル暹脂―の10〜40重量郚及びクレ
ゟヌルノボラツク型゚ポキシ暹脂の化孊圓量ず
䞍飜和䞀塩基酞の0.2〜0.7化孊圓量ずを反応しお
埗られる゚ポキシビニル゚ステル暹脂―
の90〜60重量郹(A)、有機溶剀(B)、光重合開始剀(C)
䞊びにアミン系硬化剀(D)から成る、耐熱性および
高解像性に優れた゜ルダヌレゞストむンキ甚暹脂
組成物が提䟛される。 本発明に斌いお䜿甚されるプノヌルノボラツ
ク型゚ポキシ暹脂ずは、プノヌルずホルムアル
デヒドずから埗られるプノヌルノボラツク暹脂
に、゚ピクロルヒドリンもしくはメチル゚ピクロ
ルヒドリンを反応させお埗られる暹脂を指称す
る。 たた、クレゟヌルノボラツク型゚ポキシ暹脂ず
は、クレゟヌルずホルムアルデヒドから埗られる
クレゟヌルノボラツク暹脂に゚ピクロルヒドリン
もしくはメチル゚ピクロルヒドリンを反応させお
埗られる暹脂を指称する。 䞊蚘各暹脂ず反応する前蚘䞍飜和䞀塩基酞ずし
お代衚的なものには、アクリル酞、メタクリル
酞、クロトン酞、モノメチルマレヌト、モノプロ
ピルマレヌト、モノブチルマレヌト、゜ルビン酞
あるいはモノ―゚チルヘキシルマレヌトな
どがある。これらの䞍飜和䞀塩基酞は単独でも
皮以䞊の混合においおも䜿甚できるのは勿論であ
る。 本発明に斌いお―成分ずしお甚いるビ
ニル゚ステル暹脂は、前蚘プノヌルノボラツク
型゚ポキシ暹脂ず䞍飜和䞀塩基酞ずを゚ステル化
觊媒の存圚䞋、通垞60〜140℃、奜たしくは80〜
120℃の枩床で反応せしめお埗られるものである。
その際のプノヌルノボラツク型゚ポキシ暹脂ず
䞍飜和䞀塩基酞ずの比率はプノヌルノボラツク
型゚ポキシ暹脂の化孊圓量に察しお䞍飜和䞀塩
基酞の0.8〜1.1化孊圓量である。かかるビニル゚
ステル暹脂は、゚ポキシ基の党郚に䞍飜和䞀塩基
酞が付加したものが奜たしい。 䞊蚘゚ステル化觊媒ずしおは、トリ゚チルアミ
ン、―ゞメチルベンゞルアミン、―
ゞメチルアニリンもしくはゞアザビシクロオクタ
ンなどの劂き䞉玚アミン、あるいはゞ゚チルアミ
ン塩酞塩、ゞメチル酢酞塩もしくはゞメチルアミ
ン硝酞塩などの劂き、公知慣甚の觊媒がそのたた
䜿甚できる。 さらに、前蚘ビニル゚ステル暹脂を補造する際
には、ゲル化を防止する目的や生成暹脂の保存安
定性あるいは硬化性の調敎の目的で、重合犁止剀
を䜿甚するこずが掚奚される。重合犁止剀の代衚
的なものずしおは、ハむドロキノン、――ブ
チルカテコヌルもしくはモノ――ブチルハむド
ロキノンなどのハむドロキノン類ハむドロキノ
ンモノメチル゚ヌテルもしくはゞ――ブチル―
―クレゟヌルなどのプノヌル類―ベンゟ
キノン、ナフトキノン、もしくは―トルキノン
などのキノン類あるいはナフテン酞銅の劂き銅
塩などが挙げられる。 たた、―成分ずしお甚いる゚ポキシビ
ニル゚ステル暹脂は、前蚘クレゟヌルノボラツク
型゚ポキシ暹脂ず䞍飜和䞀塩基酞ずから、前蚘
―成分であるビニル゚ステル暹脂の合成
法ず党く同様にしお埗られるものである。䜆し、
クレゟヌルノボラツク型゚ポキシ暹脂ず䞍飜和䞀
塩基酞ずの比率は、クレゟヌルノボラツク型゚ポ
キシ暹脂の化孊圓量ず䞍飜和䞀塩基酞の0.2〜
0.7化孊圓量である。かかるビニル゚ステル暹脂
は実質的に、クレゟヌルノボラツク型゚ポキシ暹
脂の゚ポキシ基の䞀郚に䞍飜和䞀塩基酞を付加さ
せお埗られる䞀分子䞭にビニル基ず゚ポキシ基を
含む゚ポキシビニル゚ステル暹脂が奜たしい。 かくしお埗られたビニル゚ステル暹脂―
の10〜40重量郚ず゚ポキシビニル゚ステル暹
脂―の90〜60重量郚ずからなる暹脂組成
物(A)は、公知慣甚の有機溶剀(B)に溶解させお安定
な暹脂溶液ずされる。有機溶剀(B)の代衚的なもの
を挙げれば、トル゚ン、キシレンなどの芳銙族炭
化氎玠メタノヌル、む゜プロピルアルコヌルな
どのアルコヌル類酢酞゚チル、酢酞ブチルなど
の゚ステル類―ゞオキサン、テトラヒド
ロフランなどの゚ヌテル類メチル゚チルケト
ン、メチルむ゜ブチルケトンなどのケトン類セ
ロ゜ルブ、ブチルセロ゜ルブなどのグリコヌル誘
導䜓シクロヘキサノン、シクロヘキサノヌルな
どの脂環匏炭化氎玠および石油゚ヌテル、石油ナ
フサなどの石油系溶剀などがある。これらは、単
独あるいは皮以䞊の混合物ずしお䜿甚される。
たた、これらの有機溶剀の濃床は特に制限を受け
るものではないが、䜜業性からは10〜40重量が
奜たしい。 次いで、光重合開始剀(C)ずしおは、――ブ
チルトリクロロアセトプノン、―ゞ゚ト
キシアセトプノン、ベンゟプノン、―
ビスメチルアミノベンゟプノン、ベンゞル、ベ
ンゟむン、ベンゟむンメチル゚ヌテル、ベンゟむ
ンむ゜ブチル゚ヌテル、ベンゞルメチルケタヌ
ル、メチル――ベンゟむルベンゟ゚ヌト、α―
ヒドロキシむ゜ブチルプノンなどのカルボニル
化合物テトラメチルチりラムモノサルフアむ
ド、チオキサントン、―クロロチオキサントン
などむオり化合物およびアゟ化合物などがある。
これらは、単独たたは皮以䞊の混合物ずしお䜿
甚でき、その䜿甚量はビニル゚ステル暹脂―
ず゚ポキシビニル゚ステル暹脂―ず
の合蚈100重量郚に察しお0.5〜10重量郚であるこ
ずが奜たしい。 さらに、前蚘アミン系硬化剀ずしおは、゚チレ
ンゞアミン、ゞ゚チレントリアミン、トリ゚チレ
ントリアミン、ゞ゚チルアミノプロピルアミン、
キシリレンゞアミンなどの脂肪族ポリアミンメ
タプニレンゞアミン、ゞアミノゞプニルメタ
ン、ゞアミノゞプニルスルホンなどの芳銙族ポ
リアミンメンタンゞアミン、む゜ホロンゞアミ
ン、ビス―アミノ――メチルシクロヘキシ
ルメタンなどの脂環族ポリアミンゞシアンゞ
アミド―メチルむミダゟヌル、―゚チル―
―メチルむミダゟヌル、―ベンゞル――メ
チルむミダゟヌルなどのむミダゟヌル化合物ベ
ンゞルゞメチルアミン、トリゞメチルアミノメチ
ルプノヌル、ゞメチルアミノメチルプノヌル
などの第䞉玚アミン及びBF3・モノ゚チルアミン
などのアミン錯化合物が挙げられる。 さらに、本発明の暹脂組成物には、皮々の添加
剀、䟋えばシリカ、タルク、クレヌなどの充填
剀ア゚ロゞルなどのチキ゜トロピヌ剀シリコ
ヌン、フツ玠系のレベリング剀や消泡剀および
着色剀などを、゜ルダヌレゞストむンキの諞性胜
を高める目的で添加するこずができる。 次に、本発明を参考䟋及び実斜䟋によ぀お具䜓
的に説明する。以䞋、郚およびは特に断りのな
い限り、すべお重量基準であるものずする。 参考䟋  枩床蚈、撹拌機および冷华噚を具備した䞉ツ口
フラスコに、゚ポキシ圓量180のプノヌルノボ
ラツク型゚ポキシ暹脂「゚ピクロン―740」倧
日本むンキ化孊工業(æ ª)補゚ポキシ暹脂の1800郚
゚ポキシ基10個盞圓分、アクリル酞の720郚
カルボキシル基10個盞圓分、ハむドロキノンの
1.26郚およびトリ゚チルアミンの10.1郚を加え、
110℃たで昇枩させ、時間反応を続けるこずに
より、酞䟡、゚ポキシ圓量䞇以䞊のビニル゚
ステル暹脂――を埗た。 参考䟋  参考䟋ず同様の反応装眮に、゚ポキシ圓量
185のビスプノヌル型゚ポキシ暹脂「゚ピク
ロン850」同䞊瀟補゚ポキシ暹脂の1850郚゚
ポキシ基10個盞圓分、アクリル酞の720郚カル
ボキシル基10個盞圓分、ハむドロキノンの1.29
郚およびトリ゚チルアミンの10.3郚を加え、110
℃たで昇枩させ、時間反応を続けるこずによ
り、酞䟡、゚ポキシ圓量䞇以䞊のビニル゚ス
テル暹脂A′――を埗た。 参考䟋  参考䟋ず同様に、゚ポキシ圓量220のクレゟ
ヌルノボラツク型゚ポキシ暹脂「゚ピクロン―
660」同䞊瀟補゚ポキシ暹脂の2200郚゚ポキ
シ基10個盞圓分、アクリル酞の360郚カルボキ
シル基個盞圓分、ハむドロキノンの1.28郚お
よびトリ゚チルアミンの10.2郚を加え、110℃た
で昇枩し、時間反応を続けるこずにより、酞䟡
0.5、゚ポキシ圓量620の゚ポキシビニル゚ステル
暹脂――埗た。 参考䟋  参考䟋ず同様に、゚ポキシ圓量230のクレゟ
ヌルノボラツク型゚ポキシ暹脂「゚ピクロン―
680」同䞊瀟補゚ポキシ暹脂の2300郚゚ポキ
シ基10個盞圓分、アクリル酞の216郚カルボキ
シル基個盞圓分、ハむドロキノンの1.26郚お
よびトリ゚チルアミンの10.1郚を加え、120℃た
で昇枩し、その枩床で時間反応を続けるこずに
より、酞䟡0.6、゚ポキシ圓量410なる゚ポキシビ
ニル゚ステル暹脂――を埗た。 参考䟋  参考䟋ず同様に、゚ポキシ圓量470のビスフ
゚ノヌル型゚ポキシ暹脂「゚ピクロン1050」
同䞊瀟補゚ポキシ暹脂の4700郚゚ポキシ基
10個盞圓分、アクリル酞の288郚カルボキシル
基個盞圓分、ハむドロキノンの2.49郚および
トリ゚チルアミンの20.0郚を加え、116℃たで昇
枩し、その枩床で時間反応を続けるこずによ
り、酞䟡0.7、゚ポキシ圓量920なる゚ポキシビニ
ル゚ステル暹脂A′――を埗た。 実斜䟋〜および比范䟋〜 参考䟋〜で埗られたビニル゚ステル暹脂及
び゚ポキシビニル゚ステル暹脂ず゚ポキシ暹脂、
有機溶剀、アクリルモノマヌ、光重合開始剀、ア
ミン系硬化剀ずを、それぞれ第衚に瀺す配合比
率に埓぀お゜ルダヌレゞストむンキを配合し、銅
スルホヌルプリント配線板にスクリヌン印刷法に
お30〜40Όの膜厚で塗垃した。先ず、塗膜を
130℃で分間也燥した埌、ネガフむルムを圓お、
5KW超高圧氎銀灯を䜿甚し、波長350nm付近の
照床20mwcm2の玫倖線を60秒間照射し、぀いで
トリクロル゚チレンなどの有機溶剀で塗膜の未照
射郚分を陀去した。その埌、熱颚也燥噚で130℃、
30分間加熱硬化を行ない、埗られたそれぞれの䟛
詊䜓に぀いお、各皮の性胜詊隓を行な぀た。 それらの結果は第衚に瀺す。 なお、同衚䞭に瀺される各皮の性胜詊隓は、次
の劂き詊隓法に準じお行な぀た。 〔塗膜の也燥性〕銅スルホヌルプリント配線板に
゜ルダヌレゞストむンキを塗垃し、130℃で分
間也燥した埌の塗膜の也燥性をJIS ―5400に準
ずる方法で刀定した。刀定基準は次の通りであ
る。 〇  タツクなし ×  タツクあり 〔耐溶剀性〕5KW超高圧氎銀灯を䜿甚し、波長
350nm付近の照床20mwcm2の玫倖線を60秒間照
射し、぀いでトリクレンで未照射郚分を陀去した
埌の照射郚分の塗膜の状態に぀いお刀定した。そ
の刀定基準は次の通りである。 〇  異状なし ×  溶解たたは膚最 〔耐はんだ性〕260℃の錫60の溶融はんだに
分間浞挬した埌の塗膜の状態に぀いお刀定した。
その刀定基準は次の通りである。 〇  塗膜の倖芳異状なし ×  ふくれ、溶融、剥離 〔ゎバン目密着〕䟛詊䜓の塗膜に×mmの倧き
さのゎバン目を100個刻み、セロハンテヌプで剥
離した埌の密着性を評䟡したJIS ―0202に準
ずる。 〔衚面絶瞁抵抗〕ミル芏栌のIPC―840B―25のテ
ストパタヌン基板に塗垃した䟛詊䜓を80℃、95
RHの雰囲気䞭に240時間攟眮し、その塗膜の衚
面絶瞁抵抗をJIS――3197に準じお枬定した。 第衚に瀺された結果から、本発明組成物を甚
いお埗られる塗膜は、耐熱性、密着性、耐溶剀性
及び電気絶瞁性に優れおいるこずを、明らかに知
るこずができる。 【衚】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resin composition for solder resist ink that is used for printed wiring circuit boards and has excellent heat resistance and electrical insulation properties. Solder resist ink is used to prevent solder from adhering to areas other than the intended areas when soldering components to a printed wiring circuit board, and to protect the circuits on the printed wiring circuit board.It has electrical insulation, heat resistance, This ink requires various properties such as adhesion, chemical resistance, and screen printability. Initially, melamine-based heat-curable solder resist inks were used, but later, epoxy-based heat-curable solder resist inks were developed that had excellent heat resistance, hardness, adhesion, and chemical resistance. It has become mainstream in printed wiring circuit boards for industrial equipment such as computers, where high reliability is important. On the other hand, since solder resist inks used for consumer printed wiring circuit boards require high workability and productivity, UV-curable solder resist inks made from acrylated epoxy resins and urethane resins are replaced by heat-curable epoxy-based solder resist inks. It has become the mainstream, replacing solder resist ink. However, as is well known, UV-curable solder resist is a system that hardens by causing a radical reaction when irradiated with UV rays, and the thicker the coating film, the poorer the internal curing properties, especially for printed wiring boards for industrial equipment. The thickness is 70Ό with copper plating and solder plating.
It is thicker than m, and inevitably the solder resist coated on top of it is also partially thick.
A coating film thickness of 50 ÎŒm or more is obtained. Therefore, the curing reaction was not completely completed in areas that were not exposed to ultraviolet rays (lower edges of the circuit), and electrical insulation defects (including galvanic corrosion) were likely to occur. Therefore, in order to prevent these problems, it is necessary to create a coating film with a thickness of 20 ÎŒm or less by making the mesh of the screen finer and the thickness of the emulsion thinner. use was limited. By the way, with the recent miniaturization, higher functionality, resource saving, and lower cost of electronic equipment, there is a growing demand for improved precision in circuit pattern density for industrial printed circuit boards. The requirement has gone from 2 wires between the pins of a circuit to 3 to 5 wires between the pins. Current screen printing methods using epoxy-based or ultraviolet-curable solder resist inks have limited printing accuracy and poor dimensional accuracy due to screen elongation, and have not yielded satisfactory results. In addition, the UV-curable solder resist used in this screen printing method is made of 2-hydroxy ethyl acrylate, trimethylolmepropane triacrylate, etc.
Contains trifunctional monomers and various acrylate oligomers, etc., and these substances ooze out (migration) during screen printing, and when used on printed wiring boards with two or more pins,
This appeared as a serious defect such as non-soldering.
In order to prevent this, the coating thickness was reduced to improve resolution. However, in this case, the solder resist is not evenly coated between the circuits, resulting in a decrease in electrical insulation, and the solder resist's original function becomes ineffective. Recently, a photography method using dry film has been developed to improve resolution, but this method
Although it is possible to improve the resolution, the dry film does not penetrate between the circuits, causing blistering of the paint film.
It has problems such as poor adhesion. As a result of intensive research in view of the problems of the prior art as described above, the present inventors have developed a heat-resistant resin by combining a photopolymerizable vinyl ester resin and an epoxy vinyl ester resin that can be photopolymerized and heat-cured with amines. The present inventors have discovered that a solder resist ink with excellent properties, adhesiveness, chemical resistance, and electrical insulation properties can be obtained, leading to the completion of the present invention. Thus, according to the present invention, 10 to 40 of the vinyl ester resin (A-a) obtained by reacting 1 chemical equivalent of a phenol novolac type epoxy resin with 0.8 to 1.1 chemical equivalent of an unsaturated monobasic acid. Epoxy vinyl ester resin (A-b) obtained by reacting parts by weight and 1 chemical equivalent of cresol novolak type epoxy resin and 0.2 to 0.7 chemical equivalent of unsaturated monobasic acid
90 to 60 parts by weight of (A), organic solvent (B), photopolymerization initiator (C)
Furthermore, a resin composition for solder resist ink, which is composed of an amine curing agent (D) and has excellent heat resistance and high resolution, is provided. The phenol novolak type epoxy resin used in the present invention refers to a resin obtained by reacting a phenol novolak resin obtained from phenol and formaldehyde with epichlorohydrin or methylepichlorohydrin. The cresol novolak type epoxy resin refers to a resin obtained by reacting a cresol novolak resin obtained from cresol and formaldehyde with epichlorohydrin or methylepichlorohydrin. Typical unsaturated monobasic acids that react with each of the above resins include acrylic acid, methacrylic acid, crotonic acid, monomethyl maleate, monopropyl maleate, monobutyl maleate, sorbic acid, and mono(2- ethylhexyl) malate, etc. These unsaturated monobasic acids alone have 2
Of course, it can also be used in a mixture of more than one species. The vinyl ester resin used as component (A-a) in the present invention is prepared by esterifying the phenol novolac type epoxy resin and an unsaturated monobasic acid in the presence of an esterification catalyst, usually at 60 to 140°C, preferably at 80 to 80°C.
It is obtained by reacting at a temperature of 120°C.
The ratio of the phenol novolac type epoxy resin and the unsaturated monobasic acid in this case is 0.8 to 1.1 chemical equivalents of the unsaturated monobasic acid to 1 chemical equivalent of the phenol novolac type epoxy resin. Such vinyl ester resins preferably have unsaturated monobasic acids added to all of the epoxy groups. The above esterification catalysts include triethylamine, N,N-dimethylbenzylamine, N,N-
Known and commonly used catalysts such as tertiary amines such as dimethylaniline or diazabicyclooctane, or diethylamine hydrochloride, dimethyl acetate or dimethylamine nitrate can be used as is. Furthermore, when producing the vinyl ester resin, it is recommended to use a polymerization inhibitor for the purpose of preventing gelation and adjusting the storage stability or curability of the resulting resin. Typical polymerization inhibitors include hydroquinone, hydroquinones such as pt-butylcatechol or mono-t-butylhydroquinone; hydroquinone monomethyl ether or di-t-butylhydroquinone;
Examples include phenols such as p-cresol; quinones such as p-benzoquinone, naphthoquinone, or p-torquinone; and copper salts such as copper naphthenate. In addition, the epoxy vinyl ester resin used as the component (A-b) is synthesized from the cresol novolac type epoxy resin and the unsaturated monobasic acid in exactly the same manner as the vinyl ester resin that is the component (A-a). This can be obtained by however,
The ratio of cresol novolak type epoxy resin and unsaturated monobasic acid is 1 chemical equivalent of cresol novolak type epoxy resin and 0.2 to 0.2 to unsaturated monobasic acid.
It is 0.7 chemical equivalent. Such vinyl ester resin is preferably an epoxy vinyl ester resin containing a vinyl group and an epoxy group in one molecule obtained by adding an unsaturated monobasic acid to a part of the epoxy group of a cresol novolak type epoxy resin. . The vinyl ester resin thus obtained (A-
The resin composition (A) consisting of 10 to 40 parts by weight of a) and 90 to 60 parts by weight of the epoxy vinyl ester resin (A-b) is a stable resin when dissolved in a known and commonly used organic solvent (B). It is considered to be a solution. Representative organic solvents (B) include aromatic hydrocarbons such as toluene and xylene; alcohols such as methanol and isopropyl alcohol; esters such as ethyl acetate and butyl acetate; 1,4-dioxane and tetrahydrofuran. ketones such as methyl ethyl ketone and methyl isobutyl ketone; glycol derivatives such as cellosolve and butyl cellosolve; alicyclic hydrocarbons such as cyclohexanone and cyclohexanol; and petroleum solvents such as petroleum ether and petroleum naphtha. These may be used alone or as a mixture of two or more.
Further, the concentration of these organic solvents is not particularly limited, but from the viewpoint of workability, it is preferably 10 to 40% by weight. Next, as the photopolymerization initiator (C), pt-butyltrichloroacetophenone, 2,2-diethoxyacetophenone, benzophenone, 4,4-
Bismethylaminobenzophenone, benzyl, benzoin, benzoin methyl ether, benzoin isobutyl ether, benzyl methyl ketal, methyl-o-benzoylbenzoate, α-
Examples include carbonyl compounds such as hydroxyisobutylphenone; sulfur compounds such as tetramethylthiuram monosulfide, thioxanthone, and 2-chlorothioxanthone; and azo compounds.
These can be used alone or as a mixture of two or more, and the amount used is vinyl ester resin (A-
The amount is preferably 0.5 to 10 parts by weight based on the total of 100 parts by weight of a) and the epoxy vinyl ester resin (A-b). Further, as the amine curing agent, ethylenediamine, diethylenetriamine, triethylenetriamine, diethylaminopropylamine,
Aliphatic polyamines such as xylylene diamine; aromatic polyamines such as metaphenylene diamine, diaminodiphenylmethane, and diaminodiphenylsulfone; fats such as menthanediamine, isophorone diamine, and bis(4-amino-3-methylcyclohexyl)methane. Cyclic polyamine; dicyandiamide; 2-methylimidazole, 2-ethyl-
Imidazole compounds such as 4-methylimidazole and 1-benzyl-2-methylimidazole; tertiary amines such as benzyldimethylamine, tridimethylaminomethylphenol, and dimethylaminomethylphenol; and amine complex compounds such as BF 3 and monoethylamine. Can be mentioned. Furthermore, the resin composition of the present invention may contain various additives, such as fillers such as silica, talc, and clay; thixotropic agents such as Aerosil; silicone and fluorine-based leveling agents and antifoaming agents; and colorants. can be added for the purpose of improving various performances of the solder resist ink. Next, the present invention will be specifically explained using reference examples and examples. Hereinafter, all parts and percentages are based on weight unless otherwise specified. Reference Example 1 Into a three-neck flask equipped with a thermometer, stirrer, and condenser, 1800 parts of phenol novolac type epoxy resin "Epicron N-740" (epoxy resin manufactured by Dainippon Ink and Chemicals Co., Ltd.) with an epoxy equivalent of 180 was added. (equivalent to 10 epoxy groups), 720 parts of acrylic acid (equivalent to 10 carboxyl groups), and hydroquinone.
Add 1.26 parts and 10.1 parts of triethylamine;
By raising the temperature to 110°C and continuing the reaction for 6 hours, a vinyl ester resin (A-a-1) having an acid value of 3 and an epoxy equivalent of 20,000 or more was obtained. Reference Example 2 In the same reaction apparatus as Reference Example 1, an epoxy equivalent
1850 parts (equivalent to 10 epoxy groups) of bisphenol A type epoxy resin "Epicron 850" (epoxy resin manufactured by the same company), 720 parts of acrylic acid (equivalent to 10 carboxyl groups), 1.29 parts of hydroquinone.
and 10.3 parts of triethylamine to 110 parts
By raising the temperature to ℃ and continuing the reaction for 7 hours, a vinyl ester resin (A'-a-1) having an acid value of 2 and an epoxy equivalent of 20,000 or more was obtained. Reference Example 3 Similarly to Reference Example 1, a cresol novolak type epoxy resin with an epoxy equivalent of 220 “Epiclon N-
Add 2200 parts (equivalent to 10 epoxy groups) of ``660'' (epoxy resin manufactured by the same company), 360 parts of acrylic acid (equivalent to 5 carboxyl groups), 1.28 parts of hydroquinone, and 10.2 parts of triethylamine, and heat to 110°C. By raising the temperature and continuing the reaction for 4 hours, the acid value
0.5, an epoxy vinyl ester resin (A-b-1) having an epoxy equivalent of 620 was obtained. Reference Example 4 Similarly to Reference Example 1, a cresol novolak type epoxy resin “Epiclon N-
Add 2,300 parts (equivalent to 10 epoxy groups) of ``680'' (epoxy resin manufactured by the same company), 216 parts of acrylic acid (equivalent to 3 carboxyl groups), 1.26 parts of hydroquinone, and 10.1 parts of triethylamine, and heat to 120°C. By raising the temperature and continuing the reaction at that temperature for 3 hours, an epoxy vinyl ester resin (A-b-2) having an acid value of 0.6 and an epoxy equivalent of 410 was obtained. Reference Example 5 Similar to Reference Example 1, bisphenol A type epoxy resin “Epicron 1050” with an epoxy equivalent of 470 was used.
(Epoxy resin made by the same company) 4700 parts (Epoxy group
By adding 288 parts of acrylic acid (equivalent to 4 carboxyl groups), 2.49 parts of hydroquinone and 20.0 parts of triethylamine, raising the temperature to 116°C and continuing the reaction at that temperature for 4 hours, An epoxy vinyl ester resin (A'-b-1) having an acid value of 0.7 and an epoxy equivalent of 920 was obtained. Examples 1 to 3 and Comparative Examples 1 to 3 Vinyl ester resins and epoxy vinyl ester resins and epoxy resins obtained in Reference Examples 1 to 5,
A solder resist ink is mixed with an organic solvent, an acrylic monomer, a photopolymerization initiator, and an amine curing agent according to the compounding ratios shown in Table 1, and the paste is printed onto a copper through-hole printed wiring board with a thickness of 30 to 40 ÎŒm by screen printing. It was applied to a film thickness of . First, the paint film
After drying at 130℃ for 5 minutes, apply negative film.
A 5KW ultra-high pressure mercury lamp was used to irradiate ultraviolet light with a wavelength of around 350 nm and an intensity of 20 mw/cm 2 for 60 seconds, and then the unirradiated parts of the coating film were removed using an organic solvent such as trichlorethylene. After that, heat it in a hot air dryer at 130℃.
Heat curing was performed for 30 minutes, and various performance tests were conducted on each of the obtained specimens. The results are shown in Table 1. The various performance tests shown in the table were conducted according to the following test methods. [Drying properties of coating film] Solder resist ink was applied to a copper through-hole printed wiring board, and after drying at 130°C for 5 minutes, the drying properties of the coating film were evaluated by a method according to JIS K-5400. The judgment criteria are as follows. 〇...Without tack ×...With tack [Solvent resistance] Using a 5KW ultra-high pressure mercury lamp, the wavelength
The film was irradiated with ultraviolet light around 350 nm with an illuminance of 20 mw/cm 2 for 60 seconds, and then the unirradiated areas were removed with Triclean, and the condition of the coating film in the irradiated areas was evaluated. The judgment criteria are as follows. 〇  No abnormality ×  Dissolved or swelled [Solder resistance] 2 to 60% tin molten solder at 260℃
The condition of the coating film after being immersed for minutes was evaluated.
The judgment criteria are as follows. 〇... No abnormality in the appearance of the paint film ×... Blistering, melting, peeling [Goban adhesion] Adhesion after cutting 100 goblets of 1 x 1 mm in size on the paint film of the specimen and peeling off with cellophane tape (according to JIS D-0202). [Surface insulation resistance] A specimen coated on a Mil standard IPC-840B-25 test pattern board at 80℃, 95%
It was left in an RH atmosphere for 240 hours, and the surface insulation resistance of the coating film was measured according to JIS-Z-3197. From the results shown in Table 1, it can be clearly seen that the coating film obtained using the composition of the present invention is excellent in heat resistance, adhesion, solvent resistance, and electrical insulation. 【table】

Claims (1)

【特蚱請求の範囲】   (a) プノヌルノボラツク型゚ポキシ暹
脂の化孊圓量ず䞍飜和䞀塩基酞の0.8〜1.1
化孊圓量ずを反応しお埗られるビニル゚ステ
ル暹脂の10〜40重量郚及び (b) クレゟヌルノボラツク型゚ポキシ暹脂の
化孊圓量ず䞍飜和䞀塩基酞の0.2〜0.7化孊圓
量ずを反応しお埗られる゚ポキシビニル゚ス
テル暹脂の90〜60重量郚、  有機溶剀、  光重合開始剀䞊びに  アミン系硬化剀 よりなるこずを特城ずする゜ルダヌレゞストむン
キ甚暹脂組成物。
[Claims] 1 A (a) 1 chemical equivalent of a phenol novolac type epoxy resin and 0.8 to 1.1 of an unsaturated monobasic acid.
10 to 40 parts by weight of a vinyl ester resin obtained by reacting with a chemical equivalent of (b) 1 part of a cresol novolak type epoxy resin
Consisting of 90 to 60 parts by weight of an epoxy vinyl ester resin obtained by reacting a chemical equivalent with 0.2 to 0.7 chemical equivalent of an unsaturated monobasic acid, B an organic solvent, C a photopolymerization initiator, and D an amine curing agent. A resin composition for solder resist ink, characterized by:
JP59063167A 1984-04-02 1984-04-02 Resin composition for solder resist ink Granted JPS60208377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59063167A JPS60208377A (en) 1984-04-02 1984-04-02 Resin composition for solder resist ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59063167A JPS60208377A (en) 1984-04-02 1984-04-02 Resin composition for solder resist ink

Publications (2)

Publication Number Publication Date
JPS60208377A JPS60208377A (en) 1985-10-19
JPH0122312B2 true JPH0122312B2 (en) 1989-04-26

Family

ID=13221416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59063167A Granted JPS60208377A (en) 1984-04-02 1984-04-02 Resin composition for solder resist ink

Country Status (1)

Country Link
JP (1) JPS60208377A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639518B2 (en) * 1986-04-28 1994-05-25 東京応化工業株匏䌚瀟 Heat resistant photosensitive resin composition
JP2604174B2 (en) * 1987-03-25 1997-04-30 東京応化工業株匏䌚瀟 Heat resistant photosensitive resin composition
JPH0717737B2 (en) * 1987-11-30 1995-03-01 倪陜むンキ補造株匏䌚瀟 Photosensitive thermosetting resin composition and method for forming solder resist pattern
JPH02109052A (en) * 1988-10-19 1990-04-20 Tokyo Ohka Kogyo Co Ltd Photosensitive resin composition
SG73469A1 (en) 1996-11-20 2000-06-20 Ibiden Co Ltd Solder resist composition and printed circuit boards
CN101855596B (en) * 2007-11-12 2013-05-22 日立化成株匏䌚瀟 Positive-type photosensitive resin composition, method for production of resist pattern, semiconductor device, and electronic device
EP2764063B1 (en) 2011-10-09 2018-01-24 HP Scitex Ltd Photo-curable ink composition
EP2666832B1 (en) 2012-05-22 2018-10-10 HP Scitex Ltd Photo-curable ink composition

Also Published As

Publication number Publication date
JPS60208377A (en) 1985-10-19

Similar Documents

Publication Publication Date Title
EP0207188B1 (en) Resin composition for solder resist ink
KR101625855B1 (en) Photocurable composition
JPH05339356A (en) Photopolymerizable unsaturated compound, and photosensitive resin composition of alkali development type
JPH01161038A (en) Resin composition and solder resist resin composition
JPH0122312B2 (en)
JP5318453B2 (en) Carboxyl group-containing novolac resin and cured product thereof
US5468784A (en) Photopolymerizable resin composition
US6555592B2 (en) Photothermosetting composition comprising acrylated epoxy resin
JP2007506137A (en) Liquid photo solder resist composition and photo solder resist film prepared from the composition
JPH0411626A (en) Resin composition, solder resist resin composition, and cured product
JPH01203424A (en) Curable composition
JP4242010B2 (en) Photosensitive resin composition and cured product thereof
JPS63251416A (en) Resin composition and resin composition for solder resist
JPH0823691B2 (en) Photosensitive resin composition
JPS61201237A (en) Photosensitive resin composition
JP3391780B1 (en) Photosensitive resin composition
JPH09160239A (en) Soldering resist resin composition
JPH0689285B2 (en) Curable resin composition for solder-resist ink
JPH0826118B2 (en) Resin composition and solder-resist resin composition
JP2533557B2 (en) Photosensitive resin composition
JPH0829979A (en) Manufacture of resist pattern and etching pattern
JP4325819B2 (en) Flame retardant energy ray photosensitive epoxy carboxylate resin, photosensitive resin composition using the same, and cured product thereof
JPH03106903A (en) Photosensitive thermosetting resin composition solder resist resin composition, and cured product thereof
JP2005068308A (en) Photoselective thermosetting resin composition sheet
JPH03153768A (en) Photosensitive thermoset resin composition, solder resist resin composition, and cured product thereof