JPH01222199A - Cooling apparatus - Google Patents

Cooling apparatus

Info

Publication number
JPH01222199A
JPH01222199A JP63047139A JP4713988A JPH01222199A JP H01222199 A JPH01222199 A JP H01222199A JP 63047139 A JP63047139 A JP 63047139A JP 4713988 A JP4713988 A JP 4713988A JP H01222199 A JPH01222199 A JP H01222199A
Authority
JP
Japan
Prior art keywords
refrigerant
passage
flow
flow direction
exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63047139A
Other languages
Japanese (ja)
Inventor
Rintaro Minamitani
林太郎 南谷
Kenichi Kasai
憲一 笠井
Shizuo Zushi
頭士 鎮夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63047139A priority Critical patent/JPH01222199A/en
Publication of JPH01222199A publication Critical patent/JPH01222199A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the reliability of a cooler for an erosion of a passage for feeding a refrigerant and easily remove dust etc. with which the passage is inside or outside by providing a feeding direction switching unit for alternately reversing the flow of the refrigerant. CONSTITUTION:A pair of heat exchangers 1 are connected through flowing direction switching units 2 to a tank 3, and the unit 2 can reverse the flowing direction of refrigerant flowing in the exchanger 1. When the refrigerant flows in a direction of an arrow 10, the inner face of a passage 9 in the exchanger 11 is eroded at a position 11 where the refrigerant collide and a position 12 where the flow of the refrigerant is largely disordered. When the refrigerant flows in a direction of an arrow 20, the inner face of the passage 9 is eroded at a position 21 where the refrigerant collides and a position 22 where the flow of the refrigerant is largely disordered. When the flowing direction of the refrigerant is alternately reversed by the unit 2, the positions to be eroded of the passage 9 are dispersed, the erosion amount per one position is reduced by half, thereby extending the life of the passage 9. If dust and the like are filled in the fins in the exchanger 1, when the flowing direction of the refrigerant in the exchanger 1 is reversed, the dusts are separated from the fins, and collected by a filter 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱交換器内の流路の耐侵食性を向上させるとと
もに、熱交換器内のフィンなどに詰るゴミまたは付着す
る堆積物(以下、ゴミ等という)を容易に除去すること
ができる冷却装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention improves the erosion resistance of the flow path in a heat exchanger, and also improves the corrosion resistance of the flow path in a heat exchanger, and eliminates dust or deposits that clog the fins in the heat exchanger (hereinafter referred to as This invention relates to a cooling device that can easily remove dust, dirt, etc.

〔従来の技術〕[Conventional technology]

一般に冷媒を用いた冷却系では、例えば発電機の水冷却
系のように、冷媒はタンク→ポンプ→熱交換器→タンク
と循環し、冷媒は常に一定方向に流れている。
Generally, in a cooling system that uses a refrigerant, such as a water cooling system for a power generator, the refrigerant circulates from a tank to a pump to a heat exchanger to a tank, and the refrigerant always flows in a fixed direction.

ところが、最近、熱交換器の高効率化に伴い、冷媒を高
速で流す必要が生じてきた。このため、冷媒の流路が急
激に曲げられるような部分(例えば曲り管など)では、
冷媒が伝熱管内面に衝突し、このような箇所に侵食が生
じ易い。
However, recently, as heat exchangers have become more efficient, it has become necessary to flow refrigerant at high speed. For this reason, in areas where the refrigerant flow path is sharply bent (such as curved pipes),
The refrigerant collides with the inner surface of the heat transfer tube, and corrosion is likely to occur at such locations.

そこで、曲り管の曲り半径を出来るだけ大きくして、冷
媒がその内面に衝突するのを回避する技術が提案されて
いる([最新防食設計とエンジニアリング」、(昭55
)、ジャデック出版、P147〜148)。
Therefore, a technique has been proposed to avoid the refrigerant from colliding with the inner surface of the bent pipe by making the radius of bend as large as possible ([Latest Corrosion Prevention Design and Engineering], 1983).
), Jadek Publishing, P147-148).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の技術では、冷媒の流れ方向が
常に一定であるため、曲り管の内面に一度侵食を生じる
と、その侵食は急速に進展し、伝熱管ノ寿命が大幅に短
くなってしまう欠点があった。 ゛ また、従来の技術では、運転中に流路のフィンなどにゴ
ミ等が詰った場合、それを除去することについては配慮
がされておらず、ゴミ等が詰ったままで使用すると、熱
交換器の機能が低下してしまうという問題もあった。な
お、この場合は主に冷媒は流路の外側を流れることにな
る。
However, in the above-mentioned conventional technology, since the flow direction of the refrigerant is always constant, once erosion occurs on the inner surface of the bent tube, the erosion progresses rapidly, resulting in a disadvantage that the life of the heat exchanger tube is significantly shortened. was there. Furthermore, in the conventional technology, if the fins of the flow path become clogged with dust etc. during operation, no consideration is given to removing it, and if the heat exchanger is used with dust etc. clogged, the heat exchanger There was also the problem that the functionality of the system deteriorated. Note that in this case, the refrigerant mainly flows outside the flow path.

本発明の目的は、冷媒を流す流路の侵食に対する信頼性
向上と、流路内部または外部に詰ったゴミ等の除去の容
易化を達成することができる冷却装置を提供することで
ある。
An object of the present invention is to provide a cooling device that can improve the reliability of a channel through which a refrigerant flows against erosion, and facilitate the removal of dirt or the like that is clogged inside or outside the channel.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、被冷却物に接し
て流路を設け、該流路内に冷媒を流すことにより前記被
冷却物を冷却する冷却装置において、随記冷媒の流れ方
向を交互に逆転させる流れ方向切換部を設けたものであ
る。
In order to achieve the above object, the present invention provides a cooling device that provides a flow path in contact with an object to be cooled and cools the object by flowing a refrigerant in the flow path, in which the flow direction of the refrigerant is It is equipped with a flow direction switching section that alternately reverses the flow direction.

また、前記流路の内部または外部に詰ったゴミ等を除去
するために、前記被冷却物を冷却後の前記冷媒を濾過す
る濾過部を、前記流れ方向切換部の下流側に設けたり、
前記被冷却物を冷却する前後で、前記冷媒の物理量を検
出する物理量検出部を設けたりすることもできる。
Further, in order to remove dust or the like that is clogged inside or outside the flow path, a filtration section that filters the refrigerant after cooling the object to be cooled is provided downstream of the flow direction switching section;
It is also possible to provide a physical quantity detection unit that detects the physical quantity of the refrigerant before and after cooling the object to be cooled.

〔作用〕[Effect]

上記構成によれば、流路内に一定期間一定方向に冷媒を
流したのち、流れ方向切換部により冷媒の流れ方向を逆
転させると、流路の曲り部において冷媒が曲り部内面に
衝突する位置は、流れが逆転する以前の箇所とは異なっ
た箇所へ移動する。
According to the above configuration, when the flow direction of the refrigerant is reversed by the flow direction switching unit after flowing the refrigerant in a certain direction for a certain period of time in the flow path, the refrigerant collides with the inner surface of the bend at the bend in the flow path. moves to a different location from where it was before the flow reverses.

すなわち、冷媒の流れ方向を逆転させることにより、曲
り部では冷媒が衝突する位置は2箇所となる。このため
に、冷媒の流れが一定方向の場合に比べて1箇所当りの
侵食量が半分に低減され、その分だけ流路の寿命が延長
される。
That is, by reversing the flow direction of the refrigerant, there are two positions at which the refrigerant collides at the bend. For this reason, the amount of erosion per location is reduced by half compared to when the refrigerant flows in a constant direction, and the life of the flow path is extended by that amount.

また、流れ方向切換部の下流側に濾過部を設け、流路外
面のフィンなどにゴミ等が詰った場合に、前記流れ方向
切換部により冷媒の流れ方向を逆転させるようにして、
ゴミ等をフィンなどから容易に取除き、そのゴミ等をフ
ィルタで捕獲して回収する。この場合、被冷却物を冷却
する前後で、物理量(圧力、温度、流量等)を検出する
物理量検出部を取付けておくと、フィンなどにゴミ等が
詰ったことを自動的に検出でき、この検出信号を流れ方
向切換部にフィードバックすれば、ゴミ等の除去の自動
化が達成できる。
Further, a filtration section is provided on the downstream side of the flow direction switching section, and when the fins on the outer surface of the flow path are clogged with dust, the flow direction of the refrigerant is reversed by the flow direction switching section,
To easily remove dust, etc. from fins, etc., and capture and collect the dust, etc. with a filter. In this case, if you install a physical quantity detection unit that detects physical quantities (pressure, temperature, flow rate, etc.) before and after cooling the object, you can automatically detect that the fins are clogged with dirt. By feeding back the detection signal to the flow direction switching section, automation of the removal of dust and the like can be achieved.

〔実施例〕〔Example〕

以下に本発明の実施例を図面に従って説明する。 Embodiments of the present invention will be described below with reference to the drawings.

(第1実施例) 第1図は本発明の第1実施例を示している6図に示すよ
うに、一対の熱交換器1はそれぞれ流れ方向切換部2を
介してタンク3に接続されている。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention. As shown in FIG. 6, a pair of heat exchangers 1 are each connected to a tank 3 via a flow direction switching section 2. There is.

タンク3と流れ方向切換部2との間にはポンプ5が設け
られ、このポンプ5によりタンク3内の冷媒4は図の矢
印のように循環する。一対の熱交換器1のうち、1つは
発熱体を冷却するためのもの、もう1つは冷媒4を冷却
するためのものである。
A pump 5 is provided between the tank 3 and the flow direction switching section 2, and the pump 5 circulates the refrigerant 4 in the tank 3 as shown by the arrow in the figure. One of the pair of heat exchangers 1 is for cooling the heating element, and the other is for cooling the refrigerant 4.

また流れ方向切換部2は熱交換器1内を流れる冷媒の流
れ方向を逆転させることができるようになっている。
Further, the flow direction switching unit 2 is capable of reversing the flow direction of the refrigerant flowing inside the heat exchanger 1.

次に本実施例の作用について第2図を用いて説明する。Next, the operation of this embodiment will be explained using FIG. 2.

図に示すように、冷媒が矢印10の方向に流れている場
合、熱交換器1内の流路9の内面には、冷媒が衝突する
位置11と、冷媒の流れが大きく乱れる位置12に侵食
が生じる。また冷媒が矢印20の方向に流れている場合
、流路9の内面には、冷媒が衝突する位置21と、冷媒
の流れが大きく乱れる位置22に侵食が生じる。
As shown in the figure, when the refrigerant is flowing in the direction of the arrow 10, the inner surface of the flow path 9 in the heat exchanger 1 is corroded at a position 11 where the refrigerant collides and at a position 12 where the flow of the refrigerant is greatly disturbed. occurs. Further, when the refrigerant is flowing in the direction of the arrow 20, erosion occurs on the inner surface of the flow path 9 at a position 21 where the refrigerant collides and at a position 22 where the flow of the refrigerant is greatly disturbed.

したがって、流路9内を流れる冷媒の流れ方向を流れ方
向切換部2により交互に逆転させると、流路9の侵食さ
れる位置が分散され、従来のように冷媒を一定方向に流
していた場合と比べて、1箇所当りの侵食量は半分に低
減される。その結果、流路9の寿命が延長され、熱交換
器1の信頼性が向上する。
Therefore, when the flow direction of the refrigerant flowing in the flow path 9 is alternately reversed by the flow direction switching unit 2, the positions where the flow path 9 is eroded are dispersed, and when the refrigerant is flowing in a fixed direction as in the past, Compared to this, the amount of erosion per location is reduced by half. As a result, the life of the flow path 9 is extended and the reliability of the heat exchanger 1 is improved.

(第2実施例) 第3図は本発明の第2実施例を示している。本実施例は
前述の第1実施例に濾過部としてのフィルタ7を追加し
たものであり、このフィルタ7は流れ方向切換部2の下
流側に配設され、熱交換器1を通った冷媒4はフィルタ
7を通過するようになっている。
(Second Embodiment) FIG. 3 shows a second embodiment of the present invention. In this embodiment, a filter 7 as a filtration section is added to the above-mentioned first embodiment. passes through the filter 7.

そして、熱交換器1内のフィンなどにゴミ等が詰った場
合、流れ方向切換部2を作動させ、熱交換器1内の冷媒
の流れ方向を逆転させると、ゴミ等はフィンから分離し
1分離したゴミ等はフィルタ7で捕獲される。
If the fins in the heat exchanger 1 become clogged with dirt, etc., the flow direction switching unit 2 is activated to reverse the flow direction of the refrigerant in the heat exchanger 1, and the dirt is separated from the fins. Separated dust and the like are captured by a filter 7.

(第3実施例) 第4図は本発明の第3実施例を示している0本実施例は
前述の第2実施例に物理量検出部8を追加したものであ
る。この物理量検出部8は熱交換器1の入口と出口の物
理量(圧力、温度、流量等)を検出し、その検出結果が
異常値と判断したときは、流れ方向切換部2に信号を出
力し、熱交換器1内の冷媒の流れ方向を逆転させればよ
い。
(Third Embodiment) FIG. 4 shows a third embodiment of the present invention. This embodiment is obtained by adding a physical quantity detection section 8 to the above-mentioned second embodiment. This physical quantity detection unit 8 detects physical quantities (pressure, temperature, flow rate, etc.) at the inlet and outlet of the heat exchanger 1, and outputs a signal to the flow direction switching unit 2 when the detection result is determined to be an abnormal value. , the flow direction of the refrigerant in the heat exchanger 1 may be reversed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、流路の侵食箇所
を分散させ、1箇所当りの侵食量を低減させることがで
きるため、流路の寿命を延長させることか可能となり、
冷却装置の信頼性が向上する。
As explained above, according to the present invention, it is possible to disperse the erosion points of the flow path and reduce the amount of erosion per point, thereby making it possible to extend the life of the flow path.
The reliability of the cooling system is improved.

また、流路内部または外部にゴミ等が詰った場合でも、
濾過部により、そのゴミ等を容易に除去することが可能
となる。さらに物理量検出部を取付けることによって、
ゴミ等の除去を自動化することができる。
In addition, even if the flow path is clogged with dirt or the like,
The filtration section makes it possible to easily remove the dust and the like. Furthermore, by installing a physical quantity detector,
Removal of garbage, etc. can be automated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る冷却装置を含む冷却系の系統図、
第2図は熱交換器内の伝熱管の部分断面図、第3図は本
発明の第2実施例を示す系統図、第4図は本発明の第3
実施例を示す系統図である。 1・・・熱交換器、    2・・・流れ方向切換部、
3・・・タンク、     4・・・冷媒。 5・・・ポンプ、     7・・・フィルタ、8・・
・物理量検出部、 9・・・流路、10.20・・・冷
媒の流れ方向、 11.21・・・侵食を受ける位置。
FIG. 1 is a system diagram of a cooling system including a cooling device according to the present invention;
Fig. 2 is a partial sectional view of a heat transfer tube in a heat exchanger, Fig. 3 is a system diagram showing a second embodiment of the present invention, and Fig. 4 is a partial cross-sectional view of a heat transfer tube in a heat exchanger.
It is a system diagram showing an example. 1... Heat exchanger, 2... Flow direction switching unit,
3...Tank, 4...Refrigerant. 5...Pump, 7...Filter, 8...
-Physical quantity detection unit, 9...Flow path, 10.20...Flow direction of refrigerant, 11.21...Position subjected to erosion.

Claims (1)

【特許請求の範囲】 1、被冷却物に接して流路を設け、該流路内に冷媒を流
すことにより前記被冷却物を冷却する冷却装置において
、前記冷媒の流れ方向を交互に逆転させる流れ方向切換
部を設けたことを特徴とする冷却装置。 2、前記被冷却物を冷却後の前記冷媒を濾過する濾過部
を、前記流れ方向切換部の下流側に設けたことを特徴と
する請求項1記載の冷却装置。 3、前記被冷却物を冷却する前後で、前記冷媒の物理量
を検出する物理量検出部を設けたことを特徴とする請求
項2記載の冷却装置。
[Claims] 1. In a cooling device that provides a flow path in contact with an object to be cooled and cools the object by flowing a refrigerant into the flow path, the flow direction of the refrigerant is alternately reversed. A cooling device characterized by being provided with a flow direction switching section. 2. The cooling device according to claim 1, wherein a filtration section for filtering the refrigerant after cooling the object to be cooled is provided downstream of the flow direction switching section. 3. The cooling device according to claim 2, further comprising a physical quantity detection unit that detects the physical quantity of the refrigerant before and after cooling the object to be cooled.
JP63047139A 1988-02-29 1988-02-29 Cooling apparatus Pending JPH01222199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047139A JPH01222199A (en) 1988-02-29 1988-02-29 Cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047139A JPH01222199A (en) 1988-02-29 1988-02-29 Cooling apparatus

Publications (1)

Publication Number Publication Date
JPH01222199A true JPH01222199A (en) 1989-09-05

Family

ID=12766777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047139A Pending JPH01222199A (en) 1988-02-29 1988-02-29 Cooling apparatus

Country Status (1)

Country Link
JP (1) JPH01222199A (en)

Similar Documents

Publication Publication Date Title
CA2547202A1 (en) A filter system for an electronic equipment enclosure
JPS6343630B2 (en)
CN113356960A (en) Oil filter capable of automatically cleaning filter paper
US4306521A (en) Filters for particulate matter in fluids
AU578160B2 (en) Filter
JPS5917355B2 (en) heat recovery equipment
JPH01222199A (en) Cooling apparatus
EP1166020B1 (en) Method for making slurry
KR100537943B1 (en) Heat Exchanger tube auto cleaning system using a ball circulation pump
EP1756507A1 (en) Ball trap with safety-release gate
Al-Bakeri et al. Optimization of sponge ball cleaning system operation and design in MSF plants
JPH0642893A (en) Cleaner for heat exchanger
JP3045289B2 (en) Exhaust gas waste heat recovery heat exchanger
EP0042015B1 (en) Filter for particulate matter in fluids and its use in a circuit for liquid coolant
CN2289783Y (en) Nagative pressure recoil type resin requet organ
CN221505254U (en) Dirty blocking prevention structure, heat exchanger and air conditioning system
JPH02218803A (en) Foreign material recovering device
CN212418316U (en) Magnetic filtering device
CN209559011U (en) A kind of self-cleaning reversal valve cleaning device
AU652720B2 (en) Mechanism for removing solid particles from a liquid-circulating system
CN117366851A (en) Dirty blocking prevention structure, heat exchanger and air conditioning system
JPH1137693A (en) Thin pipe cleaner for heat exchanger such as condenser
JPS60175981A (en) Engine driving type refrigerator
JPS6030635Y2 (en) Foreign matter removal device for water intake equipment
JPH02115696A (en) Cleaner for maltitubular heat exchanger