JPH01222198A - Heat transfer member and manufacture thereof - Google Patents

Heat transfer member and manufacture thereof

Info

Publication number
JPH01222198A
JPH01222198A JP63203054A JP20305488A JPH01222198A JP H01222198 A JPH01222198 A JP H01222198A JP 63203054 A JP63203054 A JP 63203054A JP 20305488 A JP20305488 A JP 20305488A JP H01222198 A JPH01222198 A JP H01222198A
Authority
JP
Japan
Prior art keywords
heat transfer
coating
transfer member
metal
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63203054A
Other languages
Japanese (ja)
Inventor
Ralph Geoffrey Scurlock
ラルフ・ジオフリー・スカーロック
Carlo Beduz
カルロ・ベドゥツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOC Group Ltd
Original Assignee
BOC Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOC Group Ltd filed Critical BOC Group Ltd
Publication of JPH01222198A publication Critical patent/JPH01222198A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE: To obtain a heat transfer member having such a heat transfer surface that the density of holes and the average dimension of the holes or cavities can be changed independently, by forming a coating composed of plastic particles embedded in a metal by spraying a particulate mixture of the metal and plastic particles onto the surface and pores in the coating by heating the coating. CONSTITUTION: A heat exchanging member is composed of a plate 2 of a thermally conductive metal (usually, aluminum or copper) and a particulate mixture of a silicon-aluminum alloy, and polyester particles is sprayed onto the surface of the plate 2 by plasma spraying after the surface of the plate 2 is cleaned by shot blasting. A continuous aluminum base material containing scattered polyester particles is formed on each aluminum sample, and the polyester is removed by heating the material to a temperature of about 540 deg.C by two hours under a vacuum. On the surface of each sample, a network having opened holes which are formed with their axes perpendicularly to the surface of the sample is left.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、熱移送表面及びその製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to heat transfer surfaces and methods of manufacturing the same.

〔従来の技術〕[Conventional technology]

液化ガス(即ち、1絶対大気圧で20°又はそれ以下の
沸点を有する物質の液体相)を沸騰させるとき、沸騰液
体と液体を加熱するために使用する熱移送表面との間の
温度差は、IQ/hAにより定義され、ここに、Ω八は
液化ガスを沸騰する際に吸収される熱量、Aは液化ガス
を沸騰させる表面の垂直表面積、hは沸騰熱移送係数と
して知られる量である。従って、一定の値のQ及びAに
対しては、沸騰熱移送係数が大きいほど温度差は減少す
る。従来、蒸気気泡を形成するための核生成場所を熱交
換器又は凝縮器リボイラの熱移送表面に設けることによ
りこれらの表面の沸騰熱移送係数を増大させる種々の提
案がなされてきた。このような核生成場所を形成する方
法は、典型的には、表面にキャビティやチャンネルを設
ける作業又は多孔性コーティングで表面を被覆する作業
を含む。
When boiling a liquefied gas (i.e. the liquid phase of a substance with a boiling point of 20° or less at 1 atmospheric pressure absolute), the temperature difference between the boiling liquid and the heat transfer surface used to heat the liquid is , IQ/hA, where Ω8 is the amount of heat absorbed in boiling the liquefied gas, A is the vertical surface area of the surface on which the liquefied gas is boiled, and h is the quantity known as the boiling heat transfer coefficient. . Therefore, for fixed values of Q and A, the larger the boiling heat transfer coefficient, the smaller the temperature difference. In the past, various proposals have been made to increase the boiling heat transfer coefficient of heat exchanger or condenser reboiler surfaces by providing them with nucleation sites for the formation of steam bubbles. Methods of creating such nucleation sites typically involve providing cavities or channels in the surface or coating the surface with a porous coating.

改良した沸騰用表面の代表例は、例えば、米国特許第3
,384,154号、同第3,457,990号、同再
発行特許第30077号及び英国特許出願第2.155
.612A号各明細書に開示されている。このような表
面の一般的な解説は米国刊行物「核生成沸騰のための質
向上表面幾何字輪J  (The Evolution
 of [!nhancedSurface Ceo+
*etries for Nucleate Boil
ing)(ラルフ・エル・ウェブ(Ralph L W
ebb)著、ヒート、トランスファ・エンジニアリング
(Heat  Trans−fer Engineer
ing)、第2巻、ナンバー3〜4.1981年6月発
行、46〜69頁)に載っている。
Representative examples of improved boiling surfaces are, for example, U.S. Pat.
, No. 384,154, No. 3,457,990, Reissue Patent No. 30077 and British Patent Application No. 2.155.
.. No. 612A. A general description of such surfaces can be found in the U.S. publication The Evolution
of [! enhanced Surface CEO+
*etries for Nucleate Boil
ing) (Ralph L.W.
Heat Transfer Engineer
ing), Volume 2, Numbers 3-4, June 1981, pp. 46-69).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

核生成沸騰場所を有する種々の熱移送表面が知られてい
るが、熱移送表面を更に改良する必要がある。
Although various heat transfer surfaces with nucleation boiling sites are known, there is a need for further improvements in heat transfer surfaces.

本発明の目的は、多数の核生成沸騰キャビティを担持し
、孔密度、及び孔又はキャビティの平均寸法を互いに独
立に変えることのできる熱移送表面を有する新規な熱移
送部材を提供することである。
It is an object of the present invention to provide a novel heat transfer member having a heat transfer surface carrying a large number of nucleation boiling cavities and allowing the pore density and the average size of the pores or cavities to be varied independently of each other. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、多数の開いた孔から成る熱移送表面を
有し、金属とプラスチック材料との所定の混合物を熱導
伝性基体の表面に散布して、この表面上に金属に埋設し
たプラスチック粒子から成るコーティングを形成し、こ
のように形成したコーティングを加熱してプラスチック
材料を揮発させ又は取除きコーティング内に多孔を形成
することにより熱移送表面を形成してなる熱移送部材が
提供される。
According to the invention, the heat transfer surface consists of a large number of open pores, and a predetermined mixture of metal and plastic material is distributed on the surface of the thermally conductive substrate and embedded in the metal on this surface. A heat transfer member is provided comprising forming a heat transfer surface by forming a coating of plastic particles and heating the so formed coating to volatilize or remove the plastic material and form pores in the coating. Ru.

本発明はまた、金属とプラスチック材料との所定の混合
物を熱導伝性基体の表面に散布して、この表面上に金属
に埋設したプラスチック粒子から成るコーティングを形
成し、このコーティングを加熱してプラスチック材料を
揮発させ又は取除きコーティング内に多孔を形成するこ
とから成る熱移送部材の製造方法をも提供する。
The present invention also provides for dispersing a predetermined mixture of metal and plastic materials onto the surface of a thermally conductive substrate to form a coating of plastic particles embedded in the metal on the surface, and heating the coating. A method of manufacturing a heat transfer element is also provided which comprises volatilizing or removing plastic material to form pores within the coating.

コーティングの孔密度は金属粉末に対するプラスチック
粉末の質量の割合に依存する。孔の平均寸法はプラスチ
ック粒子の平均寸法に大いに依存する。従馴て、本発明
は、孔の平均寸法とは独立に孔密度を変えられるように
し、沸騰中の液化ガスの特性に対して特に仕立てられた
熱移送表面を提供できるようにする。
The pore density of the coating depends on the mass ratio of plastic powder to metal powder. The average size of the pores is highly dependent on the average size of the plastic particles. Accordingly, the present invention allows the pore density to be varied independently of the average pore size, providing a heat transfer surface specifically tailored to the properties of boiling liquefied gas.

典型的には、プラスチック粒子は15〜150 ミクロ
ンの範囲の平均寸法を有する。典型的には、基体の表面
上へ散布する混合物内のプラスチック粒子に対する金属
粒子の質量割合は、4:1ないし1:1の範囲である。
Typically, plastic particles have an average size in the range of 15-150 microns. Typically, the weight ratio of metal particles to plastic particles in the mixture spread onto the surface of the substrate ranges from 4:1 to 1:1.

コーティングは典型的には、約20%から50%までの
孔密度を有する。散布作業を行なう場合、金属がプラス
チックより大きな比重を有すること、及びある種のプラ
スチックは散布中に損失することを考慮に入れる必要が
ある0例えば、1:1の質量割合を有するアルミニウム
とプラスチックとの混合物を表面上に散布すると、約5
5%の孔密度が得られる。
The coating typically has a pore density of about 20% to 50%. When carrying out spreading operations, it is necessary to take into account that metals have a greater specific gravity than plastics, and that some types of plastics are lost during spreading. For example, aluminum and plastics with a mass ratio of 1:1 Spreading a mixture of
A pore density of 5% is obtained.

金属粒子の平均寸法は本発明にとってさほど重要ではな
く、プラスチック粒子の平均寸法より小さくても大きく
てもよい。同様に、コーティングの厚さも本発明にとっ
てさほど重要ではない。実験においては、1インチ(約
25.4m)の十分の5.10.15の深さを有する単
一の多孔性層から成るコーティング及び、孔の平均寸法
が互いに異なる2つの上述の如き層から成るコーティン
グを準備した。
The average size of the metal particles is not critical to the invention and may be smaller or larger than the average size of the plastic particles. Similarly, the thickness of the coating is not critical to the invention. In experiments, coatings consisting of a single porous layer having a depth of 5.10.15 tenths of an inch and two such layers having different average pore sizes were used. A coating consisting of the following was prepared.

プラスチック粒子及び金属粒子は各々規則的な形状でも
不規則形状でもよいが、その流れ特性は散布(スプレー
)被覆作業を可能にするものでなければならない。
The plastic particles and metal particles can each be of regular or irregular shape, but their flow characteristics must be such as to permit spray coating operations.

本発明に係る熱移送部材は典型的には、15〜150 
ミクロンの範囲(更に典型的には、15〜50ミプラス
チツクと金属との混合物は好適には、プラズマ散布によ
り基体上に散布される0代りに、フレーム溶射を使用し
てもよい。散布作業を制御して孔の軸線を任意の所望方
位に向かせるとよいが、典型的には、名札は基体の表面
に垂直な軸線を有する。
Heat transfer members according to the present invention typically have a
The mixture of plastics and metals in the micron range (more typically 15 to 50 microns) is preferably applied onto the substrate by plasma sparging.Alternatively, flame spraying may be used. Typically, the name tag has an axis perpendicular to the surface of the substrate, although control may be provided to orient the axes of the holes in any desired orientation.

一般に、混合物はプラスチックと金属の別個の粒子から
成゛るが、必要なら、混合物はプラスチックと金属の複
合粒子から成ってもよい。
Generally, the mixture will consist of separate particles of plastic and metal, but if desired, the mixture can consist of composite particles of plastic and metal.

金属は基体と同じ組成でも異なる組成でもよい。The metal may have the same composition as the substrate or a different composition.

典型的には、金属はアルミニウム、銅、アルミニウムを
基礎とした合金又は銅を基礎とした合金から成る。プラ
スチック粒子は種々のプラスチック材料の中から選択す
ることが可能であるが、実験ではポリエステル粒子を使
用した。
Typically, the metal consists of aluminum, copper, aluminum-based alloys or copper-based alloys. Although the plastic particles can be selected from various plastic materials, polyester particles were used in the experiment.

−旦コーティングを形成すると、コーティングした構造
体を加熱してプラスチックを揮発させる。
- Once the coating is formed, the coated structure is heated to volatilize the plastic.

使用する温度はプラスチック材料を完全に取除く(即ち
、炭素質その他の沈着物を残さずにプラスチック材料を
揮発させる)に十分なものでなければならない。
The temperature used must be sufficient to completely remove the plastic material (ie, volatilize the plastic material without leaving any carbonaceous or other deposits).

プラスチック粒子が、ポリエステルから成る場合、好適
には500〜600″Cの範囲の温度を使用すると、蒸
着したポリエステルを有効に揮発させることができる。
If the plastic particles consist of polyester, preferably a temperature in the range of 500-600''C is used to effectively volatilize the deposited polyester.

基体は好適には、空気分離装置の二重コラムに使用する
液化ガスボイラ、特に凝縮器リボイラ内で熱移送表面と
して使用できる金属板である。
The substrate is preferably a metal plate which can be used as a heat transfer surface in liquefied gas boilers, especially condenser reboilers, used in double columns of air separation devices.

〔実施例〕〔Example〕

第1図を参照すると、熱交換部材は熱導伝性金属(一般
にはアルミニウム又は銅)の板2から成る。第2図に示
すように、板2は、典型的には、板2と同じ組成で0.
1〜1.Orrmの厚さを有する多孔性金属の層4を担
持している。第3図に示す本発明の別の実施例では、板
2は多孔性金属の複数個の層を具備する。典型的には、
内側層6は外側N8より小さな平均孔寸法を有するが、
必要なら、内側層の孔の平均寸法を外側層の孔の平均寸
法より大きくしてもよい。
Referring to FIG. 1, the heat exchange member consists of a plate 2 of thermally conductive metal (generally aluminum or copper). As shown in FIG. 2, plate 2 is typically of the same composition as plate 2 with a 0.0.
1-1. It carries a layer 4 of porous metal having a thickness of Orrm. In another embodiment of the invention shown in FIG. 3, plate 2 comprises multiple layers of porous metal. Typically,
The inner layer 6 has a smaller average pore size than the outer layer N8, but
If desired, the average size of the pores in the inner layer may be larger than the average size of the pores in the outer layer.

本発明の方法の一例においては、次の手順により多孔性
アルミニウム・シリコンコーティングを50−平方のア
ルミニウム板に施した。まず、ショツトブラストにより
表面を洗浄した0次いで、シリコン・アルミニウム合金
とポリエステル粉末(Metco 601 NS )の
所定の混合物をプラズマ散布により表面に散布した。プ
ラズマは、1100psiの圧力のアルゴンと50ps
igの圧力の水素とを散布室に供給す名ことにより、形
成した。使用した散布率は、1時間当り5〜7ポンド(
約2.3〜3.2 kg)のプラスチック粉末と金属粉
末との混合物を散布する散布率が採用された。ポリエス
テルの分散した粒子を含むアルミニウムの連続母材をア
ルミニラムサンプル上に形成した0次いで、540°C
程度の温度で2時間だけ真空下で加熱することにより、
ポリエステルを取除いた。この結果、各サンプルの表面
には、基体の表面にほぼ直角に位置した軸線を有する開
いた孔の綿状組織が残った。
In one example of the method of the present invention, a porous aluminum silicon coating was applied to a 50-square aluminum plate by the following procedure. First, the surface was cleaned by shot blasting, and then a predetermined mixture of silicon-aluminum alloy and polyester powder (Metco 601 NS) was sprayed onto the surface by plasma spraying. The plasma was argon at a pressure of 1100 psi and 50 ps
It was formed by supplying hydrogen at a pressure of .Ig to the sparge chamber. The application rate used was 5 to 7 pounds per hour (
An application rate of approximately 2.3-3.2 kg) of a mixture of plastic powder and metal powder was adopted. A continuous matrix of aluminum containing dispersed particles of polyester was formed on the aluminum sample at 0 and then 540 °C.
By heating under vacuum at a temperature of about 2 hours,
Removed polyester. This left a flocculent structure of open pores on the surface of each sample with an axis located approximately perpendicular to the surface of the substrate.

次いで、各サンプルをヒータブロックに取付はヒータブ
ロックを液体窒素内に沈めることにより、本発明に係る
サンプルの沸騰熱移送係数と単に研磨したアルミニウム
表面から成るサンプルの沸騰熱移送係数とを測定した。
Next, each sample was attached to a heater block, and the heater block was submerged in liquid nitrogen to measure the boiling heat transfer coefficient of the sample according to the present invention and the boiling heat transfer coefficient of the sample consisting of a simply polished aluminum surface.

銅製の足熱電対を使用してサンプル表面と沸騰液体窒素
との温度差を測定し、また表面へ供給された電力も測定
した。
A copper foot thermocouple was used to measure the temperature difference between the sample surface and the boiling liquid nitrogen, as well as the power delivered to the surface.

2つのサンプルについてのΔTに対するQ/A及びhの
変化を第4図に示す。本発明に係るサンプルは研磨した
だけのアルミニウム表面よりも優れた特性を奏すること
が分かる。
FIG. 4 shows the changes in Q/A and h versus ΔT for the two samples. It can be seen that the sample according to the invention exhibits better properties than a simply polished aluminum surface.

第5.6図は、60重量%のアルミニウムと40重量%
のポリエステルとの混合物をアルミニウム基体具ラズマ
散布し、次いで500℃の温度で2時間だけ散布済みの
基体を加熱することにより形成した移送表面電子顕@鏡
写真である。コーティングは0.38m+++の厚さを
存する。
Figure 5.6 shows 60% aluminum and 40% aluminum by weight.
Figure 2 is a transfer surface electron micrograph of a mixture of polyester and polyester formed by plasma spraying an aluminum substrate and then heating the sprayed substrate at a temperature of 500° C. for 2 hours. The coating has a thickness of 0.38 m+++.

第5図は実寸の500倍の倍率でのコーティングされた
表面を示し、第6図は実寸の5000倍の倍率での表面
を示す。
FIG. 5 shows the coated surface at a magnification of 500 times actual size, and FIG. 6 shows the surface at a magnification of 5000 times actual size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る熱移送部材の概略平面図第2図は
第1図の■−■線における概略断面図第3図は本発明に
係る熱移送部材の別の実施例の概略断面図、 第4図は時間(ΔT)についての本発明の熱移送部材の
熱・量(Q/A)の変化を示すグラフ、第5図ば実寸の
500倍の倍率で本発明に係る熱移送部材の表面を示す
電子顕微鏡写真の図、第6図は第5図と同様の図である
が、実寸の5000倍の倍率で示す図である。 符号の説明 2−一一板     4−一一層 6−−一内側N8−−−外側層 図面の浄!F(内容に変更なし) FIG、I l−1 u−、qi ア1lli・−ゝ゛1ム 戸フヱ゛2慢ン、柚ト■イ 
iし−、OルX5α′)O 手続補正書(方式) 昭和63年特許 願第203054号 6、補正をする者 事件との関係   出 願 人 住所 名 称  ザ・ビーオーシー・グループ・ビーエルシー
4、代理人 (1)  明細書第12頁第13行乃至第16行の記載
を下記のように補正する。 「第5図は本発明に係る熱移送部材の表面の金属組織を
示す倍率500倍の電子顕微鏡写真であり、 第6図は第5図と同様に熱移送部材の表面の*私組織を
示す倍率5000倍の電子顕微鏡写真である。」 以  上
FIG. 1 is a schematic plan view of a heat transfer member according to the present invention. FIG. 2 is a schematic cross-sectional view taken along the line ■-■ in FIG. 1. FIG. 3 is a schematic cross-section of another embodiment of the heat transfer member according to the present invention. Figure 4 is a graph showing the change in heat quantity (Q/A) of the heat transfer member of the present invention with respect to time (ΔT), Figure 5 is a graph showing the heat transfer according to the present invention at a magnification of 500 times the actual size. FIG. 6, which is an electron micrograph showing the surface of the member, is similar to FIG. 5, but is shown at a magnification of 5000 times the actual size. Explanation of symbols 2-11 plate 4-11 layer 6--1 inner layer N8---Outer layer drawing cleaning! F (no change in content) FIG, I l-1 u-, qi
ishi-, OL Agent (1) The statements on page 12, lines 13 to 16 of the specification are amended as follows. "Figure 5 is an electron micrograph at a magnification of 500 times showing the metal structure on the surface of the heat transfer member according to the present invention, and Figure 6 shows the metal structure on the surface of the heat transfer member similarly to Figure 5. This is an electron micrograph at 5000x magnification.''

Claims (1)

【特許請求の範囲】 1 多数の開いた孔から成る熱移送表面を有する液化ガ
ス沸騰用の熱移送部材において、前記熱移送表面が、金
属とプラスチック材料との所定の混合物を熱導伝性基体
の表面に散布して、該表面上に金属に埋設したプラスチ
ック粒子を含んで成るコーティングを形成し、このよう
に形成したコーティングを加熱してプラスチック材料を
揮発させ又は取除き該コーティング内に多孔を形成する
ことにより形成されることを特徴とする熱移送部材。 2 特許請求の範囲第1項に記載の熱移送部材において
、前記孔の平均寸法が15ないし50ミクロンの範囲に
ある熱移送部材。 3 特許請求の範囲第1項又は第2項に記載の熱移送部
材において、前記コーティングが20%ないし50%の
孔密度を有する熱移送部材。 4 特許請求の範囲第1項ないし第3項のうちのいずれ
かに記載の熱移送部材において、前記金属及び前記基体
が各々、アルミニウム、銅、アルミニウム合金又は銅合
金から成る熱移送部材。 5 特許請求の範囲第1項ないし第4項のうちのいずれ
かに記載の熱移送部材において、前記コーティング0.
1mmないし1.0mmの範囲の深さを有する熱移送部
材。 6 特許請求の範囲第1項ないし第5項のうちのいずれ
かに記載の熱移送部材を含む、液化ガスのためのボイラ
。 7 液化ガスを沸騰させるための熱移送部材を製造する
方法において、金属とプラスチック材料との所定の混合
物を熱導伝性基体の表面に散布して、該表面上に、金属
に埋設したプラスチック粒子を含んで成るコーティング
を形成し、該コーティングを加熱してプラスチック材料
を揮発させ又は取除き該コーティング内に多孔を形成す
ることを特徴とする熱移送部材の製造方法。 8 特許請求の範囲第7項に記載の熱移送部材の製造方
法において、前記混合物が15ないし50ミクロンの範
囲の平均寸法を有するプラスチック粒子を含む熱移送部
材の製造方法。 9 特許請求の範囲第7項又は第8項に記載の熱移送部
材の製造方法において、前記混合物内のプラスチックに
対する金属の質量の割合が1:1ないし4:1の範囲に
ある熱移送部材の製造方法。 10 特許請求の範囲第7項ないし第9項のうちのいず
れかに記載の熱移送部材の製造方法において、前記コー
ティングがプラズマ散布によりコーティングされる熱移
送部材の製造方法。 11 特許請求の範囲第7項ないし第9項のうちのいず
れかに記載の熱移送部材の製造方法において、前記プラ
スチック材料がポリエステルから成る熱移送部材の製造
方法。
[Scope of Claims] 1. A heat transfer member for boiling liquefied gas having a heat transfer surface consisting of a large number of open pores, wherein the heat transfer surface includes a predetermined mixture of metal and plastic material on a thermally conductive substrate. and forming a coating on the surface comprising plastic particles embedded in metal, and heating the coating so formed to volatilize or remove the plastic material and create porosity within the coating. A heat transfer member characterized in that it is formed by forming. 2. A heat transfer member according to claim 1, wherein the average size of the pores is in the range of 15 to 50 microns. 3. A heat transfer element according to claim 1 or 2, wherein the coating has a pore density of 20% to 50%. 4. The heat transfer member according to any one of claims 1 to 3, wherein the metal and the base are each made of aluminum, copper, an aluminum alloy, or a copper alloy. 5. The heat transfer member according to any one of claims 1 to 4, wherein the coating 0.
A heat transfer member having a depth in the range of 1 mm to 1.0 mm. 6. A boiler for liquefied gas, comprising the heat transfer member according to any one of claims 1 to 5. 7. A method for manufacturing a heat transfer member for boiling liquefied gas, in which a predetermined mixture of metal and plastic material is sprinkled on the surface of a thermally conductive substrate, and plastic particles embedded in the metal are added to the surface of the thermally conductive substrate. A method of making a heat transfer element comprising forming a coating comprising: heating the coating to volatilize or remove the plastic material and forming pores in the coating. 8. A method of manufacturing a heat transfer element according to claim 7, wherein the mixture comprises plastic particles having an average size in the range of 15 to 50 microns. 9. The method for manufacturing a heat transfer member according to claim 7 or 8, wherein the mass ratio of metal to plastic in the mixture is in the range of 1:1 to 4:1. Production method. 10. A method of manufacturing a heat transfer member according to any one of claims 7 to 9, wherein the coating is applied by plasma spraying. 11. A method of manufacturing a heat transfer member according to any one of claims 7 to 9, wherein the plastic material is made of polyester.
JP63203054A 1987-08-14 1988-08-15 Heat transfer member and manufacture thereof Pending JPH01222198A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB878719350A GB8719350D0 (en) 1987-08-14 1987-08-14 Heat transfer surface
GB8719350 1987-08-14

Publications (1)

Publication Number Publication Date
JPH01222198A true JPH01222198A (en) 1989-09-05

Family

ID=10622347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63203054A Pending JPH01222198A (en) 1987-08-14 1988-08-15 Heat transfer member and manufacture thereof

Country Status (5)

Country Link
EP (1) EP0303493A1 (en)
JP (1) JPH01222198A (en)
AU (1) AU613070B2 (en)
GB (1) GB8719350D0 (en)
ZA (1) ZA885746B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5018573A (en) * 1989-12-18 1991-05-28 Carrier Corporation Method for manufacturing a high efficiency heat transfer surface and the surface so manufactured
GB2241249A (en) * 1990-02-10 1991-08-28 Star Refrigeration Heat transfer surface
DE4313164C1 (en) * 1993-04-22 1994-06-09 Freiberger Ne Metall Gmbh Casting mould for making lead accumulator electrode grid - consisting of stainless steel plates with porous coating of fused metal particles on cavity side as permanent release coat
DE19523208A1 (en) * 1995-06-27 1997-01-02 Behr Gmbh & Co Heat exchangers, in particular evaporators for a motor vehicle air conditioning system
US6916430B1 (en) 1996-10-25 2005-07-12 New Qu Energy Ltd. Superconducting heat transfer medium
DE69717805T2 (en) * 1997-07-18 2003-09-04 Ansaldo Ricerche Srl Method and device for producing porous ceramic coatings, in particular heat-insulating coatings, on metallic substrates
KR20030048921A (en) * 2001-12-13 2003-06-25 주식회사 엘지이아이 Heat exchanger and the manufacturing method for air conditioner
US20040251008A1 (en) * 2003-05-30 2004-12-16 O'neill Patrick S. Method for making brazed heat exchanger and apparatus
FR2865027B1 (en) 2004-01-12 2006-05-05 Air Liquide FIN FOR HEAT EXCHANGER AND HEAT EXCHANGER PROVIDED WITH SUCH FINS
DE102006023882B4 (en) * 2006-05-16 2009-01-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. A heat transfer device and method of manufacturing a heat transfer device
US8991480B2 (en) 2010-12-15 2015-03-31 Uop Llc Fabrication method for making brazed heat exchanger with enhanced parting sheets

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3523577A (en) * 1956-08-30 1970-08-11 Union Carbide Corp Heat exchange system
CA970910A (en) * 1971-06-21 1975-07-15 Universal Oil Products Company Porous boiling surface and method of application
US3723165A (en) * 1971-10-04 1973-03-27 Metco Inc Mixed metal and high-temperature plastic flame spray powder and method of flame spraying same
US3990862A (en) * 1975-01-31 1976-11-09 The Gates Rubber Company Liquid heat exchanger interface and method
CA1230017A (en) * 1983-12-27 1987-12-08 United Technologies Corporation Porous metal structures made by thermal spraying fugitive material and metal

Also Published As

Publication number Publication date
GB8719350D0 (en) 1987-09-23
AU2097288A (en) 1989-02-16
ZA885746B (en) 1989-04-26
EP0303493A1 (en) 1989-02-15
AU613070B2 (en) 1991-07-25

Similar Documents

Publication Publication Date Title
US7360581B2 (en) Structured thermal transfer article
EP0107858B1 (en) Flame-sprayed ferrous alloy enhanced boiling surface
JPH01222198A (en) Heat transfer member and manufacture thereof
US4101691A (en) Enhanced heat transfer device manufacture
JP2009515054A (en) Thermal transfer coating
KR20100134780A (en) Porous structured thermal transfer article
JPS63197572A (en) Porous coating, product and manufacture
JPS5919192B2 (en) Pyrolytic boron nitride coated boat for metal evaporation
US4303737A (en) Coating material
US6309583B1 (en) Composite coatings for thermal properties
JP2021508022A (en) Surface-textured spacer elements and related heat exchangers and manufacturing methods
CN110373626A (en) The aluminum oxide coating layer method for sealing of anti-plasma corrosion
Swain et al. Influence of different surface coatings on pool boiling heat transfer enhancement: A brief review
Koch et al. Study on plasma enhanced CVD coated material to promote dropwise condensation of steam
Ahmadi et al. Graphene-coated sintered porous copper surfaces for boiling heat transfer enhancement
Jo et al. Pool boiling enhancement by nanotextured surface of hierarchically structured electroplated Ni nanocones
JPH02698A (en) Liquefied gas boiler
Liu et al. Fabrication of unmodified bionic copper surfaces with highly stable hydrophobicity and anti‐icing properties via a transfer with Zr‐based metallic glasses
US5018573A (en) Method for manufacturing a high efficiency heat transfer surface and the surface so manufactured
CN105296918B (en) A kind of tungsten surface A l2O3-SiO2High-temperature insulating coating and preparation method thereof
EP0485194B1 (en) Improved heat transfer surface
CN100543399C (en) A kind of heat pipe
CN107299319A (en) A kind of preparation method of the core shell structure CuO/Al nanometers thin-film materials containing energy
JPS6183895A (en) Heating surface and manufacture thereof
JPS59232165A (en) Thermal energy storage element