JPH01220003A - Method for controlling learning of industrial robot - Google Patents

Method for controlling learning of industrial robot

Info

Publication number
JPH01220003A
JPH01220003A JP4663488A JP4663488A JPH01220003A JP H01220003 A JPH01220003 A JP H01220003A JP 4663488 A JP4663488 A JP 4663488A JP 4663488 A JP4663488 A JP 4663488A JP H01220003 A JPH01220003 A JP H01220003A
Authority
JP
Japan
Prior art keywords
value
deviation
target
teaching
reproducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4663488A
Other languages
Japanese (ja)
Inventor
Taketo Ariga
有賀 健人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP4663488A priority Critical patent/JPH01220003A/en
Publication of JPH01220003A publication Critical patent/JPH01220003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To improve learning efficiency and to stabilize action by obtaining not only a positional deviation but also the deviation between a reproducing speed and a target speed and modifying a teaching value at the time of a next reproducing action based on the deviations. CONSTITUTION:In addition to the deviation between a target position and a reproducing position, the deviation between the reproducing speed and the target speed is obtained and the contents (teaching value) of a teaching value memory 2 is modified by the deviations. A target value memory 1 reads out the storage contents of the teaching value memory 2 and operates an arm through an actuator 6. Since the teaching modification of the teaching value is carried out by including not only the deviation of the positions but also the deviation of the speeds like this, the number of modifications can be decreased and a stable convergence result can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、産業用ロボットあるいは繰り返し位置決め装
置等の学習制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a learning control method for industrial robots, repetitive positioning devices, and the like.

(従来の技術) 従来において、メモリに格納された教示値に従って制御
対象を再生動作させると共に、該再生動作時に目標値と
再生軌跡との偏差を測定し、この偏差を次回の再生動作
時に上記教示値に加算することにより、制御対象を再生
動作させる教示値を順次修正し、再生動作の軌跡精度を
向上させるようにした産業用ロボットの学習制御方法が
知られている。
(Prior Art) Conventionally, a controlled object is regenerated according to a taught value stored in a memory, and a deviation between a target value and a reproducing trajectory is measured during the reproducing operation, and this deviation is used as the taught value during the next reproducing operation. A learning control method for an industrial robot is known in which the teaching value for reproducing the controlled object is sequentially corrected by adding the teaching value to the value, thereby improving the accuracy of the trajectory of the reproducing operation.

この学習制御方法によれば、教示値が目標値と実際の再
生軌跡との偏差に応じて順次に修正されていくので、再
生動作を何回か繰り返し行っていくうちに教示値が目標
値の許容誤差範囲内に収束するものとなる。このため、
再生動作の作業軌跡を目標値通りに制御することができ
る。
According to this learning control method, the taught value is sequentially corrected according to the deviation between the target value and the actual playback trajectory, so as the playback operation is repeated several times, the taught value becomes closer to the target value. It will converge within the allowable error range. For this reason,
It is possible to control the work trajectory of the reproducing operation according to the target value.

(発明が解決しようとする課題) 従来の技術では、目標位置と再生位置の偏差だけで教示
値を修正したが、この方式では再生軌跡を目標軌跡の許
容誤差範囲内に収束させるまでに多くの再生動作を繰り
返す必要があったリ、安定した動作が得られるとは限ら
なかった。
(Problem to be Solved by the Invention) In the conventional technology, the taught value was corrected only by the deviation between the target position and the playback position, but in this method, many corrections were made before the playback trajectory converged within the tolerance range of the target trajectory. Since it was necessary to repeat the playback operation, stable operation was not always obtained.

本発明はこの様な問題点を解決するためになされたもの
で、学習効率を向上させることができ、又、安定した動
作ができる産業用ロボットの学習制御方法を提供するこ
とを目的とするものである。
The present invention has been made to solve these problems, and an object of the present invention is to provide a learning control method for an industrial robot that can improve learning efficiency and operate stably. It is.

(課題を解決するための手段及び作用)本発明は位置偏
差だけでなく、更に再生速度と目標速度の偏差を求め、
これらの偏差を基に次回再生動作時の教示値を修正する
ようにしたものである。
(Means and effects for solving the problem) The present invention calculates not only the positional deviation but also the deviation between the playback speed and the target speed,
Based on these deviations, the teaching value for the next reproduction operation is corrected.

(実施例) 第1図は本発明を適用する産業用ロボットの制御装置の
一実施例を示すブロック図であり、制御対象であるアー
ム(図示せず)の動作軌跡上の各点の位置情報を目標値
として記憶する目標値メモリ1と、ティーチング修正に
よって修正した目標値を教示値として記憶する教示値メ
モリ2と、位置検出器3で検出した目標値に対するアー
ムの位置情報を再生値として記憶する再生値メモリ4と
、再生値メモリ4に記憶された再生値と目標値との偏差
を求め、更に再生速度と目標速度の偏差を求め、これら
の偏差によって教示値メモリ2の内容(教示値)を修正
すると共に、目標値メモリ1又は教示値メモリ2の記憶
内容を読み出してアクチュエータ6を介してアームを動
作させる演算装置5とを備えている。
(Embodiment) FIG. 1 is a block diagram showing an embodiment of an industrial robot control device to which the present invention is applied, and the position information of each point on the motion trajectory of an arm (not shown) to be controlled. A target value memory 1 stores the target value as a target value, a teaching value memory 2 stores the target value corrected by teaching correction as a taught value, and stores arm position information relative to the target value detected by the position detector 3 as a reproduced value. Find the deviation between the playback value stored in the playback value memory 4 and the target value, and then find the deviation between the playback speed and the target speed. ), and reads out the contents of the target value memory 1 or the taught value memory 2 to operate the arm via the actuator 6.

第2図はティーチング修正を行う手順を示すフローチャ
ートであり、まずステップ10〜13は第1回目の再生
運転である。
FIG. 2 is a flowchart showing the procedure for performing teaching correction, and steps 10 to 13 are the first regeneration operation.

この場合、教示値メモリ2には当初オペレータによルテ
ィーチング作業によって目標値メモリ1の内容と同じ位
置情報が記憶される。
In this case, the same position information as the contents of the target value memory 1 is initially stored in the taught value memory 2 by the teaching operation by the operator.

まず、ステップ10において目標値メモリ1に記憶され
た動作軌跡上の各点の目標値が演算装置5によって読み
出され、この各目標値がアクチュエータ6に与えられる
ことにより、アームが各目標値に対応するように駆動さ
れる。
First, in step 10, the target value at each point on the motion locus stored in the target value memory 1 is read out by the arithmetic unit 5, and each target value is given to the actuator 6, so that the arm moves to each target value. Correspondingly driven.

この時、各目標値ごとに位置検出器3により実際の動作
位置が検出され、再生値として再生値メモリ4に順次記
憶される(ステップ11)。
At this time, the actual operating position is detected by the position detector 3 for each target value and sequentially stored in the reproduction value memory 4 as a reproduction value (step 11).

そして、現在の目標値に対する再生値が得られたならば
、その偏差を次の目標値に加算するフィードバック演算
が行われ(ステップ12)、この演算結果によって次の
目標値がアクチュエータ6に与えられる。これによって
アーム目標値メモリ1に記憶された目標値に従ってその
軌跡が変化するものとなる。
Once the reproduction value for the current target value is obtained, a feedback calculation is performed to add the deviation to the next target value (step 12), and the next target value is given to the actuator 6 based on the result of this calculation. . As a result, the trajectory changes according to the target value stored in the arm target value memory 1.

このようにして全ての目標値による1回目の再生動作が
終了すると、ステップ14〜18で教示値の修正ステッ
プに入る。
When the first reproducing operation using all the target values is completed in this way, steps 14 to 18 enter the teaching value correction step.

まず、各制御周期ごとの目標速度と再生が算出される(
ステップ14)。すなわち、時刻tの目標位置MO(t
)、再生位置M2(t)、制御周期tsとすれば、 目標速度は VO(t)=   Ot  −Ot−tss 再生速度は V2(t)=       −2t−ts で求められる。
First, the target speed and regeneration for each control cycle are calculated (
Step 14). That is, the target position MO(t
), the playback position M2(t), and the control period ts, the target speed is found as follows: VO(t)=Ot -Ot-tss The playback speed is found as V2(t)=-2t-ts.

次に目標速度と再生速度の偏差がVO(t)−V2 (
t)で求められる(ステップ15)。
Next, the deviation between the target speed and the playback speed is VO(t)−V2 (
t) (step 15).

次に目標位置と再生位置の偏差がMO(t)−M2(t
)で求められる(ステップ16)。
Next, the deviation between the target position and the playback position is MO(t) - M2(t
) (step 16).

次に教示値の修正を行う(ステップ17)。Next, the taught value is corrected (step 17).

すなわちMl (t)を教示値、Ml (t)’を修正
後の教示値に1、K2を定数とすれば、M 1 (t)
’ =M 1  (t)  + K  1  (MO(
t)  −M2(tメによって教示値メモリの教示値M
l (t)が修正され、その修正された教示値Ml(t
)’が次回の教示値として用いられる。
That is, if Ml (t) is the taught value, Ml (t)' is the corrected taught value of 1, and K2 is a constant, then M 1 (t)
' = M 1 (t) + K 1 (MO(
t) -M2 (Taught value M in the taught value memory by t)
l(t) is corrected, and the corrected taught value Ml(t
)' is used as the next teaching value.

次にこのような修正が教示値の全部について終了したな
らば、以後この修正された教示値M1(t)’が読み出
され再生値を記憶し、フィードバック演算を繰り返し、
全ての教示値について行われる(ステップ19〜22)
。そして、このアームの動作軌跡が許容誤差の範囲内に
なければ、再度ステップ14〜18の処理に戻り、教示
値のティーチング修正が行われ、許容誤差の範囲内に収
束したならば、ティーチング修正を終了する。これ以後
の再生はこの修正教示値で再生される。
Next, when such correction is completed for all of the taught values, the corrected taught value M1(t)' is read out, the reproduced value is stored, and the feedback calculation is repeated.
Performed for all taught values (steps 19 to 22)
. If the motion trajectory of this arm is not within the allowable error range, the process returns to steps 14 to 18 again, and the teaching correction of the taught value is performed, and if it converges within the allowable error range, the teaching correction is performed. finish. Subsequent reproductions are performed using this modified teaching value.

(発明の効果) 本発明は、位置の偏差だけでなく、速度の偏差も加味し
て教示値のティーチング修正を行っているため修正回数
を低減でき、かつ安定した収束結果が得られる。
(Effects of the Invention) The present invention performs teaching correction of the taught value by taking into consideration not only the position deviation but also the velocity deviation, so that the number of corrections can be reduced and stable convergence results can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用する産業用ロボットの制御装置の
一実施例を示すブロック図、第2図はティーチング修正
の手順示すフローチャートである。 l・・・目標値メモリ 2・・・教示値メモリ 3・・・位置検出器 4・・・再生値メモリ 5・・・演算装置 6・・令アクチュエータ
FIG. 1 is a block diagram showing an embodiment of an industrial robot control device to which the present invention is applied, and FIG. 2 is a flowchart showing a teaching correction procedure. l...Target value memory 2...Taught value memory 3...Position detector 4...Reproduction value memory 5...Arithmetic unit 6...Instruction actuator

Claims (1)

【特許請求の範囲】[Claims] メモリに格納された教示値に従って制御対象を再生動作
させると共に、該再生動作時に目標値と再生軌跡との偏
差を測定して次回の再生動作時に上記教示値に加算する
ことにより、制御対象を再生動作させる教示値を順次修
正するようにした産業用ロボットの学習制御方法におい
て、目標位置と再生位置の偏差の他に、更に再生速度と
目標速度の偏差を求め、これらの偏差を基に次回再生動
作時の教示値を修正することを特徴とする産業用ロボッ
トの学習制御方法。
The controlled object is regenerated by reproducing the controlled object according to the taught value stored in the memory, and measuring the deviation between the target value and the reproducing trajectory during the reproducing operation and adding it to the teaching value during the next reproducing operation. In a learning control method for an industrial robot that sequentially corrects the teaching value for operation, in addition to the deviation between the target position and the playback position, the deviation between the playback speed and the target speed is also determined, and the next playback is performed based on these deviations. A learning control method for an industrial robot characterized by modifying a teaching value during operation.
JP4663488A 1988-02-29 1988-02-29 Method for controlling learning of industrial robot Pending JPH01220003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4663488A JPH01220003A (en) 1988-02-29 1988-02-29 Method for controlling learning of industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4663488A JPH01220003A (en) 1988-02-29 1988-02-29 Method for controlling learning of industrial robot

Publications (1)

Publication Number Publication Date
JPH01220003A true JPH01220003A (en) 1989-09-01

Family

ID=12752727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4663488A Pending JPH01220003A (en) 1988-02-29 1988-02-29 Method for controlling learning of industrial robot

Country Status (1)

Country Link
JP (1) JPH01220003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135205A (en) * 1990-09-27 1992-05-08 Toyoda Mach Works Ltd Automatic corrector for machining condition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135205A (en) * 1990-09-27 1992-05-08 Toyoda Mach Works Ltd Automatic corrector for machining condition

Similar Documents

Publication Publication Date Title
JPH03500101A (en) Robot axis controller using feedback and open-loop control
JPH05118302A (en) Controller for servomotor
JPH02161503A (en) Method of correcting and regenerating teaching position data for robot
JPH01220003A (en) Method for controlling learning of industrial robot
JPH0193805A (en) Method for generating teaching data of robot
JP2636264B2 (en) Automatic servo gain adjustment method for head positioning device
JPS6364102A (en) Learning control system
JPS62174804A (en) Learning control method for industrial robot
JP3146550B2 (en) Industrial robot control device
JPH01297709A (en) Method for controlling operation of object to be controlled
JP3191341B2 (en) Robot controller
JPS62174803A (en) Learning control method for industrial robot
JPS58121407A (en) Positioning control method for industrial robot
JPH0253583A (en) Control method for reproducing position of robot
JPS6188307A (en) Coordinate conversion control method of industrial robot
JPS61255409A (en) Control device for positioning double spindle
JPH02137005A (en) Learning control method
JP2740691B2 (en) Control method
JP3457019B2 (en) Tracing control method
JPH04333105A (en) Robot locus control method
JPS6315303A (en) Learning control system
JPS5870315A (en) Controller of robot
JPH09258813A (en) Industrial robot
JPH0546207A (en) Learning control method
JPH10198411A (en) Method, device for generating target locus and servo controller using the device