JPH01221763A - Controller for power receiving body changing output value in corresponding to environmental condition - Google Patents

Controller for power receiving body changing output value in corresponding to environmental condition

Info

Publication number
JPH01221763A
JPH01221763A JP63046948A JP4694888A JPH01221763A JP H01221763 A JPH01221763 A JP H01221763A JP 63046948 A JP63046948 A JP 63046948A JP 4694888 A JP4694888 A JP 4694888A JP H01221763 A JPH01221763 A JP H01221763A
Authority
JP
Japan
Prior art keywords
control
temperature
power receiving
heating element
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63046948A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hatori
羽鳥 和幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63046948A priority Critical patent/JPH01221763A/en
Publication of JPH01221763A publication Critical patent/JPH01221763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Or Security For Electrophotography (AREA)

Abstract

PURPOSE:To reduce the number of parts of the title controller and to simplify its electrical and mechanical constitution by providing a counting means which counts the energizing and nonenergizing hours of heating body within its prescribed tempera ture change range as hour coefficients. CONSTITUTION:A counting means 14 which counts the energizing and nonenergizing hours of the heating body within its prescribed temperature change range is provided. In other words, a control section 13 is constituted of a CPU and obtains counted value corresponding to an environmental condition where the relative humidity and air current are included in the main environmental temperature in accordance with the detect signals of a temperature detecting element 20 from a counter 14. Then the control section 13 sets, changes, or maintains aimed control values, etc., of processing means including the heater which heats a photosensitive body in accordance with the counted value. Moreover, the section 13 transmits prescribed control signals to power source circuits 21-26 side which control the applying voltage, power supply ing interval, etc., of each processing means in accordance with the aimed control values. Therefore, the number of parts can be reduced and the electrical and mechani cal constitution can be simplified.

Description

【発明の詳細な説明】 「産業上の利用分野」 大発明は受電体の通電間隔又は印加電圧等の通電器を適
宜変化せしめる事により、該受電体よりの出力値を環境
条件に対応した所定の制御目標値又は目標域に維持可能
に構成した受電体の制御装置に係り、特にプリンタその
他の′電子写真装置に組み込まれた像担持体を含む一又
は複数のプロセス手段の印加電圧、通電間隔等を適宜変
化させ、環境条件に対応した最適出力値が得られるよう
に構成゛したプロセス手段の制御装置に関する。
[Detailed Description of the Invention] "Industrial Application Field" The great invention is to adjust the output value from the power receiving body to a predetermined value corresponding to the environmental conditions by appropriately changing the energizing device such as the energization interval of the power receiving body or the applied voltage. It relates to a control device for a power receiving body that is configured to maintain control target values or target ranges, particularly the applied voltage and energization interval of one or more process means including an image carrier incorporated in a printer or other electrophotographic device. The present invention relates to a control device for a process means that is configured to appropriately change the output values and the like to obtain an optimum output value corresponding to environmental conditions.

「従来の枝術」 従来より、感光体ドラムその他の像担持体の周囲に、潜
像書込み用光学系、現像、転写、除電、帯電、その他の
プロセス手段を配し、電子写真プロセスに基づいて所定
の画像を印刷又は記録するようにしたプリンタその他の
電子写真装置は公知であり、この種の電子写真装置に使
用される像担持体は一般に温度依存性を有しこの為前記
像担持体にその表面温度を所定温度に加熱する加熱手段
を付設し機内環境条件による感光特性の変動を防上して
いるが、更に近年においては前記像担持体の無用の加熱
による耐久寿命の劣化と結露を防1卜する為に前記像担
持体の加熱温度を、前記機内環境温度に対応させて相対
的に変化させるべく加熱制御させているものが多い。
``Traditional branch technique'' Conventionally, optical systems for writing latent images, development, transfer, static elimination, charging, and other process means have been arranged around photoreceptor drums and other image carriers, and Printers and other electrophotographic devices that print or record predetermined images are well known, and the image carriers used in these types of electrophotographic devices generally have temperature dependence. A heating means is attached to heat the surface temperature to a predetermined temperature to prevent fluctuations in photosensitive characteristics due to internal environmental conditions. In order to prevent this, in many cases the heating temperature of the image bearing member is controlled so as to be relatively changed in accordance with the environmental temperature inside the machine.

一方前記光学系により書き込まれる潜像表面電位は必ず
しも像担持体の感光特性のみではなく、該担持体表面を
均一帯電させる帯電器、残留電荷を除去する除電器等の
コロナ放電特性にも影響する。そしてこれらのコロナ放
電特性においても温度依存性を有し、従って安定したH
s像電位を得る為には、前記像担持体とともに機内環境
温度に対応させて電圧を変化させる事によりコロナ電流
の変動を補償させたものも存在する。
On the other hand, the surface potential of the latent image written by the optical system does not necessarily affect only the photosensitive characteristics of the image carrier, but also the corona discharge characteristics of a charger that uniformly charges the surface of the carrier, a static eliminator that removes residual charges, etc. . These corona discharge characteristics also have temperature dependence, so stable H
In order to obtain the s-image potential, there are some devices that compensate for fluctuations in corona current by changing the voltage along with the image carrier in accordance with the environmental temperature inside the machine.

「発明が解決しようとする課題」 しかしながら感光体表面に担持される表面電位は必ずし
も環境温度のみに依存するものではなく、該感光体周囲
に存在する相対湿度にも影響される。例えば近年多用さ
れているOPCや非晶質シリコン等の感光体はいずれも
吸湿性が強く、この為これらの感光体においては特に前
記環境温度に加えて機内環境湿度も加味して感光体の加
熱すべき目標値を設定させる必要がある。
``Problem to be Solved by the Invention'' However, the surface potential carried on the surface of a photoreceptor does not necessarily depend only on the environmental temperature, but is also influenced by the relative humidity existing around the photoreceptor. For example, photoconductors such as OPC and amorphous silicon, which have been widely used in recent years, are all highly hygroscopic, and therefore, in addition to the above-mentioned environmental temperature, the humidity inside the machine is also taken into account when heating the photoconductor. It is necessary to set target values.

一方この車は帯電器その他の感光体周囲に配したプロセ
ス手段についても同様であり、感光体同様に、環境温度
に加えて機内環境湿度も加味して能動出力の制御目標値
を設定する必要があるとともに、該プロセス手段につい
てコロナ放電により発生するオゾン除去の為に送風手段
を設ける場合があり、この為これらの気流の影響も加味
して前記制御目標値を設定する事も好ましい。
On the other hand, in this car, the same applies to the charger and other process means placed around the photoconductor, and like the photoconductor, it is necessary to set the control target value of the active output by taking into account the environmental humidity inside the machine in addition to the environmental temperature. In addition, the process means may be provided with an air blowing means for removing ozone generated by corona discharge, and therefore it is also preferable to set the control target value taking into consideration the influence of these air flows.

しかしながら、このような全ての環境条件を加味して制
御目標値を設定する事は、温度センサ、湿度センサ、風
力センサ等の各センサを検知すべき個々の環境条件に合
わせて用意せねばならず、而もこれらの各センサよりの
出力を演算処理して所望の環境条件を設定する制御回路
も必要とし、結果として部品点数の増加とその電気的及
び機械的構成の煩雑化につながる。
However, in order to set control target values taking into account all such environmental conditions, each sensor such as a temperature sensor, humidity sensor, and wind sensor must be prepared according to the individual environmental conditions to be detected. Moreover, a control circuit is also required to process the outputs from each of these sensors and set desired environmental conditions, which results in an increase in the number of parts and a complicated electrical and mechanical configuration.

而も前記相対湿度や気流が表面電位やコロナ放電電流等
の能動出力にどのように影響するかを定量的に求めなけ
れば前記制御を行う事は出来ず、又その影響度合も環境
温度(温度差)に応じて微妙に変化するものである為に
、その制御プログラムは極めて煩雑化する。
However, the above control cannot be performed without quantitatively determining how the relative humidity and air flow affect active outputs such as surface potential and corona discharge current, and the degree of influence also depends on the environmental temperature (temperature Since the control program changes slightly depending on the difference in temperature, the control program becomes extremely complicated.

本発明はかかる従来技術の欠点に鑑み、前記側々の環境
条件を直接測定せずに、主として環境温度を中心として
該温度に前記相対湿度や気流を加味した環境条件を容易
に且つ精度よく測定可能にし、そして該測定した環境条
件に基づいて、受電体の制御目標値又は目標域を設定、
変更若しくは保持する事が可能な感光体の温度制御装置
を提供する事を目的とする。
In view of the drawbacks of the prior art, the present invention is designed to easily and accurately measure the environmental conditions, mainly the environmental temperature, with the relative humidity and airflow taken into account, without directly measuring the environmental conditions on each side. and setting a control target value or target range of the power receiver based on the measured environmental conditions;
It is an object of the present invention to provide a temperature control device for a photoreceptor that can be changed or maintained.

「課題を解決する為の手段」 本発明は、発熱体より所定の熱エネルギー量を被加熱体
に付与する場合、又発熱体よりの通電浄上後、所定の熱
エネルギーを保持している被加熱体よりの奪熱が行われ
る場合、例えその付与又は奪熱される熱エネルギー量が
一定であ、っても単位温度中における被加熱体の温度上
昇(下降)時間は一定とならずに、その周囲の環境温度
、該環境温度と被加熱体の温度差、及び環境湿度の複合
要因(以下エロ境温度等という)に依存して変動する点
に着目してなされたものであり、 その特徴とする所は、 ■所定時間連続的に通電又は切電する事により、温度変
化を生じせしめる少なくとも一の発熱体を有する点。
"Means for Solving the Problems" The present invention provides a method for applying a predetermined amount of thermal energy to an object to be heated from a heating element, and for an object that retains a predetermined thermal energy after being energized and cleaned from the heating element. When heat is removed from a heating body, even if the amount of thermal energy imparted or removed is constant, the time for the temperature rise (fall) of the heated body per unit temperature is not constant; It was developed by focusing on the fact that it varies depending on the complex factors of the surrounding environmental temperature, the temperature difference between the environmental temperature and the heated object, and the environmental humidity (hereinafter referred to as "erotic threshold temperature, etc."), and its characteristics (1) It has at least one heating element that causes a temperature change when it is continuously energized or turned off for a predetermined period of time.

この場合前記発熱体は環境温度を検知する機内中に独“
立して設けてもよく、又例えば電子写真装置においては
、能動記録時に発熱が顕著となるレーザープリンタのレ
ーザーダイオード等の素子発熱を利用してもよく、又非
能動記録時にも発熱が顕著になる例えばLED/サーマ
ルヘッド等の安定作動に寄与するプリーグ抵抗等の発熱
を利用してもよい。
In this case, the heating element is placed inside the machine that detects the environmental temperature.
For example, in an electrophotographic device, the heat generation of an element such as a laser diode of a laser printer, which generates significant heat during active recording, may be used. For example, heat generated by a pre-ignition resistor, which contributes to stable operation of LED/thermal heads, etc., may be used.

尚、ここで所定時間連続的に通電又は切電とは、■項記
載の所定の温度変化中の間連続的に通電又は切電する事
をいい、その後所定の制御目標値を維持する為に0N−
OFF制御を行う場合も当然に本発明に含まれる。
Note that energization or de-energization continuously for a predetermined period of time refers to continuous energization or de-energization during the predetermined temperature change described in section (2), and then 0N-- to maintain the predetermined control target value.
Naturally, the present invention also includes the case where OFF control is performed.

■発熱体の所定の温度変化巾間における発熱体の通電又
は切電時間を、時係数としてカウントするカウント手段
を設けた点 この場合カウント手段がカウントする所定の温度変化巾
とは、発熱体通電(切電)開始時点からの温度変化巾に
限定されるものではなくその通電(切電)途中における
任意の地点間の温度変化巾をも舎む。
■The provision of a counting means that counts the energization or de-energization time of the heating element during a predetermined temperature change width of the heating element as a time factor.In this case, the predetermined temperature change range counted by the counting means means the heating element energization time. It is not limited to the range of temperature change from the start of energization (cutting), but also includes the range of temperature change between arbitrary points during energization (cutting).

尚、前記温度変化巾は繰り返し一定値である必要はなく
、該温度変化巾が一定になるように制御部側でカウント
補正を行えばよい。
Note that the temperature change range does not need to be a constant value over and over again, and the control section may perform count correction so that the temperature change range becomes constant.

■前記カウント値に基づいて、任意に選択された前記一
又は複数の受電体の制御目標値又は目標域を設定、変更
若しくは保持するように構成したへ 従って制御すべき対象は1例えば発熱体が付設されたー
の受電体に限定されるものではなく、該発熱体が検知し
た環境条件に基すいて制御目標値を変化すべき、他の複
数の受電体も含む。
■Based on the count value, the control target value or target range of the one or more power receivers arbitrarily selected is set, changed, or maintained.Accordingly, the object to be controlled is 1, for example, a heating element. The present invention is not limited to the attached power receiving body, but also includes a plurality of other power receiving bodies whose control target value should be changed based on the environmental conditions detected by the heating element.

尚、より高い精度を得るには前記カウント手段のカウン
ト周期を1発熱体の印加電圧の変動に対応して調整可能
に構成するのがよい。
In order to obtain higher accuracy, it is preferable that the counting period of the counting means be configured to be adjustable in response to fluctuations in the voltage applied to one heating element.

「実施例」 以下1図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配置などは特に特
定的な記載がない限りは、この発明の範囲をそれのみに
限定する趣旨ではなく、単なる説明例に過ぎない。
``Example'' A preferred embodiment of the present invention will be described in detail below by way of example with reference to one drawing. However, unless otherwise specified, the dimensions, materials, shapes, and relative arrangements of the components described in this example are not intended to limit the scope of this invention, but are merely illustrative examples. It's nothing more than that.

第1図乃至第3図はいずれも本発明の実施例に係るLE
Dプリンタヘッドを用いた電子写真装置で、第1図は基
本構成図、第2図はその制御回路図、第3図(a)(b
)(c)はその制御II動作を示すフローチャート図で
ある。
1 to 3 are LEs according to embodiments of the present invention.
This is an electrophotographic device using a D printer head. Figure 1 is a basic configuration diagram, Figure 2 is its control circuit diagram, and Figures 3 (a) (b).
)(c) is a flowchart showing the control II operation.

第1図に示すように電子写真装置は一般に、感光体ドラ
ム10周囲に回転方向に沿ってLEDプリンタヘッド2
、現像器3.コロナ放電による転写器4、クリーニング
部材5、照明により除電を行うイレーサB、コロナ放電
による帯電器7等が配設されており、そして木実施例に
おいては特に前記LEDプリンタへ一2ド2と対面させ
て、LE[lの安定作動に寄与するブリーダ抵抗RBの
取付位置近傍にサーミスタその他の温度検知素子20を
配置し、ブリーダ抵抗RBの発熱に依存するプリンタへ
ラド2の所定部位における表面温度を検知可能に構成し
ている。
As shown in FIG. 1, an electrophotographic apparatus generally has an LED printer head 2 arranged around a photoreceptor drum 10 in the rotational direction.
, developer 3. A transfer device 4 using corona discharge, a cleaning member 5, an eraser B that removes static electricity by illumination, a charger 7 using corona discharge, etc. are provided, and in the wooden embodiment, the LED printer 12 and 2 face the LED printer. Then, a thermistor or other temperature sensing element 20 is arranged near the mounting position of the bleeder resistor RB, which contributes to the stable operation of the LE[l, and the surface temperature at a predetermined part of the rad 2 is detected in the printer depending on the heat generated by the bleeder resistor RB. It is configured to be detectable.

尚、8は感光体ドラム10を加熱する加熱ヒータ、8は
ドラム10上に担持されたトナー像を転写器4により転
写される記録媒体で、その下流側に配した定着器(図示
せず)によりトナー像を定着した後排紙される。
Note that 8 is a heater that heats the photosensitive drum 10, 8 is a recording medium to which the toner image carried on the drum 10 is transferred by the transfer device 4, and a fixing device (not shown) disposed downstream thereof. After the toner image is fixed, the paper is ejected.

1はマイクロコンピュータからなる制御回路で、該制御
回路1により設定、変更若しくは保持された、制御目標
値等に基づいて前記各プロセス手段の印加電圧又は通電
間隔等を制御する電源回路21〜2Bを接続するととも
に、該各電源回路21〜26の異常の有無、又前記検知
信号により検知された環境温度に基づく機内環境の異常
の有無等を表示する表示盤27も併せて接続されている
Reference numeral 1 denotes a control circuit consisting of a microcomputer, and power supply circuits 21 to 2B that control the applied voltage or energization interval of each of the process means based on control target values set, changed, or held by the control circuit 1. At the same time, a display panel 27 is also connected to display whether or not there is an abnormality in each of the power supply circuits 21 to 26, and whether or not there is an abnormality in the cabin environment based on the environmental temperature detected by the detection signal.

次に前記制御回路1の詳細構成について第2図に基づい
て説明する。
Next, the detailed configuration of the control circuit 1 will be explained based on FIG. 2.

制御回路1 ハ、比較器11.DAコンバータ12、V
/Fコンバータ15.制御部13、タイマーとして機能
するカウント手段14、からなり 先ずLEDプリンタ
へラド2の駆動電源の出力電圧をV/Fコンバータ15
に入力した後、該V/Fコンバータ15で前記出力電圧
の電圧変動に対応させてカウント手段14に送信するカ
ウントクロック周期を可変し、[(電圧変動)×(カウ
ントクロック周期)]が一定になるよう制御可能に構成
されている。
Control circuit 1 c. Comparator 11. DA converter 12, V
/F converter 15. It consists of a control section 13 and a counting means 14 which functions as a timer. First, the output voltage of the drive power source of the RAD 2 is sent to the LED printer by a V/F converter 15.
After inputting the voltage, the V/F converter 15 changes the count clock period sent to the counting means 14 in accordance with the voltage fluctuation of the output voltage, so that [(voltage fluctuation)×(count clock period)] is constant. It is configured so that it can be controlled to

カウント手段14は、制御部13からスタート信号を入
力する事によりV/Fコンバータ15よりのクロック周
期に基づいてストップ信号が入力されるまでカウントを
継続するとともに、該ストップ信号の入力によりそのカ
ウント値を制御部13に転送可能に構成されている。
The counting means 14 continues counting until a stop signal is input based on the clock cycle from the V/F converter 15 by inputting a start signal from the control unit 13, and also changes the count value by inputting the stop signal. is configured to be able to be transferred to the control unit 13.

比較器11は、OAコンバータ12を介して制御部13
より、環境条件の設定変更又は保持の為に必要な所定温
度上昇巾に対応する検出区間開始/終了値TI 、T2
の比較基準電圧と、温度検知素子20よりの検知温度に
対応した被比較電圧とを比較し、比較某准電圧より被比
較電圧が低い時はオン出力をヌ、前者が高い時はオフ出
力を制御部13へ夫々転送可俺に構成されている。
The comparator 11 is connected to the control unit 13 via the OA converter 12.
Accordingly, the detection interval start/end values TI, T2 corresponding to the predetermined temperature rise width necessary for changing or maintaining the environmental conditions are determined.
The reference voltage for comparison is compared with the voltage to be compared corresponding to the temperature detected by the temperature detection element 20, and when the voltage to be compared is lower than a certain reference voltage, the on output is turned off, and when the former is higher, the output is turned off. The information is configured such that it can be transferred to the control unit 13, respectively.

制御部13はCPUで構成され、前記温度検知素子20
により検知された検知信号に基づいて、環境温度を中心
として該温度に前記相対湿度や気流を加味した環境条件
(以下環境条件という)に対応するカウント値を得、該
カウント値に基づいて感光体lOを加熱する加熱ヒータ
を含むプロセス手段の制御目標値等を設定、変更若しく
は保持し、制御目標値等に基づいて前記各プロセス手段
の印加電圧又は通電間隔等を制御する電源回路21〜2
6側に所定の制御信号を送信可能に構成している。
The control unit 13 is composed of a CPU, and the temperature sensing element 20
Based on the detection signal detected by Power supply circuits 21 to 2 that set, change, or hold control target values, etc. of process means including a heater for heating lO, and control applied voltages, energization intervals, etc. of each of the process means based on the control target values, etc.
It is configured such that a predetermined control signal can be transmitted to the 6 side.

次にかかる回路図に基づく制御動作について第3図のフ
ローチャート図に沿って説明する。
Next, the control operation based on this circuit diagram will be explained along with the flowchart shown in FIG.

第3図(a)において、先ず温度検知素子20よりの検
知信号に基づいてLEDプリンタへラド2内の温度を検
知し、該温度がヘッド2又は環境温度を異常と判断すべ
き上限値Ut以上か否かを判断しく5TEP 1 ) 
、以下の場合は次に所定温度上昇中に対応する検出区間
開始値T1以りか否かを判断しく5TEP 2)、以下
の場合に駆動電源をONL、て環境温度計測ルーチンに
移行する。 (STEP 3 )尚、ジャム等の再始動
時のように温度検知素子20の検知温度tが検出区間開
始値T1以上の場合は環境温度を計測せずに、退避記憶
した制御目標値等に基づいて加熱制御を行う(STEP
 4 )か、駆動電源をOFF t、た状態を維持して
又はOFFに切換えた後該検知温度tが検出区間開始値
Tl以下になるまでウェイトを行なう、 (STEP 
5)次に環境温度計測ルーチンについて第3図(b)に
基づいて示すように、ブリーダ抵抗RBの通電により温
度検知素子20により検知されるプリンタヘッド2の表
面温度tが第1の検出区間開始値T1に達した後(ST
EPlO) 、 プリンタヘッド2の出力電圧の変動に
対応して調整された周期に基づいてカウントを開始しく
5TEP7 ) 、前記LE[lプリンタへラド2の温
度が検出区間終了値T2に達したe (STEP8  
)、カウントを停止しそのカウント値を制御部13に転
送しく5TEP9 ) 、該カウント値に基づいてその
環境条件に対応する前記各プロセス手段の制御目標値等
を選択保持する。  (STEPlO) この場合前記制御部13に転送されたカウント値が、 
LEロプリンタヘッド2のショートその他に起因して所
定設定値以上になっている場合はエラー内容検知ルーチ
ンに移行する。  (STEPII )エラー内容検知
ルーチンでは第3図(C)に示すように先ず前記検知素
子20によりヘッド2の表1 面温度tを再検知して(
SiTEP12 )、ブリーダ抵抗RBのショート断線
その他に起因するヘッド2側又は該ヘッド2の電源回路
21〜26側の異常、又機内環境自体の異常かどうか判
断(STEPlO)t、、その旨表示盤27に表示する
。(STEP14 )第3図(a)の5TEP15に戻
り、前記設定保持された制御目標値等に基づいて前記各
プロセス手段電源の印加電圧又は通電間隔等を制御し該
プロセス手段を前記制御目標値等に維持制御する。
In FIG. 3(a), first, the temperature inside the rad 2 is detected by the LED printer based on the detection signal from the temperature detection element 20, and the temperature is higher than the upper limit Ut at which the head 2 or the environmental temperature should be judged as abnormal. 5 TEP 1)
In the following cases, it is then determined whether or not the corresponding detection interval start value T1 is reached during the predetermined temperature rise. 5TEP 2) In the following cases, the drive power is turned ON and the environment temperature measurement routine is entered. (STEP 3) If the detected temperature t of the temperature sensing element 20 is equal to or higher than the detection interval start value T1, such as when restarting after a jam, etc., the environmental temperature is not measured, but is measured based on the control target value etc. stored in evacuation memory. Perform heating control (STEP
(STEP
5) Next, regarding the environmental temperature measurement routine, as shown in FIG. 3(b), the surface temperature t of the printer head 2 detected by the temperature detection element 20 by energization of the bleeder resistor RB starts the first detection period. After reaching the value T1 (ST
5TEP7) The temperature of the printer head 2 has reached the detection interval end value T2 e ( STEP8
), the count value is stopped and the count value is transferred to the control unit 13. 5TEP9)) Based on the count value, control target values for each of the process means corresponding to the environmental conditions are selected and held. (STEPlO) In this case, the count value transferred to the control unit 13 is
If the value exceeds a predetermined setting value due to a short circuit in the LE printer head 2 or other cause, the process moves to an error content detection routine. (STEP II) In the error content detection routine, as shown in FIG.
SiTEP12), Determine whether there is an abnormality on the head 2 side or the power supply circuit 21 to 26 side of the head 2 due to short circuit disconnection of the bleeder resistor RB, or an abnormality in the in-machine environment itself (STEP1O)t, Display panel 27 to that effect to be displayed. (STEP 14) Returning to 5TEP 15 in FIG. 3(a), the applied voltage or energization interval of each of the process means power sources is controlled based on the set and held control target value, etc., and the process means is adjusted to the control target value, etc. to maintain control.

そしてジャム等により通電制御が中断した場合は、前記
制御目標値等を退避記憶した後(STEP lB)、駆
動電源を停止ヒさせる。 (STEP 17 )一方通
電制御を中断しない場合でも、長時間の記録動作により
環境温度が変化する場合もある為に、適宜環境温度を計
測し、前記制御目標値の変更、再設定を行なう、 (S
TEP l!9 )この際温度検知素子20よりの検知
信号に基づいてLEDプリンタヘッド2内の温度を検知
し、該温度がヘッド2又は環境温度を異常と判断すべき
上限値具りの場合は駆動電源をオフしてエラー内容検知
ルーチンに移行する。  (STEP20 )かかる実
施例によれば、後記する本発明の効果に加えて発熱体を
特別に設ける事なく、LEDプリンタヘシド2を効果的
に利用して前記制御を行った為に、省部品点数化と省設
置面積化につながる。
If the energization control is interrupted due to a jam or the like, the drive power source is stopped after saving and storing the control target value, etc. (STEP 1B). (STEP 17) On the other hand, even if the energization control is not interrupted, the environmental temperature may change due to long-term recording operation, so measure the environmental temperature as appropriate and change or reset the control target value. S
TEP l! 9) At this time, the temperature inside the LED printer head 2 is detected based on the detection signal from the temperature detection element 20, and if the temperature is within the upper limit value at which the head 2 or the environmental temperature should be judged as abnormal, the drive power is turned off. Turn off and proceed to error content detection routine. (STEP 20) According to this embodiment, in addition to the effects of the present invention to be described later, the number of parts can be reduced because the control is performed by effectively utilizing the LED printer Hesid 2 without providing a special heating element. This leads to a smaller footprint.

又プロセス手段に付設した発熱体を用いる事は該プロセ
ス手段の異常検知にも利用出来、その実用的効果は大で
ある。
Furthermore, the use of a heating element attached to a process means can also be used to detect abnormalities in the process means, and its practical effects are great.

又未実施例は一の環境条件に基づいて他の全てのプロセ
ス手段の最適制御値を決定するものである為に1画像形
成上極めて有利である。
Further, the unembodied embodiment determines the optimum control values for all other process means based on one environmental condition, and is therefore extremely advantageous in terms of image formation.

r発明の効果」 以上記載した如く本発明によれば、温度、湿度、又は気
流等の側々の環境条件を直接測定せずに、これらを総合
した主として環境温度を中心として該温度に前記相対湿
度や気流を加味した環境条件を容易に且つ精度よく測定
可能にし、そして該測定した環境条件に基づいて、受電
体の制御目標値等を設定、変更若しくは保持する事が出
来る為に、温度センサ、湿度センサ、風力センサ等の各
センサを個々に設置する必要もなく、且つこれらの各セ
ンサよりの出力を演算処理して環境条件な設定する為の
制御プログラムや制御回路等が不要になり、結果として
省部品点数化とともに、電気的機械的構成が極めて簡単
化する。
r Effects of the Invention As described above, according to the present invention, without directly measuring various environmental conditions such as temperature, humidity, or airflow, the relative Temperature sensor There is no need to install each sensor such as a humidity sensor, wind sensor, etc. individually, and there is no need for a control program or control circuit to process the output from each sensor and set environmental conditions. As a result, the number of parts can be reduced and the electrical and mechanical configuration can be extremely simplified.

等の種々の著効を有す。It has various effects such as

従って本発明は特に環境温度にみならず相対湿度等の環
境条件をも加味して制御目標値を設定する必要のある電
子写真装置の制御装若として極めて有効である。
Therefore, the present invention is particularly effective as a control device for an electrophotographic apparatus in which a control target value must be set taking into account not only environmental temperature but also environmental conditions such as relative humidity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図はいずれも本発明の実施例に係り、第
1図は基本構成図、第2図はその制御回路図、第3図(
a)  (b)  (c)は温度制御動作を示すフロー
チャート図である。
1 to 3 all relate to embodiments of the present invention; FIG. 1 is a basic configuration diagram, FIG. 2 is a control circuit diagram thereof, and FIG.
a), (b), and (c) are flowcharts showing temperature control operations.

Claims (1)

【特許請求の範囲】[Claims] 受電体の通電間隔又は印加電圧等の通電量を適宜変化せ
しめる事により、該受電体よりの出力値を環境条件に対
応した所定の制御目標値又は目標域に維持可能に構成し
た一又は複数の受電体の制御装置において、所定時間連
続的に通電又は切電する事により、温度変化を生じせし
める少なくとも一の発熱体と、該発熱体の所定の温度変
化巾間における発熱体の通電又は切電時間を、時係数と
してカウントするカウント手段とを有し、該カウント値
に基づいて、任意に選択された前記一又は複数の受電体
の制御目標値又は目標域を設定、変更若しくは保持する
事を特徴とする受電体の制御装置
One or more power receiving devices configured to be able to maintain the output value from the power receiving device at a predetermined control target value or target range corresponding to environmental conditions by appropriately changing the energization interval of the power receiving device or the amount of energization such as the applied voltage. In a control device for a power receiving body, at least one heating element causes a temperature change by continuously energizing or cutting off electricity for a predetermined period of time, and energizing or cutting off electricity to the heating element during a predetermined temperature change width of the heating element. and a counting means for counting time as a time coefficient, and setting, changing or maintaining a control target value or target range of the arbitrarily selected one or more power receiving bodies based on the count value. Features of power receiver control device
JP63046948A 1988-02-29 1988-02-29 Controller for power receiving body changing output value in corresponding to environmental condition Pending JPH01221763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63046948A JPH01221763A (en) 1988-02-29 1988-02-29 Controller for power receiving body changing output value in corresponding to environmental condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63046948A JPH01221763A (en) 1988-02-29 1988-02-29 Controller for power receiving body changing output value in corresponding to environmental condition

Publications (1)

Publication Number Publication Date
JPH01221763A true JPH01221763A (en) 1989-09-05

Family

ID=12761520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046948A Pending JPH01221763A (en) 1988-02-29 1988-02-29 Controller for power receiving body changing output value in corresponding to environmental condition

Country Status (1)

Country Link
JP (1) JPH01221763A (en)

Similar Documents

Publication Publication Date Title
US4603245A (en) Temperature control apparatus
US5497218A (en) Three point thermistor temperature set up
JP2010128012A (en) Photoreceptor life determination device and image forming apparatus using the same
JP3522197B2 (en) Image forming apparatus and image forming method
US6493523B2 (en) Capacitance and resistance monitor for image producing device
KR950011880B1 (en) Image forming apparatus
US8521050B2 (en) Image forming device and fuser
JPH05149790A (en) Temperature measuring instrument
JP2008020630A (en) Fixing device and warming up method of image forming apparatus
CA2117702C (en) Dual lamp fuser
JP4521381B2 (en) Image forming apparatus
JPH07114287A (en) Method and device for controlling thermal fixing device
JP3734714B2 (en) Image forming apparatus
JPH01221763A (en) Controller for power receiving body changing output value in corresponding to environmental condition
JP3067344B2 (en) Thermal fixing device
JP3214000B2 (en) Temperature measuring device
JPH02282282A (en) Controller for light quantity of light beam
JPH01209469A (en) Electrophotographic device
JPH0619334A (en) Image forming device
JPH06258902A (en) Image forming device
JP2009080276A (en) Image forming apparatus and image forming method
JP2896158B2 (en) Beam light scanning device
JP2001282032A (en) Fixing device and fixing method
JP4030498B2 (en) Image forming apparatus
JPH01172853A (en) Photosensitive body temperature controller