JPH01221721A - Progressive multi-focus lens - Google Patents

Progressive multi-focus lens

Info

Publication number
JPH01221721A
JPH01221721A JP63047028A JP4702888A JPH01221721A JP H01221721 A JPH01221721 A JP H01221721A JP 63047028 A JP63047028 A JP 63047028A JP 4702888 A JP4702888 A JP 4702888A JP H01221721 A JPH01221721 A JP H01221721A
Authority
JP
Japan
Prior art keywords
refractive power
lens
distance
area
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63047028A
Other languages
Japanese (ja)
Other versions
JP2526971B2 (en
Inventor
Fumio Takahashi
文男 高橋
Yasunori Ueno
保典 上野
Ryuji Aizawa
会沢 隆二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP63047028A priority Critical patent/JP2526971B2/en
Priority to US07/313,892 priority patent/US5000559A/en
Publication of JPH01221721A publication Critical patent/JPH01221721A/en
Application granted granted Critical
Publication of JP2526971B2 publication Critical patent/JP2526971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)

Abstract

PURPOSE:To reduce the astigmatic difference over the whole refracting surface of the title lens and to make the gradient more gentle by not making the curvature of the lens surface monotonous, but providing specific gradients to the curvature. CONSTITUTION:In the area from the intermediate section P to the bottom section of the section for short distance, a curved surface, by which the difference DELTAq between the surface means refracting power Q and the value G obtained by multiplying the square root of the Gaussian curvature by the refractive index (n-1) can satisfy the condition of formula I, is formed on the side of the area, whose astigmatic difference of the surface refracting power is <=0.5Dptr and which can be used as a bright area along the main meridian in the area. Where, DELTAq=Q-G, G=(n-1)sq. rt. K, and K=Gaussian curvature. Moreover, the AD and PB of the formula respectively represent a progressive angle value (Dptr) and the reference mean refractive index (Dptr) at the section of long distance. Therefore, the density of the astigmatic difference of the surface refracting power is lowered and the astigmatic difference gradient becomes more gentle. In addition, deformation and oscillation of the image can be reduced also.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、眼の調節力の補助として使用する累進多焦点
レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a progressive multifocal lens used as an aid to the accommodation power of the eye.

〔従来の技術〕[Conventional technology]

眼の調節力が衰退して近方視が困難になった場合の調節
力の補助用眼鏡レンズとして、上方の遠用視矯正領域(
以下遠用部という)と下方の近用視矯正領域(以下近用
部という)と両者の中間において連続的に屈折力が変化
する累進領域(以下中間部という)を有する累進多焦点
レンズが種々知られている。
The upper distance vision correction area (
There are various progressive multifocal lenses that have a lower near vision correction area (hereinafter referred to as a distance vision area), a lower near vision correction area (hereinafter referred to as a near vision area), and a progressive area in which the refractive power changes continuously between the two (hereinafter referred to as an intermediate area). Are known.

累進多焦点レンズにおいて、一般には遠用部と近用部と
の明視域を広く確保し、その間を累進帯で結ぶと、その
累進帯の側方領域にレンズ収差が集中するようになり、
この領域の存在が像のボケをはじめとして、像のゆがみ
を引き起こし、視線を移動したときのゆれとして、装用
者に悪い印象を与える。
In a progressive multifocal lens, generally, if a wide clear vision area is secured between the distance and near vision areas and a progressive zone is connected between them, lens aberrations will be concentrated in the side areas of the progressive zone.
The presence of this area causes image distortion, including blurring of the image, and gives a bad impression to the wearer as it sways when the line of sight moves.

このような視覚特性の問題を解決するために、公知の累
進多焦点レンズにおいては様々な観点での設計、評価が
なされている。そして、レンズ面の形状に関して、レン
ズ面のほぼ中央に垂直に又は垂直からやや傾いて走る子
午線に沿う断面と物体側レンズ面との交線が、基1!線
として用いられ、これらのレンズの設計においても重要
な基準線として用いられている。また、レンズの装用状
態において近用部が鼻側に寄ることを考慮して近用部を
非対称な配置とした累進多焦点レンズにおいても、遠用
中心と近用中心とを縦に通る1本の中心線が基準線とし
て扱われている0本発明においては、この基準線を主子
午線曲線という。
In order to solve such problems in visual characteristics, known progressive multifocal lenses have been designed and evaluated from various viewpoints. Regarding the shape of the lens surface, the line of intersection between the object-side lens surface and the cross section along the meridian that runs perpendicularly to the center of the lens surface or slightly inclined from the perpendicular direction is base 1! It is also used as an important reference line in the design of these lenses. In addition, even in progressive multifocal lenses in which the near vision part is arranged asymmetrically in consideration of the fact that the near vision part is closer to the nose side when the lens is worn, one lens passes vertically through the center of distance vision and the center of near vision. In the present invention, this reference line is referred to as the principal meridian curve.

従来の累進多焦点レンズでは、主子午線曲線に沿って、
全線を微視的な球面の連続とする所謂軟点曲線としたも
のや、主子午線曲線上の一部の領域において蹟点ではな
く、互いに直交する方向での主曲率半径が異なる面形状
とするものが提案されており、主子午線曲線上の面形状
についてみれば主子午線曲線の全線にわたって請点状と
したものと、主子午線曲線上の少なくとも一部において
蹟点ではなくして、主子午線曲線に沿う方向の曲率半径
とそれに直角な方向での曲率半径とを異なる値としたも
のとに2大別される。
In conventional progressive multifocal lenses, along the principal meridian curve,
A so-called soft point curve where the entire line is a series of microscopic spherical surfaces, or a surface shape in which the principal radius of curvature in directions orthogonal to each other is different instead of a curvature point in some areas on the principal meridian curve. Regarding the surface shape on the principal meridian curve, two methods have been proposed: one in which the surface shape is dotted along the entire principal meridian curve, and the other in which at least a part of the principal meridian curve is not a dotted point and is shaped like a dot on the principal meridian curve. The radius of curvature in the direction along the curve and the radius of curvature in the direction perpendicular to the curve have different values.

1963年7月発行のオプティカアクタ(Optica
^eta)第10巻、第3号に記載されている如き、ミ
ンクウィッツ(Minkwi Lx)の法則として知ら
れるところでは、主子午線曲線に沿って少なくとも中間
部においては軟点てはなくすることが必要とされている
。即ち、ミンクウィンツの法則によれば、主子午線曲線
の全線にわたって蹟点である場合には、レンズ表面屈折
力の非点隔差は、主子午線曲線に直角な方向において、
請点状主子午線曲線沿いの表面屈折力の2倍の割合で増
大し、明視域を広くすることが難しいというものである
Optica Acta, published in July 1963.
^eta) As described in Vol. 10, No. 3, known as Minkwi's law, there is no soft point along the principal meridian curve, at least in the middle. is necessary. That is, according to Minkwinz's law, if there are points along the entire principal meridian curve, the astigmatism difference in the lens surface refractive power in the direction perpendicular to the principal meridian curve is
The refractive power increases at twice the rate of the surface refractive power along the dotted principal meridian curve, making it difficult to widen the clear vision region.

〔発明の解決しようとする課題〕[Problem to be solved by the invention]

このような従来の技術において、ミンクウィッツの法則
に則って主子午線曲線上の中間部において、互いに直交
する主曲率を異なる値とすることによって、中間部の視
覚特性をある程度向上させたとしても、遠用部及び近用
部での明視域をより広くするためには、ミンクウィッツ
の法則に基づく観点のみでは限界がある。また、表面非
点隔差を小さくするには、表面屈折力変化をゆるやかに
長くすることが効果的ではあるが、実用上では累進帯の
長さに限りがあるため、このような方策のみでも不十分
で条る。
In such conventional technology, even if the visual characteristics of the intermediate part are improved to some extent by setting mutually orthogonal principal curvatures to different values in the intermediate part on the principal meridian curve according to Minkwitz's law, In order to further widen the clear vision range in the distance and near vision areas, there is a limit only from the viewpoint based on Minkwitz's law. Furthermore, in order to reduce the surface astigmatism difference, it is effective to lengthen the surface refractive power change gradually, but in practice, the length of the progressive zone is limited, so even such a measure alone is insufficient. Enough is enough.

そして、従来の種々の構成においては、確かにある程度
広い明視域を確保することが可能となるものの、累進多
焦点レンズに不可避の非点隔差の分布状態、すなわち非
点隔差という収差の最大量とその勾配を小さくして、遠
用部、中間部及び近周部の3つの領域全体にわたって優
れた視覚特性を得ることは難しく、主子午線曲線に沿う
屈折力変化の状態のみを特定するだけでは、実用上の優
れた累進多焦点レンズを実現することは極めて困難なこ
とであった。しかも、視覚特性を改善するための手法は
手探りに等しく、明確な設計手法もなければ、具体的な
性能評価のための基準も不明瞭な状態であった。
In various conventional configurations, it is certainly possible to secure a somewhat wide clear vision range, but the distribution of astigmatism that is inevitable in progressive multifocal lenses, that is, the maximum amount of aberration called astigmatism, It is difficult to obtain excellent visual characteristics across the three regions of distance, intermediate, and near by reducing the gradient of the curve, and it is difficult to obtain excellent visual characteristics across the three regions of distance, intermediate, and near. However, it has been extremely difficult to realize a progressive multifocal lens that is excellent in practical use. Moreover, the methods for improving visual characteristics were a matter of fumbling around, with no clear design methods and no specific standards for evaluating performance.

本発明の目的は、遠用部下方から近用部に至る主子午線
曲線の側方部での収差集中領域における収差密度を緩和
するのみならず、遠用部、中間部及び近用部の各領域の
全体にわたって像のゆがみ、ゆれを軽減し、この種のレ
ンズを初めて用いる人にも違和感なく装用し得る累進多
焦点レンズを提供することにある。
The object of the present invention is not only to alleviate the aberration density in the aberration concentration area in the side part of the principal meridian curve from the lower part of the distance vision part to the near part, but also to To provide a progressive multifocal lens that reduces image distortion and shaking over the entire area and can be worn comfortably even by a person using this type of lens for the first time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、レンズの上方域に遠用部Fを有し、下方域に
近用部を有し、その中間に中間部Pとして上方域から下
方域に向かって遠用屈折力から近用屈折力へ平均表面屈
折力が連続的に変化する累進帯を有する第1図に示す如
き累進多焦点レンズにおいて、主子午線曲線MM’の側
方領域にて、表面の平均屈折力Qとガウス曲率に関する
値Gとをパラメータとすることによって、レンズ収差を
定量的に把握し得ることを見出し、このような新しい観
点による累進多焦点レンズの設計及び評価の目安を確立
したものである。
The present invention has a distance portion F in the upper region of the lens, a near portion in the lower region, and an intermediate portion P between them, which refracts distance refractive power from the distance refractive power to the lower region. In a progressive multifocal lens as shown in FIG. 1 having a progressive zone in which the average surface refractive power changes continuously, the relationship between the average refractive power Q of the surface and the Gaussian curvature in the lateral region of the principal meridian curve MM' is By using the value G as a parameter, we have found that lens aberration can be quantitatively understood, and we have established a guideline for designing and evaluating progressive multifocal lenses from this new perspective.

即ち、中間部Pから近用部N下方に至る領域において、
該領域内の主子午線曲線MM′に沿う明視域として使用
可能な表面屈折力の非点隔差が0゜5 Dptr以内の
領域の側方にて、表面平均屈折力Qと、ガウスの曲率の
平方根に屈折率係数(n −1)を乗じた値Gとの差Δ
qが、 500 (PI +1)        (3Pl +
4Ao )但し、 Δq=Q−G G= (n−1)JK 、  Kニガウスの曲率AD 
:加入度数(Dptr) P6 ;遠用部における基準平均屈折率(Dptr)の
条件を満足する曲面を形成することとしたものである。
That is, in the region from the intermediate portion P to below the near portion N,
On the sides of the area where the astigmatism difference in surface refractive power that can be used as a clear vision area along the principal meridian curve MM' within the area is within 0°5 Dptr, the surface average refractive power Q and the Gaussian curvature are The difference Δ from the value G obtained by multiplying the square root by the refractive index coefficient (n −1)
q is 500 (PI +1) (3Pl +
4Ao) However, Δq=Q-G G= (n-1) JK, Kni Gaussian curvature AD
: Addition power (Dptr) P6 ; A curved surface that satisfies the condition of the reference average refractive index (Dptr) in the distance portion is formed.

尚、P、は累進多焦点レンズのベースカーブともいわれ
る値である。
Note that P is a value also called the base curve of a progressive multifocal lens.

〔作用〕[Effect]

上記の如き本発明に先立ち、本願発明者等は、累進多焦
点レンズの面形状とレンズ収差との関係について鋭意研
究検討を重ねた結果、累進帯の側方領域において顕著に
発生する像のボケや像のゆがみ、また視線を移動したと
きのゆれ等の不快な視覚特性は、主にレンズ収差の密度
分布に影響されることが判明した。従って、レンズ収差
の最大値を小さくすることはもちろんであるが、その密
度分布、勾配を可能な限り小さくすることによって、結
果として、累進多焦点レンズの視覚特性の改善を図るこ
とが可能となる。
Prior to the present invention as described above, the inventors of the present application have conducted intensive research and study on the relationship between the surface shape of a progressive multifocal lens and lens aberrations, and as a result, they have found that the blurring of images that occurs significantly in the lateral regions of the progressive lens. It has been found that unpleasant visual characteristics such as image distortion, image distortion, and shaking when moving the line of sight are mainly affected by the density distribution of lens aberrations. Therefore, in addition to reducing the maximum value of lens aberration, it is possible to improve the visual characteristics of the progressive multifocal lens by reducing its density distribution and gradient as much as possible. .

そして、上記の如く表面の平均屈折力Qとガウス曲率に
関する値Gとの差Δqが、レンズ収差の密度分布と密接
な関係を持ち、この値が上記の条件を満たす面形状にす
ることによって、レンズ収差の密度分布、勾配を可能な
限り小さくし得ることを見出したものである。
As mentioned above, the difference Δq between the average refractive power Q of the surface and the value G related to Gaussian curvature has a close relationship with the density distribution of lens aberrations, and by making the surface shape such that this value satisfies the above conditions, It has been discovered that the density distribution and gradient of lens aberration can be made as small as possible.

以下に上記の条件式について説明する。The above conditional expression will be explained below.

微分幾何学の公式によれば、自由曲面の主曲率半径Rは
一般に次の方程式の2根で求められることが知られてい
る。(例えば、大槻富之助著「微分幾何学」昭和37年
9月朝倉書店発行を参照)R”    R ただし、””’qvvqz□−(qy□)2b””qv
vHzz  2 qvzHvz”qzzHvvc = 
HyyHzz  (Hvz) ”微分幾何学第1基本量 微分幾何学第2基本量 QY     52 尚、ここでは光軸方向にX軸をとり、子午線曲線方向に
Y軸をとった。
According to the formula of differential geometry, it is known that the principal radius of curvature R of a free-form surface is generally determined by the second root of the following equation. (For example, see "Differential Geometry" by Tominosuke Otsuki, published by Asakura Shoten in September 1960) R" R However, ""'qvvqz□-(qy□)2b""qv
vHz 2 qvzHvz"qzzHvvc =
HyyHz (Hvz) "Differential Geometry First Basic Quantity Differential Geometry Second Basic Quantity QY 52 Here, the X-axis is taken in the optical axis direction, and the Y-axis is taken in the meridian curve direction.

この方程式のHHをそれぞれl/R,,1/R□とする
と、 2    R+    Rz     2 aqvyH
zz  2 qyzHyz +Q zzHyv2  C
qvvqzz  (Qyz) ” )R+  Ri  
  a    qvvQzz−(qvz)”が求められ
る。
If HH in this equation is respectively l/R,, 1/R□, then 2 R+ Rz 2 aqvyH
zz 2 qyzHyz +Q zzHyv2 C
qvvqzz (Qyz) ” )R+ Ri
a qvvQzz−(qvz)” is obtained.

ここで、Hが平均曲率であり、Kがガウスの曲率である
Here, H is the average curvature and K is the Gaussian curvature.

そして、ある点での主曲率半径をr、とすると、この主
曲率半径方向の表面屈折力P+ は、P+ = (n−
t)/r+ で表せる。
Then, if the radius of principal curvature at a certain point is r, the surface refractive power P+ in the direction of the radius of principal curvature is P+ = (n-
t)/r+.

ここで、「、をメートル単位にしたとき、屈折力はデイ
オプター(Dptr)の単位で表わされる。
Here, when , is expressed in units of meters, the refractive power is expressed in units of diopters (Dptr).

従って、曲率と面の屈折力との関係は、屈折率の係数を
曲率に乗じた時、面の屈折力になる。平均曲率Hとガウ
スの曲率にで考えてみると、各々面層折力換算で、 Q= (n−1)xl( がその表面の平均屈折力Qであり、 G= (n−1) Xy’k がガウスの曲率の屈折力Gとして表せる。
Therefore, the relationship between the curvature and the refractive power of the surface is the refractive power of the surface when the curvature is multiplied by the coefficient of refractive index. Considering the average curvature H and Gaussian curvature, each surface layer refractive power is converted to Q = (n-1) xl ( is the average refractive power Q of the surface, and G = (n-1) Xy 'k can be expressed as the refractive power G of Gaussian curvature.

そこで、これらの差Δq=Q−Gは、 Δ=Q−G= (n −1)()(−y’K)となり、
平均曲率とガウス曲率の平方根との差に屈折率係数を乗
じたちがΔqである。
Therefore, the difference between these Δq=Q-G becomes Δ=Q-G= (n -1)()(-y'K),
The difference between the average curvature and the square root of Gaussian curvature multiplied by the refractive index coefficient is Δq.

このようなパラメータは、レンズの表面屈折力の非点隔
差の分布、すなわち非点隔差量とその勾配を的確に表現
するものであって、本発明による上記条件はこれらによ
って引き起こされる、ゆれ、ゆがみの程度を軽減し得る
レンズ屈折面を構成する曲面の条件を与えるものである
These parameters accurately express the distribution of the astigmatism difference in the surface refractive power of the lens, that is, the amount of astigmatism difference and its slope. This provides conditions for the curved surface constituting the lens refractive surface that can reduce the degree of .

この平均屈折力とガウスの曲率から求められる値の平方
根との差Δqが、上記条件の上限を越えて大きくなると
、非点隔差が大きくなって、ゆれ、ゆがみが目立つよう
になりボケる範囲やボケる程度も悪化する方向となって
実用上使用困難なレンズになる。
If the difference Δq between this average refractive power and the square root of the value determined from the Gaussian curvature increases beyond the upper limit of the above conditions, the astigmatism difference will increase, causing noticeable shaking and distortion, and blurring the range. The degree of blurring also worsens, making the lens difficult to use in practice.

他方、Δqの値が小さくなると、表面屈折力の非点隔差
の分布のみに関する限りは、ゆれ、ゆがみも少なく良好
な視覚特性を得ることが可能になるが、上記条件の下限
を外れる場合には、中間部の長さが必要以上に長くなり
、実用上使用困難なレンズになってしまう。また、遠用
部の側方領域にまで非点隔差分布の範囲を広げることも
必要となり、遠用部の明視域が狭くなり、累進多焦点レ
ンズとしての遠用部、中間部及び近用部のバランスの良
いレンズを達成することが難しくなる。
On the other hand, when the value of Δq becomes small, as far as the distribution of astigmatic difference in surface refractive power is concerned, it becomes possible to obtain good visual characteristics with less shaking and distortion. , the length of the intermediate portion becomes longer than necessary, resulting in a lens that is difficult to use in practice. In addition, it is necessary to expand the range of astigmatism distribution to the lateral areas of the distance vision area, which narrows the clear vision area of the distance vision area. It becomes difficult to achieve a lens with a good balance of parts.

上記のごとき本発明の構成において、さらに眼鏡フレー
ム内で実質的に屈折矯正に有効に使用されるレンズの幾
何中心に対して50mmφのレンズ口径内において、 の条件を満足するように構成することが望ましい。
In the configuration of the present invention as described above, it is further possible to configure the following conditions to be satisfied within the lens aperture of 50 mmφ with respect to the geometric center of the lens that is effectively used for refractive correction within the eyeglass frame. desirable.

また、表面屈折力の非点隔差を視認し得るI Dptr
以上の側方領域にて、前記条件式を満足するように構成
することが有効である。
In addition, the astigmatism difference of the surface refractive power can be visually recognized.
It is effective to configure the above-mentioned side regions so that the above-mentioned conditional expressions are satisfied.

〔実施例〕〔Example〕

第2図は、本発明の実施例についての、前述したΔqの
値を、各点ごとに示したものである。この実施例は、直
径70n++sのレンズであり、主子午線曲線に沿って
5IllI1間隔で、また主子午線曲線に直交する方向
でも51間隔での各点における値を示した。
FIG. 2 shows the values of Δq mentioned above for each point in the example of the present invention. This example is a lens with a diameter of 70n++s, and the values were shown at each point at 5IllI1 intervals along the principal meridian curve, and also at 51 intervals in the direction orthogonal to the principal meridian curve.

本実施例においては、 加入度数    : An =2.5(Dptr)であ
るから、上記条件は、 0.00208  ≦1Δq1≦0.25となる。
In this embodiment, since the addition power: An = 2.5 (Dptr), the above condition is 0.00208≦1∆q1≦0.25.

従って、本実施例における各値についてみれば、明視域
としての非点隔差0.5デイオプターを超える主子午線
曲線MM’の側方領域(第2図中太線の領域内)が、い
ずれも上記条件範囲内であり、適切な非点隔差量と勾配
をもつ面形状であることが分かる。
Therefore, looking at each value in this example, the lateral regions of the principal meridian curve MM' (within the thick line in FIG. 2) where the astigmatism difference exceeds 0.5 dayopter as the clear vision region are as above. It can be seen that the surface shape is within the condition range and has an appropriate amount of astigmatism and slope.

ところで、上記の如き実施例の主子午線曲線に沿った屈
折力分布の状態は第3図に示すごとくである。本実施例
は遠用部Fの平均屈折度数(ベースカーブ)が5.0デ
イオプターで、加入度2.5デイオプターの累進多焦点
レンズであるから、遠用中心OFにおいてほぼ5.0デ
イオプターであり、近用中心08において平均屈折度数
はほぼ7.5デイオプターとなっている。
By the way, the state of the refractive power distribution along the principal meridian curve in the above embodiment is as shown in FIG. This example is a progressive multifocal lens with an average refractive power (base curve) of 5.0 dayopters in the distance vision part F and an addition power of 2.5 dayopters, so the distance vision center OF is approximately 5.0 dayopters. , the average refractive power at the near center 08 is approximately 7.5 dayopters.

そして、本実施例では第3図に示した如く、主子午線曲
線に沿う方向の屈折力分布曲線は、主子午線曲線上の近
用部Nの中間部P側で最大となり、主子午線曲線に沿っ
て近用部Nの周辺に向かって減少に転じている。また、
遠用部の周辺部に向かっては屈折力が増加し、周縁部に
おいては減少するような屈折力分布となっている。
In this embodiment, as shown in FIG. 3, the refractive power distribution curve in the direction along the principal meridian curve is maximum on the intermediate portion P side of the near portion N on the principal meridian curve; It begins to decrease toward the periphery of the near vision area N. Also,
The refractive power distribution is such that the refractive power increases toward the periphery of the distance portion and decreases at the periphery.

第4図は上記の如き実施例についての等非点隔差曲線図
であり、第5図は比較のために従来の累進多焦点レンズ
における等非点隔差曲線の概要を示す図である。
FIG. 4 is a diagram showing the isoastigmatism difference curve for the embodiment as described above, and FIG. 5 is a diagram showing an outline of the isastigmatism curve in a conventional progressive multifocal lens for comparison.

従来の累進多焦点レンズにおいては、本発明による上記
の如き条件を満たすように構成されていないため、第5
図に示す如く、非点隔差の密度が高(なり、非点隔差量
及び非点隔差の勾配が急激なものとなり、結果として像
のゆがみが大きくなり、視線を移動したときに像のゆれ
を惑することになる。また、遠用部下方の側方領域には
、中間部の側方領域からの非点隔差の収差がしみ出して
、この領域へ眼を向けた場合には、像のボケばかりでは
なく、像のゆがみ、ゆれが著しくなっている。
Conventional progressive multifocal lenses are not configured to satisfy the above conditions according to the present invention.
As shown in the figure, the density of the astigmatism difference becomes high (the amount of astigmatism difference and the gradient of the astigmatism difference become steep), and as a result, the image distortion becomes large, and when the line of sight moves, the image shakes. In addition, the astigmatism aberration from the intermediate lateral region seeps into the lower lateral region for distance vision, and when the eye is directed to this region, the image is distorted. Not only is the image blurry, but the image is also noticeably distorted and shakes.

これに対し、本実施例においては第4図に示す如く、表
面屈折力の非点隔差の密度も低下し、非点隔差の勾配も
ゆるやかになり、像のゆがみもゆれも軽減されているこ
とが明らかである。
In contrast, in this example, as shown in FIG. 4, the density of the astigmatism difference in surface refractive power is reduced, the gradient of the astigmatism difference is also gentle, and image distortion and shaking are reduced. is clear.

尚、上記実施例は、主子午線曲線上の面形状が全線にわ
たって膝点である場合においても、スルなくとも一部に
おいて原点でない領域を有する構成においても有効であ
る。
Note that the above embodiment is effective even when the surface shape on the principal meridian curve is a knee point over the entire line, and also in a configuration in which at least a part of the surface has a region that is not the origin.

ところで、本発明における累進多焦点レンズの基準とな
る各点について説明を加えておく。
By the way, each point serving as a reference for the progressive multifocal lens in the present invention will be explained.

遠用中心OFとは、遠用部での所定の表面屈折平均度数
を有する主子午線曲線上の位置であり、実用上は遠用部
の測定基準点とされる点である。
The center OF for distance vision is a position on the principal meridian curve having a predetermined average surface refraction power in the distance vision area, and is a point that is practically used as a measurement reference point for the distance vision area.

また、近用中心ONとは、近用部での所定の表面屈折平
均度数を有する主子午線曲線上の位置であり、実用上は
近用部の測定基準点とされる点である。
Further, the near vision center ON is a position on the principal meridian curve having a predetermined average surface refractive power in the near vision area, and is a point that is practically used as a measurement reference point for the near vision area.

そして、遠用アイポイントEは、レンズを眼鏡フレーム
に枠入れする際の基準とされる位置であり、眼鏡フレー
ムを装用した状態において遠用視線通過位置と合致する
遠用基準点となる。このような遠用アイポイン)Hの位
置は、第3図の主子午線曲線上の平均屈折力分布曲線に
示す如く、レンズの幾何中心とは独立に定められており
、本発明においては以下のように定義する。すなわち、
主子午線曲線上の表面屈折力の平均度数を主子午線曲線
上の各位置ごとにプロットした第3図の如き加入度曲線
において、遠用部Fの遠用中心OFと近用部Nの近用中
心08とを結ぶ直線aと平行で、加入度曲線と遠用部F
側で接する直線すが、遠用中心OFでの平均屈折力を表
す直線Cとの交点Eを遠用アイポイントとしている。
The distance eye point E is a position that is used as a reference when fitting the lens into the eyeglass frame, and serves as a distance reference point that matches the distance line of sight passing position when the eyeglass frame is worn. The position of such distance eye point (H) is determined independently of the geometric center of the lens, as shown in the average refractive power distribution curve on the principal meridian curve in FIG. Define. That is,
In the addition curve shown in Figure 3, in which the average power of the surface refractive power on the principal meridian curve is plotted for each position on the principal meridian curve, the distance center OF of the distance portion F and the near center OF of the near portion N Parallel to the straight line a connecting the center 08, the addition curve and the distance part F
The distance eyepoint is defined as the intersection point E of the straight line C, which is in contact with the eye on the side, and the straight line C representing the average refractive power at the distance center OF.

〔発明の効果〕〔Effect of the invention〕

以上の如き本発明によれば、レンズ表面の曲率を単調な
ものでなく、上記条件範囲内の許容できる度数でゆるや
かな度数勾配を設けることが可能となり、レンズの屈折
表面の全面にわたって、非点隔差を小さくすることがで
き、非点隔差の最大値も小さく、またその勾配もゆるや
かなものにすることが可能となる。従って、遠用部下力
から近用部に至る主子午線曲線の側方部での収差集中領
域における収差密度を緩和するのみならず、遠用部、中
間部及び近用部の各領域の全体にわたって像のゆがみ、
ゆれを軽減し、この種のレンズを初めて用いる人にも違
和感なく装用し得る累進多焦点レンズを提供することに
ある。しかも、本発明によるパラメータに基づけば、視
覚特性を改善するための設計手法も一面的ながら確立で
き、具体的な性能評価のための基準としても有用なもの
となる。
According to the present invention as described above, the curvature of the lens surface is not monotonous, but it is possible to provide a gentle power gradient with an allowable power within the above condition range, and it is possible to provide an astigmatic point over the entire refractive surface of the lens. The distance difference can be made small, the maximum value of the astigmatism difference can also be made small, and the gradient thereof can be made gentle. Therefore, the aberration density is not only alleviated in the aberration concentration area on the side part of the principal meridian curve from the distance lower power to the near vision, but also throughout the distance, intermediate, and near vision regions. image distortion,
To provide a progressive multifocal lens that reduces shaking and allows even a person using this type of lens for the first time to wear it without feeling uncomfortable. Moreover, based on the parameters according to the present invention, a design method for improving visual characteristics can be established, albeit only one-dimensionally, and it becomes useful as a standard for specific performance evaluation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の累進多焦点レンズの領域区分の概要を
示す平面図であり、第2図は本発明の実施例における条
件対応値としてのΔqの分布を示す図、第3図は実施例
における主子午線曲線状の屈折力分布を示す図、第4図
は本発明による実施例についての等非点隔差曲線図、第
5図は従来の累進多焦点レンズについての等非点隔差曲
線図である。 〔主要部分の符号の説明〕 F・・・遠用部    OF・・・遠用中心P・・・中
間部    ON・・・近用中心N・・・近用部   
 E・・・遠用アイポイント出願人  日本光学工業株
式会社 代理人 弁理士 渡 辺 隆 男 第3図
FIG. 1 is a plan view showing an outline of the area division of the progressive multifocal lens of the present invention, FIG. 2 is a diagram showing the distribution of Δq as a condition corresponding value in an example of the present invention, and FIG. FIG. 4 is a diagram showing the refractive power distribution in the form of a principal meridian curve in an example. FIG. 4 is an isostitism difference curve diagram for the embodiment according to the present invention. FIG. 5 is a diagram showing an isostitism difference curve for a conventional progressive multifocal lens. It is. [Explanation of symbols of main parts] F...Distance part OF...Distance center P...Intermediate part ON...Near center N...Near part
E...Distance Eye Point Applicant Nippon Kogaku Kogyo Co., Ltd. Agent Patent Attorney Takashi Watanabe Figure 3

Claims (1)

【特許請求の範囲】 1)レンズの上方域に遠用部Fを有し、下方域に近用部
Nを有し、その中間に中間部Pとして上方域から下方域
に向かって遠用屈折力から近用屈折力へ平均表面屈折力
が連続的に変化する累進帯を有し、レンズのほぼ中心縦
方向で累進帯のほぼ中央部分を通過する主子午線曲線M
M′を有する累進多焦点レンズであって、中間部Pから
近用部N下方に至る領域において、該領域内の主子午線
曲線MM′に沿う明視域として使用可能な表面屈折力の
非点隔差が0.5Dptr以内の領域の側方にて、主子
午線曲線MM′の側方領域にて、表面平均屈折力Qと、
ガウスの曲率の平方根に屈折率係数(n−1)を乗じた
値Gとの差Δqが、 A_D^2/500(P_B+1)≦|Δq|≦A_D
^2/(3P_B+4A_D)但し、 Δq=Q−P G=(n−1)√K、K:ガウスの曲率 A_D:加入度数(Dptr) P_B:遠用部における基準平均屈折力 の条件を満たす曲面を有することを特徴とする累進多焦
点レンズ。 2)レンズの上方域に遠用部Fを有し、下方域に近用部
Nを有し、その中間に中間部Pとして上方域から下方域
に向かって遠用屈折力から近用屈折力へ平均表面屈折力
が連続的に変化する累進帯を有し、レンズのほぼ中心縦
方向で累進帯のほぼ中央部分を通過する主子午線曲線M
M′を有する累進多焦点レンズであって、中間部Pから
近用部N下方に至る領域において、該領域内の主子午線
曲線MM′に沿う明視域として使用可能な表面屈折力の
非点隔差が0.5Dptr以内の領域の側方にて、表面
平均屈折力Qと、ガウスの曲率の平方根に屈折率係数(
n−1)を乗じた値Gとの差Δqが、該累進多焦点レン
ズの幾何中心に対して50mmφのレンズ口径内におい
て、 A_D^2/50(P_B+1)≦|Δq|≦2A_D
^2/(3P_B+4A_D)但し、 Δq=Q−P G=(n−1)√K、K:ガウスの曲率 A_D:加入度数(Dptr) P_B:遠用部における基準平均屈折力 の条件を満足することを特徴とする累進多焦点レンズ。
[Claims] 1) The lens has a distance portion F in the upper region, a near portion N in the lower region, and an intermediate portion P between them, which is a distance refractor from the upper region to the lower region. A principal meridian curve M that has a progressive zone in which the average surface refractive power changes continuously from power to near refractive power, and passes through approximately the central portion of the progressive zone in the longitudinal direction approximately at the center of the lens.
M' is a progressive multifocal lens having an astigmatic surface refractive power that can be used as a clear vision area along the principal meridian curve MM' in the area from the intermediate part P to below the near part N. On the side of the region where the distance difference is within 0.5 Dptr, in the side region of the principal meridian curve MM', the surface average refractive power Q,
The difference Δq from the value G obtained by multiplying the square root of the Gaussian curvature by the refractive index coefficient (n-1) is A_D^2/500(P_B+1)≦|Δq|≦A_D
^2/(3P_B+4A_D) However, Δq=Q-PG G=(n-1)√K, K: Gaussian curvature A_D: Addition power (Dptr) P_B: Curved surface that satisfies the condition of the reference average refractive power in the distance part A progressive multifocal lens characterized by having. 2) The lens has a distance portion F in the upper region, a near portion N in the lower region, and an intermediate portion P between them, from the distance refractive power to the near refractive power from the upper region to the lower region. A principal meridian curve M that has a progressive zone in which the average surface refractive power changes continuously, and passes through approximately the central portion of the progressive zone in the longitudinal direction approximately at the center of the lens.
M' is a progressive multifocal lens having an astigmatic surface refractive power that can be used as a clear vision area along the principal meridian curve MM' in the area from the intermediate part P to below the near part N. On the sides of the region where the distance difference is within 0.5 Dptr, the surface average refractive power Q and the refractive index coefficient (
A_D^2/50(P_B+1)≦|Δq|≦2A_D
^2/(3P_B+4A_D) However, Δq=Q-PG G=(n-1)√K, K: Gaussian curvature A_D: Addition power (Dptr) P_B: Satisfies the condition of reference average refractive power in the distance part A progressive multifocal lens characterized by:
JP63047028A 1988-02-29 1988-02-29 Progressive multifocal lens Expired - Lifetime JP2526971B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63047028A JP2526971B2 (en) 1988-02-29 1988-02-29 Progressive multifocal lens
US07/313,892 US5000559A (en) 1988-02-29 1989-02-23 Ophthalmic lenses having progressively variable refracting power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047028A JP2526971B2 (en) 1988-02-29 1988-02-29 Progressive multifocal lens

Publications (2)

Publication Number Publication Date
JPH01221721A true JPH01221721A (en) 1989-09-05
JP2526971B2 JP2526971B2 (en) 1996-08-21

Family

ID=12763726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047028A Expired - Lifetime JP2526971B2 (en) 1988-02-29 1988-02-29 Progressive multifocal lens

Country Status (1)

Country Link
JP (1) JP2526971B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557348A (en) * 1993-06-29 1996-09-17 Nikon Corporation Progressive power lens
CN114127619A (en) * 2019-06-28 2022-03-01 斯皮拉尔公司 Spiral refractive interface with meridians of different optical power

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557348A (en) * 1993-06-29 1996-09-17 Nikon Corporation Progressive power lens
CN114127619A (en) * 2019-06-28 2022-03-01 斯皮拉尔公司 Spiral refractive interface with meridians of different optical power

Also Published As

Publication number Publication date
JP2526971B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
US5000559A (en) Ophthalmic lenses having progressively variable refracting power
US4580883A (en) Progressive multifocal ophthalmic lenses
KR100689206B1 (en) Double-sided aspheric varifocal power lens
US5557348A (en) Progressive power lens
GB2277997A (en) Progressive multifocal ophthalmic lens pair
JPH06214199A (en) Progressive multifocal lens for ophthalmology
US7914145B2 (en) Progressive power lens and manufacturing method therefor
JP3066029B2 (en) Lens for progressive power glasses
JPH0690368B2 (en) Progressive multifocal lens and glasses
EP0408067B1 (en) Progressive power lens
IE81058B1 (en) Progressive multifocal ophthalmic lens
JPH09251143A (en) Progressive focus lens
US4988182A (en) Ophthalmic lenses having a progressively variable focal power
US9417462B2 (en) Progressive power lens design method and progressive power lens design apparatus
EP0627647B1 (en) Progressive multifocal lens
EP0632307B1 (en) Progressive power lens
US5510860A (en) Progressive multifocal lens
JPH01221721A (en) Progressive multi-focus lens
US6953248B2 (en) Progressive power lens
JPH0949991A (en) Progressive focus lens
JP4996006B2 (en) Progressive power spectacle lens
JPH0581886B2 (en)
JP2503665B2 (en) Progressive focus lens
JP4450480B2 (en) Progressive multifocal lens series
JP3601724B2 (en) Progressive focus lens

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 12