JPH01222684A - Synchronous controller - Google Patents

Synchronous controller

Info

Publication number
JPH01222684A
JPH01222684A JP63047968A JP4796888A JPH01222684A JP H01222684 A JPH01222684 A JP H01222684A JP 63047968 A JP63047968 A JP 63047968A JP 4796888 A JP4796888 A JP 4796888A JP H01222684 A JPH01222684 A JP H01222684A
Authority
JP
Japan
Prior art keywords
phase
difference
output
speed
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63047968A
Other languages
Japanese (ja)
Other versions
JP2629784B2 (en
Inventor
Ichiro Ishida
一郎 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63047968A priority Critical patent/JP2629784B2/en
Publication of JPH01222684A publication Critical patent/JPH01222684A/en
Application granted granted Critical
Publication of JP2629784B2 publication Critical patent/JP2629784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To need no reference point match at the time of starting and shorten a synchronous desired time and simplify synchronous operation, by setting the Z-phase pulse signal of the original signal of an encoder, as a reference, and by controlling the speed of a follow-up side machine. CONSTITUTION:By a phase difference detection circuit 8, each Z-phase pulse signal of encoders 3a, 3b is respectively set as clear and latch signal, and the pulse number of four-times frequency pulse signal from a frequency multiplication direction discriminating circuit 6a included in a difference period at the time point of the generation of both the signals is counted. Then, with the reference of the rotating state of the encoder 3a, a phase difference alpha between both encoder original-points is detected. The input of the phase difference alphato an angle regulating circuit 12 is provided, and a correction angle gamma is corrected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、誘導電動機により駆動される2台の機械を
インバータ装置を介して同期運転する同期制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a synchronous control device for synchronously operating two machines driven by induction motors via an inverter device.

〔従来の技術〕[Conventional technology]

従来のこの種の同期制御装置としては第2図の制御ブロ
ック図に例示するものが知られている。
As a conventional synchronous control device of this type, one illustrated in the control block diagram of FIG. 2 is known.

第3図は第2図におけるシンクロ電機の出力波形及び相
対位置関係図である。第2図において1aと1bとはそ
れぞれ2aと2bとの誘導電動機により駆動され同期運
転される機械であり、図示の場合1aが先行機1bが追
従機である。20aと20bとはそれぞれ前記機械1a
と1bとに結合され回転駆動されるシンクロ電機であり
、図示の場合20aが発信[20bが受信機であり、互
に対をなす。該発受信両板それぞれの固定子と回転子間
の相対角度の差に応じた正弦波電圧が前記受信機20b
の固定子側に出力される。21は該正弦波出力電圧を受
は前記発信機回転子位置サ転角度差の大きさと極性とを
判別する変位検出口路である。22は該検出回路の出力
を受り前記両回転子間の回転角度差を零となすように前
記追従機用電動機2bを加減速制御する電動機駆動回路
である。また第3図(イ)は前記正弦波出力電圧の波形
を示し、同図(ロ)は該出力電圧の横軸位相角すなわち
前記回転角度差に対応し前記発信機回転子位置を基準と
した場合の前記受信機回転子位置の相対関係を示す。
FIG. 3 is a diagram showing the output waveform and relative position relationship of the synchro electric machine in FIG. 2. In FIG. 2, 1a and 1b are machines driven by induction motors 2a and 2b and operated synchronously, and in the illustrated case, 1a is the leading machine and 1b is the follower machine. 20a and 20b are respectively the machine 1a.
In the illustrated case, 20a is a transmitter and 20b is a receiver, which are paired with each other. A sine wave voltage corresponding to the difference in relative angle between the stator and rotor of each of the transmitter and receiver plates is applied to the receiver 20b.
output to the stator side. Reference numeral 21 denotes a displacement detection port which receives the sine wave output voltage and determines the magnitude and polarity of the difference in rotation angle of the transmitter rotor position. Reference numeral 22 denotes a motor drive circuit which receives the output of the detection circuit and controls acceleration and deceleration of the follower motor 2b so as to make the rotation angle difference between the two rotors zero. In addition, FIG. 3(A) shows the waveform of the sine wave output voltage, and FIG. 3 shows the relative relationship of the receiver rotor positions in the case of FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記従来方式においては、i5I記先行追
従両機の位置偏差検出用の前記シンクロ受信機の出力電
圧は正弦波状に変化し、該正弦波の位相角θの2π(r
ad)以上と以下に相当する位置偏差の識別はできず、
従って整数nに対しsin θと5in(2πn+θ)
の識別用のn検出手段を設けるか或いは常に0≦θ〈2
πとなず運転が必要となる。このため前記先行追従両板
の始動点合せ後の同時起動、更に前記両板械とそれぞれ
のシンクロ電機との原点一致の結合等の操作の複雑化、
或いはまた制御回路の複雑化を招いていた。
However, in the above conventional method, the output voltage of the synchronized receiver for detecting the positional deviation of both the leading and following devices described in i5I changes in a sine wave shape, and the phase angle θ of the sine wave is 2π(r
ad) Positional deviations corresponding to above and below cannot be distinguished,
Therefore, for an integer n, sin θ and 5in(2πn+θ)
Provide n detection means for identification, or always 0≦θ<2
It is necessary to drive without pi. This complicates operations such as simultaneous activation of both the preceding and following plates after the starting points have been aligned, and furthermore, the coupling of the two plates and their respective synchronized electric machines so that their origins coincide;
Alternatively, the control circuit becomes complicated.

これに鑑み本発明は、ロークリ・エンコーダ出力パルス
の計数演算により上記諸問題を解決する同期制御装置を
提供することを目的とする。
In view of this, it is an object of the present invention to provide a synchronous control device that solves the above-mentioned problems by counting and calculating the output pulses of a rotary encoder.

〔課題を解決するための手段〕[Means to solve the problem]

前記追従機速度制御用インバータの設定速度として、前
記先行機速度と、該先行及び追従両板の速度差と、該両
板によりそれぞれ駆動されるエンコーダの特定位置間位
相差角の所要補正量と該補正量に対する時間的追従用量
との差の三者の和を演算する諸手段を設りるものである
。すなわち誘導電動機により駆動される2台の機械の一
方を先行機とし他方を該先行機に対する追従機として追
従同期運転させる前記2台の機械の同期制御装置におい
て、前記2台の機械にそれぞれ結合されて回転しその回
転角度に応じて相互に90度の位相差を有するA相とB
相との2相パルス信号とその1回転毎に1パルスの原点
信号すなわちZ相信号を出力する2組のエンコーダと、
該両エンコーダの前記2相パルス信号より該信号の4倍
周波パルス信号を出力すると共に対応するエンコーダそ
れぞれの回転方向を判別する2 Miの周波数てい侑方
向判別回路と、前記両エンコーダそれぞれの前記A相又
はB相パルス信号より対応するエンコーダの回転速度を
演算する2組の速度検出回路と、前記両エンコーダそれ
ぞれのZ相パルス信号と前記先行機のエンコーダに対応
する前記4倍周波パルス信号とにより前記追従機に対す
る同期制御開始時点におりる前記両エンコーダの原点間
位相差角を演算する位相差検出回路と、前記同期制御完
了時点における前記原点間位相差角の設定値を与える位
相差設定回路と、該位相差の検出回路と設定回路との出
力差を演算する角度調整回路と、前記両エンコーダに対
応する前記4倍周波パルス信号それぞれの積算値間の差
をその符号を含めて演算し該積算値差を初期セント値と
して与えられた前記角度調整回路の出力値より減算する
偏差カウンタ回路と、前記両速度検出回路の出力差を演
算する第1の加減演算器と、前記先行機に対応する速度
検出回路の出力と前記偏差カウンタ回路の出力と前記第
1の加減演算器の出力との和を演算する第2の加減演算
器と、前記両誘導電動機をそれぞれ速度制御する2組の
インバータ装置とを設け、前記第2の加減演算器の出力
を以って前記追従機の誘導電動機速度調整用インバータ
装置の設定速度信号となすことを特徴とするものである
The set speed of the inverter for controlling the speed of the following machine is the speed of the preceding machine, the speed difference between the leading and following plates, and the required correction amount of the phase difference angle between specific positions of the encoders driven by the two plates, respectively. Means are provided for calculating the sum of the three differences between the correction amount and the temporal follow-up dose. That is, in the synchronous control device for two machines driven by induction motors, one of which is a leading machine and the other is a follower of the preceding machine and is operated in synchronization with the preceding machine, the two machines are each connected to the two machines. A phase and B phase rotate with each other and have a phase difference of 90 degrees depending on the rotation angle.
two sets of encoders that output a two-phase pulse signal with the phase and an origin signal of one pulse per rotation, that is, a Z-phase signal;
2 Mi frequency and direction discrimination circuits for outputting quadrupled frequency pulse signals of the two-phase pulse signals of the two-phase pulse signals of the two-phase pulse signals and determining the rotation directions of the respective encoders; Two sets of speed detection circuits that calculate the rotational speed of the corresponding encoder from the phase or B-phase pulse signals, and the Z-phase pulse signal of each of the two encoders and the quadruple frequency pulse signal corresponding to the encoder of the preceding machine. a phase difference detection circuit that calculates a phase difference angle between origins of both encoders at the time of starting synchronous control for the follower; and a phase difference setting circuit that provides a set value of the phase difference angle between origins at the time of completion of the synchronous control. and an angle adjustment circuit that calculates the output difference between the phase difference detection circuit and the setting circuit, and calculates the difference between the integrated values of the quadrupled frequency pulse signals corresponding to both encoders, including the sign thereof. a deviation counter circuit that subtracts the integrated value difference from the output value of the angle adjustment circuit given as an initial cent value; a first addition/subtraction calculator that calculates the output difference of both speed detection circuits; a second addition/subtraction calculator that calculates the sum of the output of the corresponding speed detection circuit, the output of the deviation counter circuit, and the output of the first addition/subtraction calculator; and two sets of speed controls for each of the induction motors. An inverter device is provided, and the output of the second addition/subtraction calculator is used as a set speed signal of the inverter device for adjusting the speed of the induction motor of the follower.

〔作用〕[Effect]

一般に2台の機械の同期運転においては、該両板械の同
期対象移動部間の等速比と該両移動部における所要特定
位置間の合致とが必要である。従って前記両板械を先行
機と、該先行機に対して同期すべき追従機とに順序イ」
ければ前記両板械の同期制御は、前記追従機に対する適
当な加減速制御による前記先行機との等連化制御と該先
行追従両板の所要特定位置間偏差を零となす制御との2
種類の制御を内容とするものとなる。本発明は前記両板
械の駆動源を誘導電動機とする場合を対象とし、該両型
動機をそれぞれインバータにより可変速制御して同期制
御するものであり、前記追従機制御用インバータの速度
設定値を前記先行機の速度検出値と、該先行追従両板の
速度検出値差と、該雨樋の所要特定位置間偏差との三者
の和となして前記追従機の前記先行機に対する速度及び
位置両面の追従側?111を行ない前記速度設定値にお
ける速度差項と位置偏差項とを共に零となすように制御
するものである。なお前記速度差項と位置偏差項とは電
動機速度制御系に最適な時間特性にて入力されるように
それぞれ比例・積分(PI)調整器を介して前記インバ
ータに加えられる。ここで前記位置偏差項は、前記追従
機に対する同期制御開始時点におiJる前記先行追従両
板それぞれの基準位置間偏差と該雨樋の速度差に従って
その時間的積算値を増大させる前記基準位置間偏差に対
する位置追従補正値との差であり、時間的積算値である
。また本発明において前記速度及び位置諸元の決定は、
前記2台の機械とそれぞれ特定の位置関係で結合されて
回転駆動される2組のエンコーダからそれぞれ出力され
該各エンコーダの規定回転角毎に相互に90度の位相差
をもって発するA相とB相との2相パルス信号と前記各
エンコーダの1回転毎に1パルスの割合で発する基準原
点信号づなわちZ相パルス信号と前記2相パルス信号よ
り合成演算される該信号の4倍周波パルス信号とのディ
ジタル的諸演算により行なう。すなわち前記速度の検出
は前記A組成いはB相のパルス信号周期とクロック信号
とを比較する速度検出回路にて行ない、前記位置間偏差
は前記両エンコーダのZ相パルス信号の発生時点差内に
含まれる前記先行機エンコーダによる4倍周波パルス数
の計数を行なう位相差検出回路にて角度対応パルス数と
して検出される。なお前記エンコーダの原点位置と該エ
ンコーダに対応する前記機械の所要特定位置とが一致し
ない場合、そのづれに相当する位置信号を位相差設定回
路より角度対応パルス数として出力し前記位相差検出回
路の出力パルス数より減算して原点位置補正を行なう。
Generally, in synchronized operation of two machines, it is necessary to match the constant velocity ratio between the synchronized moving parts of the two plate machines and the required specific positions of the two moving parts. Therefore, the two plate machines are divided into a leading machine and a following machine which should be synchronized with the preceding machine.
If so, the synchronized control of the two plate machines includes two steps: one is equal linkage control with the preceding machine by appropriate acceleration/deceleration control for the following machine, and the other is control to make the deviation between the required specific positions of the preceding and following two plates zero.
The content is the type of control. The present invention is directed to the case where the driving sources of both plate machines are induction motors, and each of the two types of motors is variable speed controlled and synchronously controlled by an inverter, and the speed setting value of the follower control inverter is controlled. The speed and position of the following machine relative to the preceding machine are calculated as the sum of the speed detection value of the preceding machine, the difference in speed detection values of the preceding and following plates, and the deviation between the required specific positions of the rain gutter. Follower side on both sides? 111 to control the speed difference term and position deviation term in the speed setting value to both be zero. The speed difference term and the position deviation term are respectively applied to the inverter via a proportional-integral (PI) regulator so that they are input to the motor speed control system with optimal time characteristics. Here, the positional deviation term is defined as the deviation between the respective reference positions of the preceding and following plates at the start of synchronous control for the following machine and the reference position whose temporal integrated value is increased according to the speed difference of the rain gutter. This is the difference between the positional deviation and the position tracking correction value, and is a temporally integrated value. Furthermore, in the present invention, the speed and position specifications are determined by
Phase A and phase B are output from two sets of encoders that are connected to the two machines in a specific positional relationship and driven to rotate, and are emitted with a phase difference of 90 degrees at each specified rotation angle of each encoder. a reference origin signal, that is, a Z-phase pulse signal, which is emitted at a rate of one pulse per rotation of each encoder, and a quadrupled frequency pulse signal of the two-phase pulse signal, which is synthesized from the two-phase pulse signal and the two-phase pulse signal. This is done through various digital operations. That is, the speed is detected by a speed detection circuit that compares the A-composition or B-phase pulse signal cycle with a clock signal, and the positional deviation is within the difference in the generation time of the Z-phase pulse signals of both encoders. A phase difference detection circuit that counts the number of quadrupled frequency pulses by the preceding encoder included therein detects the number of pulses corresponding to the angle. Note that if the origin position of the encoder and the required specific position of the machine corresponding to the encoder do not match, a position signal corresponding to the discrepancy is output from the phase difference setting circuit as the number of angle-corresponding pulses, and the phase difference detection circuit outputs a position signal corresponding to the difference. The origin position is corrected by subtracting it from the number of output pulses.

更に前記位置追従補正値は、前記先行追従両板のエンコ
ーダ信号に対応する前記両4倍周波パルス信号の時間的
積算値間の差として演算され、その値は前記雨樋の速度
差に比例し、その正負極性は該両機速度の遅速関係を表
はず。
Furthermore, the position tracking correction value is calculated as a difference between the temporal integrated values of both the quadruple frequency pulse signals corresponding to the encoder signals of the preceding tracking plates, and the value is proportional to the speed difference of the rain gutter. , the positive and negative polarities should represent the slow-speed relationship between the speeds of the two aircraft.

〔実施例〕〔Example〕

以下この発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の実施例を示す制御ブロック図である
。第1図において18と1bとは誘薄電動m2a と2
bとによりそれぞれ駆動され同期運転される機械であり
、図示の場合1aが先行機1bが追従機である。以下各
構成要素に付す添字aとbとは該要素がそれぞれ前記機
械1aと1bとに対応する信号処理を行なうものである
ことを示す。
FIG. 1 is a control block diagram showing an embodiment of the present invention. In Fig. 1, 18 and 1b are dielectric electric motors m2a and 2
In the illustrated case, 1a is the leading machine and 1b is the following machine. Below, the suffixes a and b attached to each component indicate that the component performs signal processing corresponding to the machines 1a and 1b, respectively.

3aと3bとは対応する前記各機械に結合されて回転し
、その回転角度に応じて相互に90度の位相差を有する
A相とB相との2相パルス信号と、その1回転毎に1パ
ルスの原点信号すなわちZ相信号を出力するエンコーダ
である。4aと4bとは絶縁回路、5aと5bとは該絶
縁回路を経由する前記A、B、Z各相パルス信号波形の
整形回路である。6aと6bとは周波数てい倍方向判別
回路であり、それぞれ前記A相とB相とのパルス信号を
受は該両信号の4倍周波パルス信号(A+B)を合成し
出力することにより該信号1パルス当りの角度分解能を
向上させ、更に前記A相及びB和名パルス信号間90度
位相差の進み遅れの相対関係より対応するエンコーダの
回転方向の判別を行なうものである。7aと7bとは速
度検出回路であり、図示の場合、前記A相パルス信号を
入力としそのパルス周期とクロック信号とを比較し対応
するエンコーダの回転速度fpとfcとをそれぞれを検
出するものである。なお前記B相パルス信号を入力とす
る場合も同様に速度検出ができる。
3a and 3b are connected to the corresponding machines and rotate, and a two-phase pulse signal of A phase and B phase having a phase difference of 90 degrees from each other according to the rotation angle, and a two-phase pulse signal for each rotation. This is an encoder that outputs a one-pulse origin signal, that is, a Z-phase signal. 4a and 4b are insulating circuits, and 5a and 5b are shaping circuits for the A, B, and Z phase pulse signal waveforms passing through the insulating circuits. 6a and 6b are frequency multiplication direction discrimination circuits, which receive the A-phase and B-phase pulse signals, respectively, and combine and output a quadrupled frequency pulse signal (A+B) of both signals, thereby converting the signal 1. The angular resolution per pulse is improved, and the rotational direction of the corresponding encoder is determined based on the relative relationship between the lead and lag of the 90-degree phase difference between the A-phase and B-Japanese pulse signals. 7a and 7b are speed detection circuits, which in the illustrated case receive the A-phase pulse signal as input, compare its pulse period with a clock signal, and detect the rotational speeds fp and fc of the corresponding encoders, respectively. be. Note that speed detection can be similarly performed when the B-phase pulse signal is input.

8は前記エンコーダ3aと3bそれぞれの原点間の位相
差検出回路であり、該両エンコーダ3aと3bとの各Z
相パルス信号をそれぞれクリア及びランチ信号とじ該両
信号の発生時点の差期間内に含まれる前記周波数てい倍
方向判別回路6aがらの4倍周波パルス信号のパルス数
を計数することにより、前記エンコーダ3aの回転状態
を基準として、前記両エンコーダ原点間位相差αを下記
の如く検出するものである。
8 is a phase difference detection circuit between the origins of the encoders 3a and 3b, and each Z of the encoders 3a and 3b is
By counting the number of pulses of the quadruple frequency pulse signal from the frequency multiplication direction discriminating circuit 6a that is included within the period of difference between the generation points of the phase pulse signals and the launch signal, the encoder 3a The phase difference α between the origins of both encoders is detected as follows, based on the rotational state of .

Nd 但しNd:位相差検出回路8の計数パルス数Ne:エン
コーダ3aの1回転当りパルス数又前記両機の所要基準
位置と対応する各エンコーダのZ相パルス発生基準点と
の組立時の機械的づれに相当する角度を該両組合わせに
ついて総合した値を前記位相差αに対する補正角Tとし
て位相差設定回路13より設定する。12は前記位相差
αとその補正角Tの差を演算する角度調整回路である。
Nd However, Nd: Number of pulses counted by the phase difference detection circuit 8 Ne: Number of pulses per revolution of the encoder 3a, or mechanical deviation during assembly between the required reference position of both machines and the corresponding Z-phase pulse generation reference point of each encoder A value obtained by integrating the angles corresponding to both combinations is set by the phase difference setting circuit 13 as the correction angle T for the phase difference α. Reference numeral 12 denotes an angle adjustment circuit that calculates the difference between the phase difference α and its correction angle T.

該角度調整回路出力の角度差は、前記両機械の同期制御
開始時点における該両機械の同期対象基準点間位置偏差
に対応する各エンコーダの、上記の如く角γで補正され
た、両基準点間の角度差であり、同期のための所要補正
角を示す。9は偏差カウンタ回路であり、前記エンコー
ダ3aと3bとにそれぞれ対応する前記両4倍周波パル
ス信号(A十B)間のパルス数差を計数し、該パルス数
差を初期セット値として入力される前記角度調整回路1
2からの所要補正角に対応するパルス数より減算するも
のである。ここで前記両4倍周波パルス信号のパルス数
差は前記両エンコーダ従って前記両機械の回転速度差に
比例するものであり、■パルス当りの回転角度が決定さ
れているために、前記パルス数差の時間的積算値はその
積算期間内の総変位角を示す。該総変位角は前記所要補
正角に対する追従補正角を示し、従って該両角の差であ
る前記偏差カウンタ回路9の出力角度βは前記パルス差
計数時点における所要補正角の残量を示すことになり、
下記の如く与えられる。
The angular difference between the outputs of the angle adjustment circuit is determined by the difference between the two reference points corrected by the angle γ of each encoder corresponding to the positional deviation between the synchronization target reference points of the two machines at the start of synchronous control of the two machines. This is the angular difference between the two and indicates the required correction angle for synchronization. Reference numeral 9 denotes a deviation counter circuit, which counts the difference in the number of pulses between the quadruple frequency pulse signals (A and B) corresponding to the encoders 3a and 3b, respectively, and inputs the difference in the number of pulses as an initial set value. The angle adjustment circuit 1
The number of pulses corresponding to the required correction angle from 2 is subtracted. Here, the difference in the number of pulses between the two quadruple frequency pulse signals is proportional to the difference in rotational speed of both the encoders and therefore the two machines, and since the rotation angle per pulse is determined, the difference in the number of pulses is The temporally integrated value of indicates the total displacement angle within the integration period. The total displacement angle indicates a follow-up correction angle with respect to the required correction angle, and therefore, the output angle β of the deviation counter circuit 9, which is the difference between the two angles, indicates the remaining amount of the required correction angle at the time of counting the pulse difference. ,
It is given as below.

但しNc:偏差カウンタ回路9の出力パルス数Ne:エ
ンコーダ3aの1回転当りパルス数10と11とは比例
・積分(PT)調整器であり、前記角度βと前記両エン
コーダの回転速度差fp−fcを演算する加減演算器1
5の出力とをそれぞれ入力とする。前記エンコーダ3a
の回転速度fpと前記両PT調整器10と11との出力
との王者の和が加減演算器14にて演算され、その出力
fsは前記追従機の誘導電動機2bに対する速度設定信
号としてインバータ装置16に入力され、前記電動機2
bに対する加減速制御が行なはれる。
However, Nc: Number of output pulses of the deviation counter circuit 9 Ne: Number of pulses per rotation of the encoder 3a 10 and 11 are proportional-integral (PT) regulators, and the angle β and the rotational speed difference fp- of both encoders Addition/subtraction calculator 1 that calculates fc
The outputs of 5 and 5 are respectively input. The encoder 3a
The sum of the rotational speed fp and the outputs of both the PT regulators 10 and 11 is calculated by the addition/subtraction calculator 14, and the output fs is sent to the inverter device 16 as a speed setting signal to the induction motor 2b of the follower. and the electric motor 2
Acceleration/deceleration control is performed for b.

前記速度設定信号の角度補正項である前記調整器10の
出ノjと速度補正項である前記調整器11の出力とは前
記同期制御の進行と共に零に至り、前記追従機の回転速
度[Cは前記先行機の回転速度fpと等しくなり前記同
期制御τ■は完了する。
The output j of the regulator 10, which is the angle correction term of the speed setting signal, and the output of the regulator 11, which is the speed correction term, reach zero as the synchronous control progresses, and the rotational speed [C becomes equal to the rotational speed fp of the preceding machine, and the synchronous control τ■ is completed.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、同期運転される2台の機械にそれぞ
れ結合されたエンコーダの原点信号であるZ相パルス信
号を基準とし、該両エンコーダにおいて規定の回転角毎
に発せられるA相或いはB相パルス信号の計数演算によ
り前記両エンコーダの原点間位置偏差とそれぞれの速度
とその偏差とを決定し、該原点間位置偏差を零となすよ
うに追従側機械の速度制御を行なうことにより前記両機
械起動時の基準点合わせを不用とし同期所要時間の短縮
と同期操作の簡易化を計ると共に同期運転中の外乱によ
る同期つれに対する補正制御も確実且つ即応的に行なう
ことができる。更にまた前記両機械とそれぞれのエンコ
ーダとの結合組立時における両者の基準点間位置づれに
対する補正が位相差設定回路からの電気的な補正値設定
により簡単に行なうことができ前記結合組立作業の大巾
な簡略化が可能となる。
According to the present invention, the Z-phase pulse signal, which is the origin signal of the encoders connected to two machines that are operated synchronously, is used as a reference, and the A-phase or B-phase pulse signal that is emitted at each specified rotation angle in both encoders is used as a reference. The positional deviation between the two encoders, their respective speeds, and their deviations are determined by counting the pulse signals, and the speed of the following machine is controlled so that the positional deviation between the two encoders becomes zero. By eliminating the need for reference point alignment at startup, the time required for synchronization is shortened and synchronization operations are simplified, and correction control for synchronization loss due to disturbance during synchronized operation can be performed reliably and quickly. Furthermore, when assembling the two machines and their respective encoders, the positional deviation between the two reference points can be easily corrected by electrically setting a correction value from the phase difference setting circuit, which reduces the amount of work involved in assembling the two machines. Wide simplification is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す制御ブロック図、第2
図は従来技術の実施例を示す制御ブロック図、第3図は
第2図におけるシンクロ電機の出力波形及び相対位置関
係図である。 1a・・・機械(先行i)、lb・・・機械(追従機)
、2a、2b・・・誘導電動機、3a、3b・・・エン
コーダ、4a、4b・・・絶縁回路、5a、5b・・・
整形回路、6a、6b・・・周波数てい倍方向判別回路
、7a。 7b・・・速度検出回路、8・・・位相差検出回路、9
・・・偏差カウンタ回路、10.11・・・比例・積分
(PI)調整器、12・・・角度調整回路、13・・・
位相差設定回路、14.15・・・加減演算器、16・
・・インバータ装置、20a・・・シンクロ電機(発信
機)、20b・・・シンクロ電a(受信機)、21・・
・変位検出回路、22・・・電動機駆動回路。
FIG. 1 is a control block diagram showing an embodiment of the present invention, and FIG.
The figure is a control block diagram showing an embodiment of the prior art, and FIG. 3 is a diagram showing the output waveform and relative position relationship of the synchro electric machine in FIG. 2. 1a... Machine (leading machine i), lb... Machine (following machine)
, 2a, 2b...induction motor, 3a, 3b...encoder, 4a, 4b...insulation circuit, 5a, 5b...
Shaping circuit, 6a, 6b... Frequency multiplication direction discrimination circuit, 7a. 7b... Speed detection circuit, 8... Phase difference detection circuit, 9
... Deviation counter circuit, 10.11... Proportional/integral (PI) adjuster, 12... Angle adjustment circuit, 13...
Phase difference setting circuit, 14.15... Addition/subtraction calculator, 16.
...Inverter device, 20a... Synchro electric machine (transmitter), 20b... Synchro electric machine a (receiver), 21...
- Displacement detection circuit, 22... motor drive circuit.

Claims (1)

【特許請求の範囲】[Claims] 1)誘導電動機により駆動される2台の機械の一方を先
行機とし他方を該先行機に対する追従機として追従同期
運転させる前記2台の機械の同期制御装置において、前
記2台の機械にそれぞれ結合されて回転しその回転角度
に応じて相互に90度の位相差を有するA相とB相との
2相パルス信号とその1回転毎に1パルスの原点信号す
なわちZ相信号を出力する2組のエンコーダと、該両エ
ンコーダの前記2相パルス信号より該信号の4倍周波パ
ルス信号を出力すると共に対応するエンコーダそれぞれ
の回転方向を判別する2組の周波数てい倍方向判別回路
と、前記両エンコーダそれぞれの前記A相又はB相パル
ス信号より対応するエンコーダの回転速度を演算する2
組の速度検出回路と、前記両エンコーダそれぞれのZ相
パルス信号と前記先行機のエンコーダに対応する前記4
倍周波パルス信号とにより前記追従機に対する同期制御
開始時点における前記両エンコーダの原点間位相差角を
演算する位相差検出回路と、前記同期制御完了時点にお
ける前記原点間位相差角の設定値を与える位相差設定回
路と、該位相差の検出回路と設定回路との出力差を演算
する角度調整回路と、前記両エンコーダに対応する前記
4倍周波パルス信号それぞれの積算値間の差をその符号
を含めて演算し該積算値差を初期セット値として与えら
れた前記角度調整回路の出力値より減算する偏差カウン
タ回路と、前記両速度検出回路の出力差を演算する第1
の加減演算器と、前記先行機に対応する速度検出回路の
出力と前記偏差カウンタ回路の出力と前記第1の加減演
算器の出力との和を演算する第2の加減演算器と、前記
両誘導電動機をそれぞれ速度制御する2組のインバータ
装置とを設け、前記第2の加減演算器の出力を以って前
記追従機の誘導電動機速度調整用インバータ装置の設定
速度信号となすことを特徴とする同期制御装置。
1) In a synchronous control device for two machines driven by induction motors, one of which is a leading machine and the other is a follower of the preceding machine and operates in synchronized manner, each of the two machines is coupled to the two machines. 2 sets of two-phase pulse signals of A phase and B phase which have a phase difference of 90 degrees from each other according to the rotation angle and output one pulse origin signal, that is, Z phase signal for each rotation. an encoder, two sets of frequency multiplication direction discrimination circuits that output quadrupled frequency pulse signals of the two-phase pulse signals of the two-phase pulse signals of the two-phase pulse signals and discriminate the rotation direction of each of the corresponding encoders; Calculating the rotational speed of the corresponding encoder from each of the A-phase or B-phase pulse signals 2
a set of speed detection circuits, a Z-phase pulse signal of each of the two encoders, and the four encoders corresponding to the encoder of the preceding machine.
a phase difference detection circuit that calculates a phase difference angle between the origins of the encoders at the time of starting synchronous control for the follower based on a double frequency pulse signal, and providing a set value for the phase difference angle between the origins at the time of completing the synchronous control; a phase difference setting circuit; an angle adjustment circuit that calculates the output difference between the phase difference detection circuit and the setting circuit; a deviation counter circuit that calculates the integrated value difference and subtracts the difference from the output value of the angle adjustment circuit given as an initial set value; and a first deviation counter circuit that calculates the difference between the outputs of the two speed detection circuits.
a second addition/subtraction calculator that calculates the sum of the output of the speed detection circuit corresponding to the preceding machine, the output of the deviation counter circuit, and the output of the first addition/subtraction calculator; Two sets of inverter devices each controlling the speed of the induction motor are provided, and the output of the second adjustment calculator is used as a set speed signal of the inverter device for adjusting the speed of the induction motor of the follower. Synchronous control device.
JP63047968A 1988-03-01 1988-03-01 Synchronous control device Expired - Lifetime JP2629784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047968A JP2629784B2 (en) 1988-03-01 1988-03-01 Synchronous control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047968A JP2629784B2 (en) 1988-03-01 1988-03-01 Synchronous control device

Publications (2)

Publication Number Publication Date
JPH01222684A true JPH01222684A (en) 1989-09-05
JP2629784B2 JP2629784B2 (en) 1997-07-16

Family

ID=12790123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047968A Expired - Lifetime JP2629784B2 (en) 1988-03-01 1988-03-01 Synchronous control device

Country Status (1)

Country Link
JP (1) JP2629784B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014553A3 (en) * 1998-12-21 2001-12-12 Kabushiki Kaisha Tokyo Kikai Seisakusho Method and device for synchronization control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014553A3 (en) * 1998-12-21 2001-12-12 Kabushiki Kaisha Tokyo Kikai Seisakusho Method and device for synchronization control

Also Published As

Publication number Publication date
JP2629784B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
EP0109075B1 (en) Rotary drive system positioning apparatus by means of resolvers
EP0302493B1 (en) Torque control apparatus for rotating motor machine
US4839834A (en) Speed detecting apparatus
SU822772A3 (en) Device for control of synchronous motion of gear-working lathe
JPS61214002A (en) Control system for follow-up error
JPH01222684A (en) Synchronous controller
JPH01218378A (en) Synchronization controller
JP4638094B2 (en) Multi-axis control device and synchronization method therefor
US7228294B2 (en) Electronic cam device and method of preparing cam data in electronic cam device
JPH01186190A (en) Synchronous controller
SU1317634A2 (en) Variable-frequency synchronous electric drive
JPH0480637B2 (en)
CN106774459B (en) Two-dimensional rotary table follow-up control system and control method of command mirror based on step driving
JPS6399793A (en) Method of controlling synchronous motor
JP2001095276A (en) Device for detecting deviation of rotational position
JP2681636B2 (en) Spindle synchronization adjustment method
JPH01251112A (en) Absolute servo control system
SU968883A1 (en) Cophasal electric drive
SU570880A1 (en) Two channel follow up system
KR20010017175A (en) Compensation apparatus for initial electric angle of permanent magnet type synchronous motor
JPS63273114A (en) Constant position stop controller
SU902189A1 (en) Device for matching angular position of synchronously rotating shafts of electric motors
SU1427404A1 (en) Code to analog converter
JPS63218818A (en) Resolver type rotation angle detector
JPS61221808A (en) Servo circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term