JPH01219710A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH01219710A
JPH01219710A JP4510688A JP4510688A JPH01219710A JP H01219710 A JPH01219710 A JP H01219710A JP 4510688 A JP4510688 A JP 4510688A JP 4510688 A JP4510688 A JP 4510688A JP H01219710 A JPH01219710 A JP H01219710A
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
aberration
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4510688A
Other languages
Japanese (ja)
Inventor
Shigeru Aoki
滋 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4510688A priority Critical patent/JPH01219710A/en
Publication of JPH01219710A publication Critical patent/JPH01219710A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the adjusting operation for an eccentric aberration at the time of assembly by employing positive, negative, positive, and negative four-lens-group constitution, making some or all of the lenses in a 1st lens group and at least one positive lens in a 3rd lens group eccentric from other lenses and adjusting the eccentric aberration. CONSTITUTION:This zoom lens consists of the 1st positive lens group, a 2nd negative lens group 2, a stop S, a 3rd positive lens group 3, and a 4th negative lens group in order from the object side and has positive refracting power on the whole. The eccentric aberration is generated over the entire picture plane increasingly from the wide-angle end to the telephoto end, so positive lenses G8 and G9 in the 3rd lens group 3 are moved at the telephoto zoom position in parallel to the optical axis to correct the aberration on the axis. Then all the lenses G1, G2, and G3 in the 1st lens group 1 are slanted to the optical axis to correct, specially, an off-axis aberration. Thus, the off-axis aberration and on-axis aberration are corrected almost independently and the zoom lens which maintains high optical performance at all times and has variable optical characteristics is realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、写真用カメラ、ビデオカメラ等に好適な撮影
レンズに関し、特に組み立て時のレンズ面の傾きや、平
行移動等の誤差により発生する偏心収差を簡便に調整で
きる様にしたズームレンズに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a photographic lens suitable for photographic cameras, video cameras, etc., and particularly relates to a photographic lens suitable for photographic cameras, video cameras, etc. The present invention relates to a zoom lens whose decentering aberration can be easily adjusted.

〔従来技術〕[Prior art]

近年、−眼レフレックスカメラやビデオカメラ等の小型
化に伴い、撮影レンズにも小型化が要求されている。特
にレンズ全長が比較的長くなりがちなズームレンズに於
いては、特にその要求が高い。
In recent years, with the downsizing of -eye reflex cameras, video cameras, etc., there has been a demand for downsizing of photographic lenses as well. There is a particularly high demand for this in zoom lenses, which tend to have a relatively long overall lens length.

ところで、一般にレンズ組み立て時の偏心誤差を軽減さ
せるには、レンズ形状やレンズ鏡筒を高精度に製作すれ
ばよいが、それにも限度があり、多くの場合偏心誤差を
いかに軽減させるかが大きな問題となっている。
By the way, in general, to reduce eccentricity errors during lens assembly, it is enough to manufacture the lens shape and lens barrel with high precision, but there are limits to this, and in many cases, the big problem is how to reduce eccentricity errors. It becomes.

そして従来の一般的なレンズ組み立て作業は、熟練した
作業者が、−枚一枚のレンズ配置を、微妙に調整しなが
ら、レンズ設計値に近い光学的性能がでる様に行ってい
たので、その作業に手間どっていた。特に前述した通り
の小型化たされたズームレンズでは、各レンズ群の屈折
力が比較的強(なるので偏心精度が非常に厳しくなって
おり、所望の光学性能を得ることに手間どると共に困難
になっている。
Conventional general lens assembly work was carried out by skilled workers, making subtle adjustments to the lens arrangement of each lens to achieve optical performance close to the lens design value. I was having a hard time working. In particular, with miniaturized zoom lenses as mentioned above, the refractive power of each lens group is relatively strong (as a result, eccentricity accuracy is extremely strict, making it time-consuming and difficult to obtain the desired optical performance. It has become.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、特にズームレンズに於いて、所定のレンズ群
を光軸に対して偏心させることにより、それ程手間をか
けずに組み立て時に生じる偏心収差を調整し、高い光学
性能を得ることができるズームレンズを提供することに
ある。
Particularly in a zoom lens, the present invention provides a zoom lens that can achieve high optical performance by decentering a predetermined lens group with respect to the optical axis, adjusting decentering aberrations that occur during assembly without much effort. Our goal is to provide lenses.

そして本発明は、物体側より順に正の屈折力の第1レン
ズ群、負の屈折力の第2レンズ群、そして正の屈折力の
第3レンズ群を配置したズームレンズに於いて、前記第
1レンズ群の1部又は全部と第3レンズ群のうち少なく
とも一枚の正レンズを他のレンズに対して偏心させて偏
心収差を調整したことにある。
The present invention provides a zoom lens in which a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power are arranged in order from the object side. This is because a part or all of the first lens group and at least one positive lens of the third lens group are decentered with respect to other lenses to adjust decentering aberrations.

〔実施例〕〔Example〕

以下図面に基づいて、本発明の詳細な説明する。第1図
は本発明に関するズームレンズのレンズ断面図であって
、物体側より順に正の屈折力を有する第1レンズ群、負
の屈折力を有する第2レンズ群、絞りS1正の屈折力を
有する第3レンズ群、そして負の屈折力を有する第4レ
ンズ群から成っている。尚、第3レンズ群と、第4レン
ズ群は、全体として正の屈折力を有する。
The present invention will be described in detail below based on the drawings. FIG. 1 is a cross-sectional view of a zoom lens according to the present invention, in which the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the aperture stop S1 have a positive refractive power in order from the object side. and a fourth lens group having negative refractive power. Note that the third lens group and the fourth lens group have positive refractive power as a whole.

そして第1図(A)は、広角端でのズーム位置、第1図
(B)は望遠端でのズーム位置を示している。
FIG. 1(A) shows the zoom position at the wide-angle end, and FIG. 1(B) shows the zoom position at the telephoto end.

つまり広角側から望遠側への変倍に際して、第4レンズ
群4を固定させ、第1レンズ群lと第3レンズ群3を物
体側へ第2レンズ群2を物体側もしくは像面側へ移動さ
せている。
In other words, when changing the magnification from the wide-angle side to the telephoto side, the fourth lens group 4 is fixed, the first lens group 1 and the third lens group 3 are moved to the object side, and the second lens group 2 is moved to the object side or the image side. I'm letting you do it.

本実施例に示すズームレンズは、前記第3レンズ群3を
像面側へ凹面を向けたレンズGと前記レンズGの像面側
に少な(とも1つの非球面を有する正の屈折力のレンズ
3Bを有するように構成している。また前記第4レンズ
群を負の屈折力のレンズGI5と前記レンズG+sのガ
ラスの屈折率よりも低い屈折率のガラスより成る正の屈
折力のレンズGasとを貼り合せたレンズより構成して
いる。
The zoom lens shown in this embodiment includes a lens G in which the third lens group 3 has a concave surface facing toward the image surface, and a lens G with a positive refractive power having one aspherical surface (both have a small aspherical surface on the image surface side of the lens G). Further, the fourth lens group includes a lens GI5 having a negative refractive power and a lens Gas having a positive refractive power made of glass having a refractive index lower than the refractive index of the glass of the lens G+s. It is composed of lenses bonded together.

しかしながら、第3レンズ群のC++ 、 G 12を
始め第2レンズ群のG7. Gs、  Cz、 Gsの
順で組立上の傾き及び平行移動等の偏心誤差があること
画面全体つまり、軸外、軸上共に多くの偏心収差を発生
する。
However, C++, G12 in the third lens group, G7. Eccentricity errors such as tilt and parallel movement during assembly occur in the order of Gs, Cz, and Gs, which causes many eccentric aberrations on the entire screen, both off-axis and on-axis.

特に広角端から望遠端になる程度、この傾向が強くなり
、この結果光学性能は著しく低下してくる。
This tendency becomes especially strong from the wide-angle end to the telephoto end, and as a result, the optical performance deteriorates significantly.

そこで本実施例では望遠ズーム位置で、絞りSより像面
側の第3レンズ群に配置した正の屈折力のGs。
Therefore, in this embodiment, at the telephoto zoom position, Gs with positive refractive power is arranged in the third lens group on the image plane side from the aperture S.

G9より成るレンズ群を光軸に対して平行移動させ、即
ち偏心させ製作上及び組立上から生ずる偏心収差の特に
軸上の収差をバランズ良く補正している。
The lens group consisting of G9 is moved parallel to the optical axis, that is, decentered, and eccentric aberrations, particularly axial aberrations, caused by manufacturing and assembly are corrected in a well-balanced manner.

この補正で軸外収差は、大きな変化を与えることな(、
中心の収差補正が可能である。
With this correction, off-axis aberrations do not change significantly (,
Center aberration correction is possible.

次に第1レンズ群の好ましくは全体Gl、 G2. G
3レンズ群を光軸に対して傾け、即ち偏心させ製作上及
び組立上からの生ずる偏心収差の特に軸外収差をバラン
ス良く補正している。この補正で軸上での変動収差はほ
とんどな(軸外の補正が可能である。
Next, preferably the entire first lens group Gl, G2. G
The three lens groups are tilted with respect to the optical axis, that is, decentered, and eccentric aberrations, particularly off-axis aberrations, caused by manufacturing and assembly are corrected in a well-balanced manner. With this correction, there is almost no on-axis fluctuating aberration (off-axis correction is possible).

即ち、軸外収差と軸上収差とをほぼ独立に補正すること
が可能となってくる。
That is, it becomes possible to correct off-axis aberrations and on-axis aberrations almost independently.

次に本発明の数値実施例を示す。数値実施例においてR
iは物体側より順に第i番目のレンズ面の曲率半径、D
iは物体側より第i番目のレンズ厚及び空気間隔、Ni
とνiは各々物体側より順に第i番目のレンズのガラス
の屈折率とアツベ数である。
Next, numerical examples of the present invention will be shown. In numerical examples R
i is the radius of curvature of the i-th lens surface in order from the object side, D
i is the i-th lens thickness and air distance from the object side, Ni
and νi are the refractive index and Abbe number of the glass of the i-th lens, respectively, in order from the object side.

非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、
光の進行方向を正とし、Rを近軸曲率半径、A、 B、
 C,D、 Eを各々非球面係数としたとき 数値実施例 F=36.0〜132.  FNO=1 : 3.6〜
4.62ω=61.7°〜18.6゜R1=  318
.08  D l=2.15  N 1=1.8051
8  ν1=25.4R2=  67.95  D 2
=7.00  N 2=1.65160  シ2=58
.6R3= −163,95D 3=0.12R4= 
 44.95  D 4=4.20  N 3=1.6
9680  ν3=55.5R5=   119.18
   D 5=可変R6=  100.66  D 6
=1.37  N 4=1.88300  シ4=40
,8R7=  19.76  D 7=5.83R8=
  −37,65D 8=1.18  N 5=1.8
8300  ν5=40.8R9=    83.24
    D 9=1.73R10=    47.94
   D10=4.70   N 6=1.84666
    シロ=23.9R11=   −38,01D
11=0.88R12=   −26,70D12=1
,03   N 7=1.81600   シフ=46
.6R13=  −83,05D13=可変R14= 
   53.26   D14=3.40   N 8
=1.61800   シ8=63.4R15=  −
629,24D15=0.15R16=    38.
32   D16=3.40    N 9=1,60
311    ν9 = 60.7R17=   16
84.80   D17=0.15R18=    3
5.63   D18=2.70    Nl0=1.
51633   シ1o=64.lR19=    5
5.61    D19=0.15R20=    2
2.31   D20=5.54   N11=1.4
8749   ν11 =70.lR21=−162,
15D21=7.68   N12=1.85026 
  ν12=23.9R22=    14.89  
 D22=4.86R23=    33.69   
D23=3.5    N15=1.57309   
シ13=42,6R24=   −35,33D24=
1.0    N14=1.84666   ν14=
23.9R25=  −63,72D25=可変R26
=   −37,90D26=0.98    N15
=1.83481    シ15=42.7R27= 
  −279,06D27=4.90    N16=
1.53172   シ16=48.9R28=   
−27,90 R25:非球面 非球面係数 A=  O B=  2.957xlO−’ C= −8,998x l O−” D= −7,522X10−” E=  0 次に第2図に数値実施例におけるMTF値を示す。
The aspherical shape has an X axis in the optical axis direction, an H axis in a direction perpendicular to the optical axis,
The traveling direction of light is positive, R is the paraxial radius of curvature, A, B,
When C, D, and E are each aspherical coefficients, numerical example F=36.0 to 132. FNO=1: 3.6~
4.62ω=61.7°~18.6°R1=318
.. 08 D l = 2.15 N 1 = 1.8051
8 ν1=25.4R2= 67.95 D 2
=7.00 N2=1.65160 C2=58
.. 6R3= -163,95D 3=0.12R4=
44.95 D 4=4.20 N 3=1.6
9680 ν3=55.5R5= 119.18
D 5 = Variable R6 = 100.66 D 6
=1.37 N4=1.88300 C4=40
,8R7= 19.76 D 7=5.83R8=
-37,65D 8=1.18 N 5=1.8
8300 ν5=40.8R9=83.24
D9=1.73R10=47.94
D10=4.70 N6=1.84666
White = 23.9R11 = -38,01D
11=0.88R12=-26,70D12=1
,03 N 7=1.81600 Schiff=46
.. 6R13=-83,05D13=variable R14=
53.26 D14=3.40 N 8
=1.61800 shi8=63.4R15=-
629,24D15=0.15R16=38.
32 D16=3.40 N9=1,60
311 ν9 = 60.7R17 = 16
84.80 D17=0.15R18=3
5.63 D18=2.70 Nl0=1.
51633 Si1o=64. lR19=5
5.61 D19=0.15R20=2
2.31 D20=5.54 N11=1.4
8749 ν11 =70. lR21=-162,
15D21=7.68 N12=1.85026
ν12=23.9R22=14.89
D22=4.86R23=33.69
D23=3.5 N15=1.57309
C13=42,6R24=-35,33D24=
1.0 N14=1.84666 ν14=
23.9R25=-63,72D25=variable R26
= -37,90D26=0.98 N15
=1.83481 Shi15=42.7R27=
-279,06D27=4.90 N16=
1.53172 Shi16=48.9R28=
-27,90 R25: Aspherical surface Aspherical coefficient A= O B= 2.957xlO-' C= -8,998xl O-" D= -7,522X10-" E= 0 Next, numerical implementation is shown in Figure 2 The MTF values in the example are shown.

MTF値においてYは像高、(A)は理想的に組立てら
れているときで偏心がないとき、(B)は表−1に示す
ように第1レンズ群から第4レンズ群に組立上の偏心が
あったとき、(C)は第3レンズ群のG8. G9レン
ズを平行偏心(0、08m m )させたとき、(D)
は更に第1レンズ群全てを光軸に対して傾け(−0,2
′)させて光学特性を調整したときを示す。
In the MTF value, Y is the image height, (A) is when it is ideally assembled and there is no eccentricity, and (B) is when the assembly is performed from the first lens group to the fourth lens group as shown in Table 1. When there is eccentricity, (C) shows G8. of the third lens group. When the G9 lens is parallel decentered (0.08 mm), (D)
further tilts the entire first lens group with respect to the optical axis (-0, 2
′) to adjust the optical characteristics.

第2図に示すように本実施例によれば所定のレンズ群を
偏心させることにより偏心収差を良好に補正し、高い光
学性能を維持することができることがわかる。
As shown in FIG. 2, it can be seen that according to this example, by decentering a predetermined lens group, decentering aberrations can be favorably corrected and high optical performance can be maintained.

尚、本撮影レンズを保持するレンズ鏡筒は特に図示して
いないが、偏心させるレンズを小型の鏡筒に固定し、外
側鏡筒の光軸に垂直な壁に、この小型鏡筒をガタ穴を介
して緩(ねじ止めして置き、小型鏡筒の位置をずらして
所望の性能になったときねじを固く締め付ける様にして
いる。他の構成レンズはこれまでと同じ構造で外側鏡筒
に固定しているが、従来の組立作業では前に固定したレ
ンズに対して後のレンズを慎重に位置決めしていたのに
対し、本例ではそれらの配慮を行うことなくレンズを固
定するだけで済むわけである。
Although the lens barrel that holds the photographic lens is not particularly shown, the lens to be decentered is fixed to a small lens barrel, and this small lens barrel is installed in a hole in the wall perpendicular to the optical axis of the outer lens barrel. The small lens barrel is then moved and the screws are tightened firmly when the desired performance is achieved.The other constituent lenses have the same structure as before and are attached to the outer lens barrel. However, in conventional assembly work, the subsequent lens was carefully positioned relative to the previously fixed lens, but in this example, it is possible to simply fix the lens without taking such consideration. That's why.

〔発明の効果〕〔Effect of the invention〕

本発明によれば前述のレンズ構成を有するズームレンズ
において所定のレンズ群を光軸に対して偏心収差を調整
し、常に高い光学性能を維持することのできる光学特性
可変のズームレンズを達成することができる。
According to the present invention, in a zoom lens having the above-described lens configuration, decentering aberration of a predetermined lens group with respect to the optical axis is adjusted to achieve a zoom lens with variable optical characteristics that can always maintain high optical performance. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の数値実施例のレンズ断面図、第2図は
本発明の数値実施例のMTF値である。 Aは偏心がない時、 BはAにおいて第1表の各々偏心させた時、CはBにお
いてG8.G9を補正した時、DはCにおいてGl、 
G2. G3を補正した時のMTFを夫々示す。 図中Giは第iレンズ群又は第iレンズ、Sは絞り、収
差図において(A)は無限遠物体、又△Mはメリデイオ
ナル像面、△Sはサジタル像面である。
FIG. 1 is a sectional view of a lens according to a numerical example of the present invention, and FIG. 2 is an MTF value of a numerical example of the present invention. A is when there is no eccentricity, B is when each eccentricity shown in Table 1 is made at A, and C is G8 at B. When G9 is corrected, D is Gl at C,
G2. The MTF when G3 is corrected is shown. In the figure, Gi is the i-th lens group or i-th lens, S is the aperture, and in the aberration diagram (A) is an object at infinity, ΔM is the meridional image surface, and ΔS is the sagittal image surface.

Claims (1)

【特許請求の範囲】[Claims] 物体側より順に正の屈折力の第1レンズ群、負の屈折力
の第2レンズ群、そして正の屈折力の第3レンズ群を配
置したズームレンズに於いて、前記第1レンズ群の1部
又は全部と第3レンズ群のうち少なくとも一枚の正レン
ズを他のレンズに対して偏心させて偏心収差を調整した
ことを特徴とするズームレンズ。
In a zoom lens in which a first lens group with a positive refractive power, a second lens group with a negative refractive power, and a third lens group with a positive refractive power are arranged in order from the object side, one of the first lens groups A zoom lens characterized in that at least one positive lens of the third lens group is decentered with respect to other lenses to adjust eccentric aberration.
JP4510688A 1988-02-26 1988-02-26 Zoom lens Pending JPH01219710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4510688A JPH01219710A (en) 1988-02-26 1988-02-26 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4510688A JPH01219710A (en) 1988-02-26 1988-02-26 Zoom lens

Publications (1)

Publication Number Publication Date
JPH01219710A true JPH01219710A (en) 1989-09-01

Family

ID=12710022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4510688A Pending JPH01219710A (en) 1988-02-26 1988-02-26 Zoom lens

Country Status (1)

Country Link
JP (1) JPH01219710A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011090080A (en) * 2009-10-21 2011-05-06 Nikon Corp Photographic lens, imaging apparatus, and method for adjusting the photographic lens
JP2011186162A (en) * 2010-03-08 2011-09-22 Nikon Corp Variable focal length lens, optical device, and method of adjusting the variable focal length lens
JP2012042663A (en) * 2010-08-18 2012-03-01 Nikon Corp Photographic lens, optical device, and method for adjusting photographic lens
JP2012042660A (en) * 2010-08-18 2012-03-01 Nikon Corp Variable focal length lens, optical device, and method for adjusting variable focal length lens
US8202428B2 (en) 2000-02-17 2012-06-19 Fresenius Medical Care Deutschland Gmbh Filter device, preferably a hollow fiber dialyser with curled hollow fibers
JP2012247758A (en) * 2011-05-31 2012-12-13 Canon Inc Zoom lens and imaging device including the same
WO2015025831A1 (en) * 2013-08-20 2015-02-26 株式会社ニコン Variable focal length lens, optical device, method for adjusting variable focal length lens

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8202428B2 (en) 2000-02-17 2012-06-19 Fresenius Medical Care Deutschland Gmbh Filter device, preferably a hollow fiber dialyser with curled hollow fibers
JP2011090080A (en) * 2009-10-21 2011-05-06 Nikon Corp Photographic lens, imaging apparatus, and method for adjusting the photographic lens
JP2011186162A (en) * 2010-03-08 2011-09-22 Nikon Corp Variable focal length lens, optical device, and method of adjusting the variable focal length lens
JP2012042663A (en) * 2010-08-18 2012-03-01 Nikon Corp Photographic lens, optical device, and method for adjusting photographic lens
JP2012042660A (en) * 2010-08-18 2012-03-01 Nikon Corp Variable focal length lens, optical device, and method for adjusting variable focal length lens
JP2012247758A (en) * 2011-05-31 2012-12-13 Canon Inc Zoom lens and imaging device including the same
WO2015025831A1 (en) * 2013-08-20 2015-02-26 株式会社ニコン Variable focal length lens, optical device, method for adjusting variable focal length lens
CN105612452A (en) * 2013-08-20 2016-05-25 株式会社尼康 Variable focal length lens, optical device, method for adjusting variable focal length lens
JPWO2015025831A1 (en) * 2013-08-20 2017-03-02 株式会社ニコン Variable focal length lens, optical device, and variable focal length lens adjustment method

Similar Documents

Publication Publication Date Title
US5585969A (en) Zoom lens
JPH07111502B2 (en) Zoom lens for compact camera
JPH05264902A (en) Zoom lens
JPH1184243A (en) Zoom lens
WO2018185867A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP3018723B2 (en) Zoom lens
JPH08234106A (en) Zoom lens
JPH1164733A (en) Zoom lens long in back focus
WO2018185868A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
WO2018185870A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP2001042217A (en) Zoom lens
JPH10232420A (en) Zoom lens
JPH09127415A (en) Two-group zoom lens
JPH0882743A (en) Zoom lens of rear focus type
JPH04264412A (en) Zoom lens
JP3184581B2 (en) Zoom lens
JPH09218346A (en) Optical system
JPH01219710A (en) Zoom lens
JPH0814654B2 (en) Small zoom lens
JP2546293B2 (en) Small zoom lens
JPH06347697A (en) Aspherical zoom lens and video camera using the same
JP3476668B2 (en) Zoom lens, video camera and electronic still camera using the same
JPH11167062A (en) Variable power lens
WO2018185869A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP2560413B2 (en) Small zoom lens