JPH01221134A - Curving device for endoscope - Google Patents

Curving device for endoscope

Info

Publication number
JPH01221134A
JPH01221134A JP63046843A JP4684388A JPH01221134A JP H01221134 A JPH01221134 A JP H01221134A JP 63046843 A JP63046843 A JP 63046843A JP 4684388 A JP4684388 A JP 4684388A JP H01221134 A JPH01221134 A JP H01221134A
Authority
JP
Japan
Prior art keywords
insertion section
distance
wall surface
endoscope
canal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63046843A
Other languages
Japanese (ja)
Inventor
Yutaka Yanagawa
裕 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP63046843A priority Critical patent/JPH01221134A/en
Publication of JPH01221134A publication Critical patent/JPH01221134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

PURPOSE:To make it possible to insert the inserting part of an endoscope into a complicated shape canal to be inspected with no strong pressing force being applied to the wall surface of the canal, by computing signals obtained from position detecting elements, in a computing section, by delivering distance signals to a curve control means so as to drive a drive means for an insertion part curving means so that the insertion part is held away from the wall surface of the canal by a predetermined distance. CONSTITUTION:Infrared light radiated from LEDs 7, 7 in an insertion section 1 and reflected by the wall surface of a canal is received by position detecting elements 10 grouped with the LEDs 7. The reflected light is converted into electrical signals which are amplified by amplifiers 12, 12 and are delivered to a distance computing circuit 13 through a signal processing circuit 11 so as to compute the distance between the position detecting elements 10 and the wall surface of the canal at two positions. A distance signal is delivered to a control circuit 14 for the insertion part curving means. The control circuit 14 controls the insertion part curving means so as to make the two distance signals obtained by the position detecting elements 10, 10 equal to each other.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、医療および工業用に使用される内視鏡の彎
曲装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an endoscope bending device used for medical and industrial purposes.

[従来の技術] 周知のように医療に使用される内視鏡は、挿入部を口腔
、肛門から挿入し、体腔内を、挿入部に内蔵されたイメ
ージガイドファイバーやCCD(固定撮像索子)による
画像伝送手段を使って観察し、結果によっては処置具を
挿入部内に挿入して治療を行なうようにしている。また
工業用においては、目視が不可能な部位、例えば管内に
挿入部を挿入して、医療のときと同様な画像伝達手段を
使って管内の状態を知るようにしている。
[Prior Art] As is well known, in endoscopes used in medical treatment, the insertion section is inserted through the oral cavity or anus, and an image guide fiber or CCD (fixed imaging cord) built into the insertion section is used to navigate inside the body cavity. The patient is observed using an image transmission means, and depending on the results, a treatment instrument is inserted into the insertion section to perform treatment. Furthermore, in industrial applications, an insertion section is inserted into a site that cannot be visually observed, for example, into a tube, and an image transmission means similar to that used in medical treatment is used to determine the condition inside the tube.

[発明が解決しようとする課題] ところで、こうした内視鏡を使用する際、挿入部の挿入
に関し、特に医療の分野において問題がある。
[Problems to be Solved by the Invention] By the way, when using such an endoscope, there are problems regarding insertion of the insertion section, particularly in the medical field.

すなわち、例えば大腸は形状が複雑である。このため、
診断のために大腸に内視鏡を挿入する場合、内視鏡操作
者は、ある程度の技術を要するが、かなり大腸が形状が
複雑なために挿入部の先端で大腸の壁面を押圧して、患
者にかなりの苦痛を与えてしまうことがある。
That is, for example, the large intestine has a complicated shape. For this reason,
Inserting an endoscope into the large intestine for diagnostic purposes requires a certain degree of skill for the endoscope operator, but due to the complex shape of the large intestine, the tip of the insertion tube presses against the wall of the large intestine. It can cause considerable pain to the patient.

これは、内視鏡を内視鏡操作者の意思により彎曲させる
手段が、挿入部の先端部のみに与えられているためで、
その構造上、挿入の際に腸壁に与える力を緩和させるこ
とは不可能である。
This is because the means for bending the endoscope according to the will of the endoscope operator is provided only at the distal end of the insertion section.
Due to its structure, it is impossible to reduce the force exerted on the intestinal wall during insertion.

こうしたことに関し、特公昭61−55095号公報で
開示されるようなものも提案されているが、大腸等の複
雑な形状の管路には対応できないものであった。
Regarding this, a method disclosed in Japanese Patent Publication No. 61-55095 has been proposed, but it cannot be applied to complex-shaped conduits such as the large intestine.

すなわち、特公昭61−55095号公報には、挿入部
にセンサー用の観察窓を設け、この観察窓の内側にそれ
ぞれレンズを介して出光用光学繊維束と入光用光学繊維
束の端面を並べて配置し、出光用光学繊維東端面から出
光を被検査物の壁面に反射させ、その反射光の入光用光
学繊維東端面への入光位置の変化を検出することによっ
て壁面までの間隔や向きを知るようにしたものが開示さ
れている。
That is, in Japanese Patent Publication No. 61-55095, an observation window for the sensor is provided in the insertion part, and the end faces of the optical fiber bundle for light output and the optical fiber bundle for light input are lined up inside the observation window through lenses, respectively. The distance to the wall and the orientation can be determined by reflecting the output light from the east end of the optical fiber for light output onto the wall surface of the object to be inspected, and by detecting changes in the position of the reflected light entering the east end of the optical fiber for light input. What has been made known is disclosed.

そして、壁面との距離を測りながら適正な位置で壁面の
観察を行なうようにしているが、入光用光学繊維東端面
に対する入光位置の変化だけで距離を知る構造は、単純
な形状の管内についてはよいものの、例えば管内の壁面
が傾斜していたり、蛇行したりすると、入光用光学繊維
束の端面の中心を入光するはずが、それとは異なる入光
位置に入光してしまって、内視鏡を正しく中央に導けな
い。
The wall surface is observed at an appropriate position while measuring the distance to the wall surface, but a structure in which the distance can be determined only by changes in the light input position with respect to the east end surface of the light input optical fiber is difficult to achieve in a pipe with a simple shape. However, if the wall inside the tube is sloped or meandering, the light may enter at a different position than the center of the end face of the optical fiber bundle. , the endoscope cannot be guided to the center correctly.

この発明は、このような事情に着目してなされたもので
、壁面に強い押圧力を働かせずに、挿入部を複雑な形状
の管腔に挿入することができる内視鏡の彎曲装置を提供
することを目的とする。
The present invention was made in view of these circumstances, and provides an endoscope bending device that allows the insertion portion to be inserted into a complex-shaped lumen without applying strong pressing force to the wall surface. The purpose is to

[課通を解決するための手段] 上記目的を達成するために、内視鏡の少なくとも挿入部
の先端側外周に周方向沿いに赤外光照射手段を複数設け
、この赤外光照射手段と対をなして前記赤外光照射手段
からの反射光を受光する位置検出素子を挿入部に設ける
。そして、この位置検出素子からの信号を処理して挿入
部と被検査管腔の壁面との間の距離を三角測量にもとづ
き測定する演算処理部を設け、また少なくとも挿入部に
挿入部彎曲手段を設け、かつ前記演算処理部からの信号
を受けて挿入部彎曲手段の駆動手段を制御する彎曲制御
手段を設けて、被検査管腔の壁面の中央を挿入部が挿入
していくようにする。
[Means for solving the problem of communication] In order to achieve the above object, a plurality of infrared light irradiation means are provided along the circumferential direction at least on the outer periphery of the distal end of the insertion section of the endoscope, and the infrared light irradiation means and A pair of position detection elements that receive reflected light from the infrared light irradiation means are provided in the insertion portion. Then, an arithmetic processing section is provided which processes the signal from the position detection element to measure the distance between the insertion section and the wall surface of the lumen to be inspected based on triangulation, and at least an insertion section bending means is provided in the insertion section. and a curvature control means for controlling the driving means of the insertion section curving means in response to a signal from the arithmetic processing section, so that the insertion section is inserted into the center of the wall surface of the lumen to be inspected.

[作用] 位置検出素子で得られた信号を演算処理部で三角測量に
もとづいて演算し、求められた距離信号が彎曲制御手段
に入力して、挿入部彎曲手段の駆動手段を、挿入部が被
検査管腔の壁面に対して一定距離に保つよう、駆動させ
て、挿入部先端で管腔の壁面を押圧しないようにする。
[Function] The signal obtained by the position detection element is calculated based on triangulation in the arithmetic processing section, and the obtained distance signal is input to the curvature control means, and the driving means of the insertion section curving means is controlled by the insertion section. It is driven so as to maintain a constant distance from the wall of the lumen to be inspected, so that the tip of the insertion portion does not press against the wall of the lumen.

[実施例] 以下、この発明を第1図ないし第5図に示す第1の実施
例にもとづいて説明する。第1図は内視鏡の彎曲装置を
示し、1は内視鏡の挿入部である。
[Example] The present invention will be described below based on a first example shown in FIGS. 1 to 5. FIG. 1 shows a bending device of an endoscope, and 1 is an insertion section of the endoscope.

挿入部1は、彎曲可能な材質から構成されており、先端
部には対物用レンズおよび投光用レンズ(いずれも図示
しない)が設けられている。そして、対物用レンズには
イメージガイドファイバー。
The insertion section 1 is made of a bendable material, and an objective lens and a light projecting lens (both not shown) are provided at the distal end. And an image guide fiber for the objective lens.

CCD (固体撮像素子)などの像伝送手段2が光学的
に結合され、投光用レンズにはライトガイドファイバー
などの照明光伝送手段3が接続されていて、観察ができ
るようになっている。
An image transmission means 2 such as a CCD (solid-state image pickup device) is optically coupled, and an illumination light transmission means 3 such as a light guide fiber is connected to the projection lens to enable observation.

すなわち、イメージガイドファイバーでは、もう一方の
端部が挿入部基端の操作部に設けられた接眼部の接眼レ
ンズ(いずれも図示しない)に光学的に結合され、CC
DではそのCODに接がる信号伝送ケーブルが外部の表
示装置に接続され、デイスプレィ上に観察像を表示でき
るようにしている。なお、ライトガイドファイバーは光
源装置と接続自在なライトガイドケーブル端(いづれも
図示しない)に結合されていて、光源装置からの照明光
を投光用レンズに伝送して、目的部を照射できるように
している。
That is, the other end of the image guide fiber is optically coupled to an eyepiece (none of which is shown) of an eyepiece provided in the operating section at the proximal end of the insertion section, and the CC
At D, the signal transmission cable connected to the COD is connected to an external display device so that the observed image can be displayed on the display. The light guide fiber is connected to the end of a light guide cable (none of which is shown) that can be freely connected to the light source device, so that the illumination light from the light source device can be transmitted to the projection lens and illuminate the target area. I have to.

そして、こうした内視鏡の挿入部1の先端側に挿入部彎
曲手段4が設けられている。挿入部彎曲手段4は、第3
図にも示されるように例えば形状記憶合金をコイル状に
加工した線材が使用されていて、加熱すれば収縮する性
能をもつ(形状記憶効果による)。この線材が、例えば
挿入部1の先端側の外周側の相対する部分に、対(2本
)をなして軸方向沿いに内蔵される。また各線材は、中
央の部分が自由な状態となるよう、両端が挿入部1を構
成する部品に固定されていて、線材の収縮で挿入部1を
彎曲変位できるようにしている。そして、この2本の線
材は、内視鏡の外部に設けた内視鏡彎曲ユニット5に内
蔵の電源部6(駆動手段に相当)に接続されていて、電
源部6から各線材に通電することにより、線材の収゛縮
から挿入部1の先端側を上下(あるいは左右)の方向に
彎曲できるようにしている。そして、これら電源部6゜
6にそれぞれ挿入部彎曲手段制御回路14(彎曲制御手
段に相当)が接続されている。
An insertion section bending means 4 is provided on the distal end side of the insertion section 1 of such an endoscope. The insertion portion bending means 4 includes a third
As shown in the figure, for example, a wire made of a shape memory alloy processed into a coil shape is used, and it has the ability to shrink when heated (due to the shape memory effect). These wire rods are housed in pairs (two wires) along the axial direction, for example, in opposing portions on the outer peripheral side of the distal end of the insertion portion 1. Further, each wire rod has both ends fixed to the parts constituting the insertion portion 1 so that the central portion is free, and the insertion portion 1 can be bent and displaced by contraction of the wire rod. These two wires are connected to a power supply section 6 (corresponding to a driving means) built into an endoscope bending unit 5 provided outside the endoscope, and each wire is energized from the power supply section 6. This allows the distal end side of the insertion portion 1 to be bent in the vertical (or horizontal) direction due to contraction of the wire. An insertion section bending means control circuit 14 (corresponding to a bending control means) is connected to each of these power supply units 6.degree.6.

また挿入部1の先端側には、例えば挿入部彎曲手段4.
4と周方向において並ぶ外面部分に、それぞれ赤外光を
照射するためのLED7 (赤外光照射手段に相当)が
設けられている。詳しくは、各LED7.7は挿入部1
の外面に設けた投光レンズ7a(第2図のみ図示)の内
側に照射部を配置させて設けられる。そして、このLE
D7と共に設けたLED駆動回路8(第2図にのみ図示
)が、内視鏡外部の内視鏡彎曲、ユニット5に内蔵した
LED駆動用電源9に接続されていて、LED駆動電源
9でLED7を通電することにより、LED7から挿入
部1の側方に向け赤外光を照射できるようにしている。
Further, on the distal end side of the insertion section 1, for example, an insertion section bending means 4.
LEDs 7 (corresponding to infrared light irradiation means) for irradiating infrared light are provided on outer surface portions lined up with 4 in the circumferential direction, respectively. In detail, each LED 7.7
The irradiation section is arranged inside a light projecting lens 7a (only shown in FIG. 2) provided on the outer surface of the light emitting device. And this LE
An LED drive circuit 8 (shown only in FIG. 2) provided together with D7 is connected to the endoscope curvature outside the endoscope and an LED drive power source 9 built into the unit 5, and the LED drive power source 9 drives the LED 7. By energizing, infrared light can be emitted from the LED 7 toward the side of the insertion section 1.

゛ そして、これらLED7と対(組)となる、半導体で構
成された位置検出素子(PSD)10が、LED7の反
射光を受光できる位置に設けられている。本実施例では
、例えばLED7と挿入部彎曲手段4との間の外面部分
に位置検出素子10が、受光レンズ10aと共に設けら
れている。なお、挿入部1の周方向に沿って挿入部彎曲
手段41位置検出素子10.LED7の三者を並べるよ
うにしたが、挿入部1の軸心方向に沿って王者を並べる
ようにしてもよい。
A position detection element (PSD) 10 made of a semiconductor and paired with these LEDs 7 is provided at a position where it can receive the reflected light from the LEDs 7. In this embodiment, for example, a position detection element 10 is provided on the outer surface between the LED 7 and the insertion portion bending means 4, together with a light receiving lens 10a. Note that the insertion portion bending means 41 position detection element 10. Although the three LEDs 7 are arranged side by side, the dominant one may be arranged along the axial direction of the insertion section 1.

そして、これら位置検出素子10.10を使つて、挿入
部1と管内壁面との距離を光学的に測ることができるよ
うにしている。すなわち、各位置検出素子10には、上
記内視鏡彎曲ユニット5に内蔵した2つの信号処理回路
11.11がアンプ12.12を介して接続されていて
、位置検出素子10から出力される2つの信号を処理で
きるようにしている。そして、この2系統の信号処理回
路11.11に距離演算回路13が接続され、三角測量
による原理で挿入部1と管内の壁面との間の距離を演算
するようにしている(演算処置処理部)。具体的には、
第2図に示される測定原理図のように、LED7から被
測定物に赤外光を当て、その反射光を位置検出素子10
で受光し、集光位置を基に距離演算回路13で被測定物
までの距離を導き出すようにしている。
Using these position detection elements 10.10, it is possible to optically measure the distance between the insertion section 1 and the inner wall surface of the tube. That is, two signal processing circuits 11.11 built in the endoscope bending unit 5 are connected to each position detection element 10 via an amplifier 12.12, and the two signal processing circuits 11.11 that are output from the position detection element 10 are It is possible to process two signals. A distance calculation circuit 13 is connected to these two signal processing circuits 11 and 11, and calculates the distance between the insertion section 1 and the wall surface inside the tube based on the principle of triangulation (calculation processing section ). in particular,
As shown in the measurement principle diagram shown in FIG.
The distance calculation circuit 13 derives the distance to the object to be measured based on the light condensing position.

こうした測定系の距離演算回路13が、系統毎に上記挿
入部彎曲手段制御回路14に接続されている。そして、
挿入部彎曲制御手段制御凹路14は、例えば位置検出素
子10.10によって得られた距離信号が全て等しくな
るよう、挿入部彎曲手段4,4を通電制御するように定
められていて、管内の壁面に対して挿入部1の先端位置
が中央に位置するようにしている。
The distance calculation circuit 13 of such a measurement system is connected to the insertion portion bending means control circuit 14 for each system. and,
The insertion section curvature control means control concave passage 14 is defined to control energization of the insertion section curvature means 4, 4 so that, for example, distance signals obtained by the position detection elements 10.10 are all equal, and The distal end of the insertion section 1 is positioned in the center with respect to the wall surface.

なお、内視鏡彎曲ユニット5と内視鏡とは、例えば内視
鏡に設けたコネクター(図示しない)によって結合され
ていて、それぞれLED駆動回路8と゛LED駆動用駆
動用電源9検 続している。
The endoscope bending unit 5 and the endoscope are connected, for example, by a connector (not shown) provided on the endoscope, and are connected to an LED drive circuit 8 and an LED drive power source 9, respectively. There is.

しかして、このように構成された内視鏡を管内に挿入す
るときは、それぞれLED7,7から赤外光が照射され
ている状態から挿入部1の先端を管内に挿入すれば、挿
入部1の先端部が距離演算回路13で制御されていき、
先端で管内の壁面を押圧することなしに、挿入部1が挿
入されていく。
Therefore, when inserting the endoscope configured in this way into a tube, if the tip of the insertion section 1 is inserted into the tube while the infrared light is being irradiated from the LEDs 7 and 7, the insertion section 1 The tip of the is controlled by the distance calculation circuit 13,
The insertion section 1 is inserted without pressing the wall surface inside the tube with the tip.

すなわち、挿入部1の先端部の動きについて説明すれば
、各LED7,7から照射された赤外光は、管内の壁面
にぶつかって反射していき、その反射光がそれぞれLE
D7と組となる位置検出素子10で受光されていく。そ
して、反射光が電気信号に変換され、さらにアンプ12
.12で増幅される。その後、増幅された電気信号が、
それぞれ信号処理回路11.11を介して距離演算回路
13に出力され、集光位置を基にした三角測量の原理の
応用で、各位置検出素子10と管内の壁面との間の2か
所の距離が算出されていく。この距離信号がそれぞれ挿
入部彎曲手段制御回路14に出力されていく。
That is, to explain the movement of the distal end of the insertion section 1, the infrared light emitted from each LED 7 hits the wall surface inside the tube and is reflected, and the reflected light is reflected by each LED.
The light is received by the position detection element 10 that is paired with D7. Then, the reflected light is converted into an electrical signal, and then the amplifier 12
.. It is amplified by 12. Then, the amplified electrical signal is
They are output to the distance calculation circuit 13 via the signal processing circuits 11 and 11, and by applying the principle of triangulation based on the focal position, the two positions between each position detection element 10 and the wall inside the pipe are detected. The distance is calculated. These distance signals are each outputted to the insertion section bending means control circuit 14.

そして、挿入部彎曲手段制御回路14で、位置検出素子
10.10によって得られた2つの距離信号が等しくな
るように挿入部彎曲手段を制御していく。
Then, the insertion section bending means control circuit 14 controls the insertion section bending means so that the two distance signals obtained by the position detection elements 10.10 are equal.

具体的には、挿入部1を挿入したときに、例えば第4図
に示すように先端部にある2つの位置検出素子10.1
0と管内壁面との距離A、Bが異なる場合(A≠B)、
挿入部彎曲手段制御回路14の制御によって、大なる距
離rAJ側の形状記憶合金の線材に距離差に応じた通電
がなされる。
Specifically, when the insertion section 1 is inserted, for example, as shown in FIG.
If the distances A and B between 0 and the inner wall surface of the pipe are different (A≠B),
Under the control of the insertion portion bending means control circuit 14, the wire of the shape memory alloy on the larger distance rAJ side is energized in accordance with the distance difference.

これにより、その線材は収縮し、第5図に示すように各
位置検出素子10.10と管内の壁面との距離が等しく
なるように、挿入部1の先端部が彎曲され(C−D) 
、挿入部1の先端が管内の中央に向っていく。
As a result, the wire rod contracts, and the distal end of the insertion section 1 is curved so that the distance between each position detection element 10.10 and the wall surface inside the tube becomes equal as shown in FIG. 5 (C-D).
, the tip of the insertion section 1 is directed toward the center of the tube.

しかるに、複数組の位置検出素子10.10で、挿入部
1を管内の壁面に対して等しい距離とする構造により、
どのような形状の管腔でも先端を常に管内の中央に導く
ことができるようになり、挿入部1の先端が管内の壁面
に当って強く押圧するようなことはなくなる。
However, due to the structure in which the plurality of sets of position detection elements 10.10 make the insertion portion 1 the same distance from the wall surface inside the tube,
No matter what shape the lumen has, the tip can always be guided to the center of the tube, and the tip of the insertion section 1 will no longer hit the wall of the tube and press it hard.

したがって、内視鏡操作者は、たとえ大腸のような複雑
な管に対しても、内視鏡の挿入部1を単純に押し込むだ
けで挿入を行なうことができる。
Therefore, the endoscope operator can insert the endoscope into a complicated tube, such as the large intestine, by simply pushing the insertion section 1 of the endoscope.

それ故、内視鏡操作者は特別な技術が不要となり、内視
鏡検査を楽に行なうことができる上、挿入の際の患者に
与えるを苦痛をかなり軽減することができる。
Therefore, the operator of the endoscope does not need any special skills, can easily perform endoscopy, and can significantly reduce the pain caused to the patient during insertion.

なお、この発明は上述した第1の実施例に限らず、第6
図に示される第2の実施例、第7図および第8図に示さ
れる第3の実施例のようにしてもよい。
Note that this invention is not limited to the first embodiment described above, but also includes the sixth embodiment.
The second embodiment shown in the figure and the third embodiment shown in FIGS. 7 and 8 may be used.

すなわち、第2の実施例は、2組の挿入部彎曲手段4.
LED7および位置検出−素子10で構成される彎曲系
を挿入部1の先端側のみだけでなく、挿入部1の軸心方
向に沿って複数組、設けたものである。
That is, in the second embodiment, two sets of insertion portion bending means 4.
A plurality of sets of curved systems composed of the LED 7 and the position detection element 10 are provided not only on the distal end side of the insertion section 1 but also along the axial direction of the insertion section 1.

こうした構造は、いずれも位置検出素子10から管内の
壁面までの距離が、先の第1の実施例と同様、挿入部彎
曲手段制御回路14で等しく制御されるから、第6図に
示す如く曲っている管はその形状に対して挿入部1の彎
曲が行なわれつつ、挿入されていく。
In all of these structures, the distance from the position detection element 10 to the wall surface inside the tube is controlled equally by the insertion section bending means control circuit 14, as in the first embodiment, so that the bending occurs as shown in FIG. The inserted tube is inserted while the insertion portion 1 is curved according to its shape.

第3の実施例は、観察手段の対物レンズ20゜照明手段
の投光レンズ21を挿入部1の側面に設けた側視形の内
視鏡に、例えば第2の実施例で述べた彎曲系を設けたも
のである。
In the third embodiment, the curved system described in the second embodiment is applied to a side-viewing endoscope in which the objective lens 20° of the observation means and the projection lens 21 of the illumination means are provided on the side surface of the insertion section 1. It has been established.

詳しくは、側視形の内視鏡は、観察手段の対物レンズ2
0が管内の壁面に対して、ある距離を保たないと観察に
適した像が得られない。そこで、上述の実施例は全ての
組の位置検出素子と管内壁面との距離を等しくしたが、
側視形の内視鏡では最も先端側に有る位置検出素子の組
に関しては、対物レンズ20と同方向の位置検出素子と
管内壁面との距離の制御から、対物レンズ20において
観察ができる距離に一定に保つようにし、それ以外の位
置検出素子の組は上述した実施例のように距離を保つよ
うにしたものである。
Specifically, in a side-viewing endoscope, the objective lens 2 of the observation means
An image suitable for observation cannot be obtained unless the 0 is kept at a certain distance from the wall inside the tube. Therefore, in the above-mentioned embodiment, the distances between all the pairs of position detection elements and the inner wall surface of the pipe were made equal;
In a side-viewing endoscope, for the set of position detection elements located at the distal end, the distance between the position detection elements and the inner wall surface of the tube in the same direction as the objective lens 20 is controlled to a distance that allows observation with the objective lens 20. The distance between the other pairs of position detection elements is maintained at a constant distance as in the above-mentioned embodiment.

こうした対物レンズ20と管壁との間を一定の距離に保
つように制御する構造は、側視形の内視鏡において常に
良好な像が得られる。
Such a structure that controls the distance between the objective lens 20 and the tube wall to maintain a constant distance always provides a good image in a side-viewing endoscope.

[発明の効果] 以上説明したようにこの発明によれば、被検査管腔の管
壁に対して挿入部の先端側が一定の距離を保つように彎
曲するので、たとえ大腸のような複雑な管に対しても、
単純に押し込むだけで挿入を行なうことができるように
なる。
[Effects of the Invention] As explained above, according to the present invention, the distal end of the insertion section is curved so as to maintain a certain distance from the wall of the lumen to be inspected, so even if it is a complex tube such as the large intestine, Also for
Insertion can now be performed simply by pushing.

それ故、内視鏡操作者は特別な技術が全く不要で、内視
鏡検査を楽にすることができる。しかも、壁面に強い押
圧力を働かせないで、挿入部を複雑な形状の管腔に挿入
することができるから、挿入の際、かなり患者に与える
苦痛を少なくすることできる。
Therefore, the endoscope operator does not need any special skills at all, making endoscopy easy. Furthermore, since the insertion section can be inserted into a complex-shaped lumen without exerting a strong pressing force on the wall surface, the pain caused to the patient during insertion can be considerably reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図はこの発明の第1の実施例を示し、
第1図は要部となる彎曲装置の位置検出素子廻りの回路
を示す回路構成図、第2図はその光学的な測定原理を示
す回路図、第3図は彎曲装置を挿入部と共に示す側面図
、第4図は挿入部が管腔に挿入された当初の状態を示す
側面図、第5図はその後、挿入部と管壁との間を一定距
離に保つべく挿入部が彎曲した状態を示す側面図、第6
図はこの発明の第2の実施例の要部を示す側面図、第7
図はこの発明の第3の実施例の要部を示す斜視図、第8
図はその側面図である。 1・・・挿入部、4・・・挿入部彎曲手段、6・・・電
源部(駆動手段)、10・・・位置検出素子、11・・
・信号処理凹路、12・・・距離演算回路、14・・・
挿入部彎曲制御回路(彎曲制御手段)。 出願人代理人 弁理士  坪井 淳 第3日 第5[]; 第6図 第7図     第8図 1、事件の表示 特願昭63−46843号 2、発明の名称 内視鏡の彎曲装置゛ 3、補正をする者 事件との関係  特許出願人 (037)オリンパス光学工業株式会社4、代理人 東京都千代田区霞が関3丁目7番2号 UBEビル7、
補正の内容 (1)明細書第2ページ9行目に有る「(固定撮像素子
)」を「(固体撮像素子)」と訂正する。 (2)明細書第6ページ10行目に有る「接がる」を「
つながる」と訂正する。
1 to 5 show a first embodiment of the invention,
Figure 1 is a circuit configuration diagram showing the circuit around the position detection element of the bending device, which is the main part, Figure 2 is a circuit diagram showing its optical measurement principle, and Figure 3 is a side view showing the bending device together with the insertion section. Figure 4 is a side view showing the state in which the insertion section is initially inserted into the lumen, and Figure 5 shows the state in which the insertion section has been curved to maintain a constant distance between the insertion section and the tube wall. Side view shown, No. 6
The figure is a side view showing the main parts of the second embodiment of the present invention.
The figure is a perspective view showing the main parts of the third embodiment of the present invention.
The figure is a side view thereof. DESCRIPTION OF SYMBOLS 1... Insertion part, 4... Insertion part bending means, 6... Power supply part (driving means), 10... Position detection element, 11...
・Signal processing concave path, 12... Distance calculation circuit, 14...
Insertion section curvature control circuit (curvature control means). Applicant's representative Patent attorney Atsushi Tsuboi 3rd day, 5th [] , Relationship with the case of the person making the amendment Patent applicant (037) Olympus Optical Industry Co., Ltd. 4, Agent UBE Building 7, 3-7-2 Kasumigaseki, Chiyoda-ku, Tokyo;
Contents of correction (1) "(Fixed image sensor)" in the 9th line of page 2 of the specification is corrected to "(Solid-state image sensor)." (2) Change “connect” on page 6, line 10 of the specification to “
"Connect," he corrected.

Claims (1)

【特許請求の範囲】[Claims] 内視鏡の少なくとも挿入部の先端側外周に周方向沿いに
複数設けられた外部に向け赤外光を照射する赤外光照射
手段と、この赤外光照射手段と対をなして少なくとも挿
入部の先端側外周に設けられ被検査管腔の壁面から反射
する前記赤外光照射手段からの反射光を受光する位置検
出素子と、この位置検出素子からの信号を処理して挿入
部と被検査管腔の壁面との間の距離を三角測量にもとづ
き測定する演算処理部と、少なくとも前記挿入部の先端
側に設けられ該挿入部を彎曲させるための挿入部彎曲手
段と、この挿入部彎曲手段を駆動する駆動手段と、前記
演算処理部からの信号を受けて前記挿入部が被検査管腔
の壁面に対して一定距離を保つよう前記駆動手段を制御
する彎曲制御手段とを具備したことを特徴とする内視鏡
の彎曲装置。
A plurality of infrared light irradiation means for irradiating infrared light toward the outside are provided along the circumferential direction on the outer periphery of at least the distal end of the insertion section of the endoscope, and at least the insertion section is paired with the infrared light irradiation means. a position detection element that is provided on the outer periphery of the distal end side and receives reflected light from the infrared light irradiation means that is reflected from the wall surface of the lumen to be inspected; an arithmetic processing unit that measures the distance to the wall surface of the lumen based on triangulation; an insertion section curving means provided at least on the distal end side of the insertion section for curving the insertion section; and the insertion section curving means. and a curvature control means that receives a signal from the arithmetic processing section and controls the drive means so that the insertion section maintains a constant distance from the wall surface of the lumen to be inspected. Characteristic endoscope bending device.
JP63046843A 1988-02-29 1988-02-29 Curving device for endoscope Pending JPH01221134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63046843A JPH01221134A (en) 1988-02-29 1988-02-29 Curving device for endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63046843A JPH01221134A (en) 1988-02-29 1988-02-29 Curving device for endoscope

Publications (1)

Publication Number Publication Date
JPH01221134A true JPH01221134A (en) 1989-09-04

Family

ID=12758624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046843A Pending JPH01221134A (en) 1988-02-29 1988-02-29 Curving device for endoscope

Country Status (1)

Country Link
JP (1) JPH01221134A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339799A (en) * 1991-04-23 1994-08-23 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
US5351677A (en) * 1991-04-24 1994-10-04 Olympus Optical Co., Ltd. Medical system having object information reproduction means for palpation
JP2006325838A (en) * 2005-05-25 2006-12-07 Olympus Medical Systems Corp Endoscope system
JP4718646B2 (en) * 2008-12-04 2011-07-06 オリンパスメディカルシステムズ株式会社 Capsule type propulsion device and operating method thereof
WO2017014303A1 (en) * 2015-07-23 2017-01-26 オリンパス株式会社 Medical system and operation method therefor
US10932875B2 (en) 2015-07-23 2021-03-02 Olympus Corporation Manipulator, medical system, and medical system control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339799A (en) * 1991-04-23 1994-08-23 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
US5351677A (en) * 1991-04-24 1994-10-04 Olympus Optical Co., Ltd. Medical system having object information reproduction means for palpation
JP2006325838A (en) * 2005-05-25 2006-12-07 Olympus Medical Systems Corp Endoscope system
JP4718646B2 (en) * 2008-12-04 2011-07-06 オリンパスメディカルシステムズ株式会社 Capsule type propulsion device and operating method thereof
US8147403B2 (en) 2008-12-04 2012-04-03 Olympus Medical Systems Corp. Capsule propulsion device and propulsion method
WO2017014303A1 (en) * 2015-07-23 2017-01-26 オリンパス株式会社 Medical system and operation method therefor
JPWO2017014303A1 (en) * 2015-07-23 2017-10-05 オリンパス株式会社 Medical system and operating method thereof
US10932875B2 (en) 2015-07-23 2021-03-02 Olympus Corporation Manipulator, medical system, and medical system control method

Similar Documents

Publication Publication Date Title
JP3981364B2 (en) Double balloon endoscope system
US20090105538A1 (en) Endoscope System
EP2719316B1 (en) Insertion inlet fitting
JPH07108284B2 (en) Extracorporeal observation device
JP2001258822A (en) Endoscope
US11931007B2 (en) Endoscope system and propulsion method for insertion section
WO2014125916A1 (en) Relative position detection system for tube-like device, and endoscope device
CN216317512U (en) Medical catheter probe, medical catheter, medical device and system
JPH01221134A (en) Curving device for endoscope
JP3776561B2 (en) 3D measuring endoscope device
KR20090087464A (en) New bending neck for transesophageal echocardiography (tee) probe
US20190046011A1 (en) Flexible tube insertion apparatus
WO2020026386A1 (en) Endoscope system and control device
JP2793882B2 (en) Endoscope insertion state detection device
JP6850694B2 (en) Endoscope and manufacturing method of endoscope
JPH03106331A (en) Curve detecting device for endoscope
JPH1176169A (en) Tactile sensor probe
WO2024022527A1 (en) Endoscope system and control method, endoscope control system and control apparatus therefor, and computer-readable storage medium
TWI775429B (en) endoscopy
JP2921696B2 (en) MRI probe
JP4864248B2 (en) Flexible endoscope device
JP4488203B2 (en) Ultrasound endoscope
JP3845270B2 (en) Flexible ultrasonic endoscope device
JPH01112216A (en) Stereoscopic endoscope
JPS62187316A (en) Tip structure of endoscope