JPH01221149A - Temperature distribution measuring device - Google Patents

Temperature distribution measuring device

Info

Publication number
JPH01221149A
JPH01221149A JP4820588A JP4820588A JPH01221149A JP H01221149 A JPH01221149 A JP H01221149A JP 4820588 A JP4820588 A JP 4820588A JP 4820588 A JP4820588 A JP 4820588A JP H01221149 A JPH01221149 A JP H01221149A
Authority
JP
Japan
Prior art keywords
ultrasonic
picture
image
temperature
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4820588A
Other languages
Japanese (ja)
Inventor
Naohiko Takayama
高山 直彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP4820588A priority Critical patent/JPH01221149A/en
Publication of JPH01221149A publication Critical patent/JPH01221149A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To facilitate provision of a temperature distribution picture at a real time during heating, by providing a means to forming an ultrasonic reflection image, a means to store the base picture of an ultrasonic reflection image, a means to subtract a base picture and an ultrasonic reflection image formed at a real time, and a means to convert the picture element value of a picture obtained as a result of subtraction into a temperature value. CONSTITUTION:An ultrasonic probe 4 is adhered to an organism 1. The ultrasonic probe 4 is an ultrasonic vibrator, and is driven by means of a pulse from a pulse generator 5 for generating ultrasonic waves to emit ultrasonic waves in the organism. Thereafter, the ultrasonic probe receives reflection waves reflected by each tissue in the organism and sends the receiving signal to a receiving circuit 6. In the receiving circuit 6, processing, e.g. amplification, detection, is applied on the receiving signal and is sent to a digital scan converter 7, and is converted into an image signal, capable of being displayed, by means of picture display devices 13 and 14. An ultrasonic image formed during heating is subtracted by a subtracter 9 together with a base image read from a picture memory 8. The formed differential picture is sent to a converter 11, the value of each picture element is converted into a temperature value, which is displayed on a picture display device 14.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、癌や悪性腫瘍等の治療法として知られるハ
イパーサーミア(温熱療法)に好適な、温度分布測定装
置に関する。
The present invention relates to a temperature distribution measuring device suitable for hyperthermia (thermal therapy), which is known as a treatment method for cancer, malignant tumors, etc.

【従来の技術】[Conventional technology]

ハイパーサーミアでは患部のみを所定の温度(43℃前
後)に加温することが重要である。そこで、治療中の体
内温度分布を測定する必要が生じる。 従来、ハイパーサーミアの治療中に温度測定する装置と
して、熱電対やサーミスタなどの測温センサを体内に剥
し入れて温度測定する装置が知られている。また、XI
ICT装置やマイクロ波CT装置などを用いてそれらに
よって得られる画像パラメータが温度依存性を有するこ
とを利用して温度分布像を得るものなども知られている
In hyperthermia, it is important to heat only the affected area to a predetermined temperature (around 43°C). Therefore, it becomes necessary to measure the internal temperature distribution during treatment. Conventionally, as a device for measuring temperature during hyperthermia treatment, a device that measures temperature by inserting a temperature sensor such as a thermocouple or a thermistor into the body is known. Also, XI
It is also known to obtain a temperature distribution image by using an ICT device, a microwave CT device, or the like, and taking advantage of the fact that the image parameters obtained by these devices have temperature dependence.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、熱電対やサーミスタなどの測温センサを
用いるものでは、特定の測定点における温度情報が得ら
れるだけで、温度分布が得られるわけではないという問
題があり、他方、X1iCT装置やマイクロ波CT装置
を用いる場合は大規模なシステムが必要な上、加温を中
断したり、温度分布像を得るのに時間がかかるなどの欠
点がある。 この発明は、加温を中断したりすることなく加温中にリ
アルタイムで筐便に温度分布像を得ることのできる、温
度測定装置を提供することを目的とする。
However, there is a problem that temperature sensors such as thermocouples and thermistors can only obtain temperature information at specific measurement points, but not temperature distribution. When using an apparatus, a large-scale system is required, and there are drawbacks such as the need to interrupt heating and the time it takes to obtain a temperature distribution image. An object of the present invention is to provide a temperature measuring device that can obtain a temperature distribution image on a casing in real time during heating without interrupting heating.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するため、この発明による温度分布測定
装置においては、超音波反射像を得る手段と、超音波反
射像のベース画像を蓄える手段と、ベース画像とリアル
タイムで得られた超音波反射像とを引算する手段と、引
算結果として得られた画像の画素値を温度値に変換する
手段とが備えられる。
In order to achieve the above object, the temperature distribution measuring device according to the present invention includes a means for obtaining an ultrasonic reflection image, a means for storing a base image of the ultrasonic reflection image, and a means for storing the base image and the ultrasonic reflection image obtained in real time. and means for converting the pixel value of the image obtained as a result of the subtraction into a temperature value.

【作  用】[For production]

超音波反射像、つまり通常の超音”波診断装置において
得られるいわゆる超音波Bモード像は、骨等の体内組織
の各境界での超音波反射係数の分布を表わす6体内の温
度が上昇すると、それにともなって組織の音響特性が変
化するので、上記の超音波反射像の変化となって現われ
る。 そこで、時間を隔てて得た同一断層面に間する2つの超
音波像の引算を行なえば、その結果として得られた画像
の画素値は、その時間経過における温度変化に対応した
値となる。 したがって、ベースとなる超音波像を得て、これを蓄積
しておき、リアルタイムで得られる超音波像からこのベ
ース像を引算し、その結果得られる画像の画素値を温度
値に変換すれば、ベース像を得た時点からの温度変化の
分布を表わす画像を得ることができる。 このように通常の超音波Bモード像を用いているので、
音速、減衰、非線形パラメータB/A等の温度依存性に
基づくものよりも、処理時間がかからず、簡便にリアル
タイムで温度分布像を得ることができ、またポンプ波な
ども必要なく煩わしさがない。
Ultrasonic reflection images, that is, so-called ultrasound B-mode images obtained with ordinary ultrasound diagnostic equipment, represent the distribution of ultrasound reflection coefficients at each boundary of body tissues such as bones.6 As the temperature inside the body rises, As a result, the acoustic properties of the tissue change, which appears as a change in the ultrasound reflection image described above.Therefore, subtraction of two ultrasound images on the same tomographic plane obtained at different times is performed. For example, the pixel values of the resulting image will correspond to the temperature change over time. Therefore, by obtaining a base ultrasound image and accumulating it, it is possible to obtain it in real time. By subtracting this base image from the ultrasound image and converting the pixel values of the resulting image into temperature values, it is possible to obtain an image that represents the distribution of temperature changes from the time when the base image was obtained. Since we use a normal ultrasound B-mode image,
Compared to methods based on temperature dependence such as sound velocity, attenuation, and nonlinear parameters B/A, this method requires less processing time, allows you to easily obtain a temperature distribution image in real time, and does not require pump waves or other troublesome components. do not have.

【実 施 例】【Example】

つぎにこの発明の一実施例について図面を参照しながら
説明する0図はこの発明にかかる温度分布測定装置をハ
イパーサーミア装置と組み合わせた一実施例を表わすも
ので、この図において、生体1には加温アプリケータ2
が装着され、加温エネルギー発生装置3からの電磁波、
超音波などの加温エネルギーがこのアプリケータ2を介
して生体1に入射させられ、これによって患部が加温さ
れてハイパーサーミアの治療が行なわれるようになって
いる。なお、生体1に加温エネルギーを入射して加温す
るのでなく、生体1に流れる血液を外部に取り出して加
温してから生体1に送り返すようにして生体1を加温す
ることも考えられる。 他方、この生体1には超音波プローブ4が密着させられ
ている。この超音波10−プ4は超音波振動子であって
、超音波発生用パルス発生器5からのパルスにより駆動
されて超音波を生体内に入射し、その後生体内の各組織
で反射した反射波を受信して受信信号を受信回路6に送
る。受信信号は受信回路6において増幅、検波等の処理
を受け、DSC(デジタルスキャンコンバータ)7に送
られ、画像表示装置13.14等で表示可能な映像信号
に変換される6画像表示装置13にはこのDSC7から
の映像信号がそのまま送られているので、得られた超音
波像がリアルタイムで表示される。 画像メモリ8はベースとなる超音波像を記憶するもので
、加温前に得られた超音波像が格納される。加温中にリ
アルタイムで得られる超音波像は減算器9において画像
メモリ8から読み出されたベース像と減算される。その
減算結果として得られた差画像は画像メモリ10に記憶
され、さらに変換器11に送られる。この変換器11は
、減算結果として得られる差画像の各画素の値を温度値
に変換するもので、RAMなどからなる。この変換器1
1に設定する変換特性は、予め測定して、磁気ディスク
等の記憶装置に記憶しておくようにする。そしてこの変
換特性を必要に応じて変換器11に設定するようにする
。変換後の画像は画像メモリ12にバッファリングされ
、画像表示装置14により表示されるとともに、主制御
装置17に送られて加温エネルギー発生装置3の制御用
の情報として使われる。 さらに生体1には熱電対やサーミスタなどの温度センサ
15が1個または複数個刺し込まれており、温度測定器
16によって、温度センサ15の付近の温度の絶対値が
測定される。この温度測定器16において得られる温度
の絶対値を表わす信号は主制御装置17に送られ、変換
器11の変換特性の較正等に使用される。 なお、超音波像におけるスペックルパターンを除去する
ため、画像メモリ8に記憶すべきベース画像及びこれと
減算されるリアルタイム画像の両方に平均画像を採用し
たり、あるいは減算後の差画像の平均画像を作るように
してもよい、平均画像は、複数枚の超音波画像間で平均
化することにより得ても、あるいは1枚の画像内で画素
間の平均をとることにより得てもよい。
Next, one embodiment of the present invention will be explained with reference to the drawings. Figure 0 shows an embodiment in which the temperature distribution measuring device according to the present invention is combined with a hyperthermia device. Warm applicator 2
is attached, and electromagnetic waves from the heating energy generator 3,
Heating energy such as ultrasonic waves is applied to the living body 1 through the applicator 2, thereby warming the affected area and treating hyperthermia. In addition, instead of heating the living body 1 by injecting heating energy into the living body 1, it is also possible to warm the living body 1 by taking blood flowing through the living body 1 to the outside, warming it, and then sending it back to the living body 1. . On the other hand, an ultrasonic probe 4 is brought into close contact with the living body 1. This ultrasonic wave 10-p 4 is an ultrasonic transducer, which is driven by pulses from an ultrasonic pulse generator 5 to inject ultrasonic waves into the living body, and then reflects the waves from each tissue within the living body. It receives the waves and sends the received signal to the receiving circuit 6. The received signal undergoes processing such as amplification and detection in the receiving circuit 6, is sent to a DSC (digital scan converter) 7, and is converted to a video signal that can be displayed on an image display device 13, 14, etc. 6 Image display device 13 Since the video signal from the DSC 7 is sent as is, the obtained ultrasonic image is displayed in real time. The image memory 8 stores a base ultrasound image, and stores ultrasound images obtained before heating. The ultrasonic image obtained in real time during heating is subtracted from the base image read out from the image memory 8 in a subtracter 9 . The difference image obtained as a result of the subtraction is stored in the image memory 10 and further sent to the converter 11. This converter 11 converts the value of each pixel of the difference image obtained as a result of subtraction into a temperature value, and is composed of a RAM or the like. This converter 1
The conversion characteristic to be set to 1 is measured in advance and stored in a storage device such as a magnetic disk. This conversion characteristic is then set in the converter 11 as necessary. The converted image is buffered in the image memory 12 and displayed on the image display device 14, and is also sent to the main control device 17 and used as information for controlling the heating energy generating device 3. Furthermore, one or more temperature sensors 15 such as a thermocouple or thermistor are inserted into the living body 1, and the absolute value of the temperature near the temperature sensor 15 is measured by a temperature measuring device 16. A signal representing the absolute value of the temperature obtained by the temperature measuring device 16 is sent to the main controller 17 and used for calibrating the conversion characteristics of the converter 11, etc. Note that in order to remove speckle patterns in ultrasound images, an average image is used as both the base image to be stored in the image memory 8 and the real-time image to be subtracted from this, or the average image of the difference image after subtraction is used. The average image may be obtained by averaging a plurality of ultrasound images, or by averaging pixels within one image.

【発明の効果】【Effect of the invention】

この発明の温度分布測定装置によれば、ハイパーサーミ
ア治療中でもその加温を中断させることなく、リアルタ
イムで簡便に温度分布像を得ることができる。そのため
、ハイパーサーミア治療に適用すると、治療効果向上に
貢献できる。
According to the temperature distribution measuring device of the present invention, a temperature distribution image can be easily obtained in real time without interrupting heating even during hyperthermia treatment. Therefore, when applied to hyperthermia treatment, it can contribute to improving the therapeutic effect.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の一実施例のブロック図である。 1・・・生体、2・・・加温アプリケータ、3・・・加
温エネルギー発生装置、4・・・超音波プローブ、5・
・・超音波発生用パルス発生器、6・・・受信回路、7
・・・DSC(デジタルスキャンコンバータ)、8.1
o、12・・・画像メモリ、9・・・減算器、11・・
・変換器、13.14・・・画像表示装置、15・・・
温度センサ、16・・・温度測定器、17・・・主制御
装置。
The figure is a block diagram of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Living body, 2... Warming applicator, 3... Warming energy generator, 4... Ultrasonic probe, 5...
... Pulse generator for ultrasonic generation, 6... Receiving circuit, 7
...DSC (digital scan converter), 8.1
o, 12... Image memory, 9... Subtractor, 11...
・Converter, 13.14... Image display device, 15...
Temperature sensor, 16... Temperature measuring device, 17... Main control device.

Claims (1)

【特許請求の範囲】[Claims] (1)超音波反射像を得る手段と、超音波反射像のベー
ス画像を蓄える手段と、ベース画像とリアルタイムで得
られた超音波反射像とを引算する手段と、引算結果とし
て得られた画像の画素値を温度値に変換する手段とを有
する温度分布測定装置。
(1) means for obtaining an ultrasound reflection image; means for storing a base image of the ultrasound reflection image; means for subtracting the base image and the ultrasound reflection image obtained in real time; and means for converting pixel values of an image into temperature values.
JP4820588A 1988-02-29 1988-02-29 Temperature distribution measuring device Pending JPH01221149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4820588A JPH01221149A (en) 1988-02-29 1988-02-29 Temperature distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4820588A JPH01221149A (en) 1988-02-29 1988-02-29 Temperature distribution measuring device

Publications (1)

Publication Number Publication Date
JPH01221149A true JPH01221149A (en) 1989-09-04

Family

ID=12796885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4820588A Pending JPH01221149A (en) 1988-02-29 1988-02-29 Temperature distribution measuring device

Country Status (1)

Country Link
JP (1) JPH01221149A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508925A (en) * 1994-04-25 1996-09-24 サーモトレックス コーポレーション Acoustic image forming device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508925A (en) * 1994-04-25 1996-09-24 サーモトレックス コーポレーション Acoustic image forming device

Similar Documents

Publication Publication Date Title
US6824518B2 (en) High transmit power diagnostic ultrasound imaging
JP5752121B2 (en) Method and apparatus for measuring physical parameters in mammalian soft tissue by propagating shear waves
Liu et al. Real-time 2-D temperature imaging using ultrasound
CA2478025C (en) Elastographic imaging of soft tissue in vivo
Ebbini et al. Real-time ultrasound thermography and thermometry [life sciences]
Azhari Feasibility study of ultrasonic computed tomography–guided high-intensity focused ultrasound
JPS6355334B2 (en)
Larin et al. Monitoring of temperature distribution in tissues with optoacoustic technique in real time
JPH01221149A (en) Temperature distribution measuring device
ES2316834T3 (en) METHOD AND APPARATUS FOR NON-INVASIVE MEASUREMENT OF A CHANGE OF TEMPERATURE WITHIN A LIVING BODY.
Wang et al. Viscoelastic characterization of HIFU ablation with shear wave by using K-space analysis combined with model-fitting correction method
Karunakaran et al. Real-time thermoacoustic imaging and thermometry during focused microwave heating in multilayer breast phantom
Georg et al. Non-invasive estimation of temperature using diagnostic ultrasound during hifu therapy
JP3779410B2 (en) Ultrasonic irradiation device
JPS59232540A (en) Ultrasonic diagnostic apparatus
JP2001050823A (en) Method for measuring temperature distribution in object noninvasively using ultrasonic ct
JPH03258251A (en) Apparatus for measuring temperature distribution
JP2735266B2 (en) Pulse echo type ultrasonic device
JPH0566138B2 (en)
Pernot et al. Reduction of the thermo-acoustic lens effect during ultrasound-based temperature estimation
JP2735280B2 (en) Heated therapy device and blood flow measurement device including the same
JPH0222661B2 (en)
Liu et al. Real-time two-dimensional temperature imaging using ultrasound
JP2000005165A (en) Ultrasonograph
JPH05337110A (en) Ultrasonic bio-monitoring apparatus