JPH0121913B2 - - Google Patents

Info

Publication number
JPH0121913B2
JPH0121913B2 JP7188779A JP7188779A JPH0121913B2 JP H0121913 B2 JPH0121913 B2 JP H0121913B2 JP 7188779 A JP7188779 A JP 7188779A JP 7188779 A JP7188779 A JP 7188779A JP H0121913 B2 JPH0121913 B2 JP H0121913B2
Authority
JP
Japan
Prior art keywords
value
detected
measured
noise
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7188779A
Other languages
Japanese (ja)
Other versions
JPS55163459A (en
Inventor
Sadao Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7188779A priority Critical patent/JPS55163459A/en
Publication of JPS55163459A publication Critical patent/JPS55163459A/en
Publication of JPH0121913B2 publication Critical patent/JPH0121913B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 測定装置の検出々力よりピーク値を抽出する方
法としては、従来検出々力Sを一定周期でサンプ
リングして各周期で抽出される測定値が増加傾向
から減少傾向に転換するときの測定値をピーク値
と判定する方法がある。しかしながらこの方法に
依ると、第1図より明らかな如く検出々力の上り
スロープに雑音N1が乗つている場合、雑音の頂
点から検出々力が一時減少傾向に転換するためこ
の頂点をピーク値と判定する不具合が起る。この
対策として測定誤差による変動を考慮した基準値
L0を予じめ設定しておき、ピーク値検出以後測
定値が減少傾向を辿つたときにピーク値とこれ以
降の測定値との差d0を上記基準値L0比較すること
で抽出したピーク値が雑音の影響によるものか或
いは検出々力の真のピーク値であるか判定する方
法がある。この場合上記差が基準値L0より大き
いと検出ピーク値は雑音の影響によるもので検
出々力は再度増加傾向に転換して真のピーク値が
表われるものと判定し、差が基準値L0より小さ
いと検出ピーク値は検出々力の真のピーク値であ
るとは減少方向を辿るものと判定する。 しかし上記方法によつても、検出々力の頂点に
雑音N2が乗つた場合は、増加傾向から減少傾向
への転換は一回しかないため雑音N2の頂点をピ
ーク値と判定してしまい正確な値が測定されな
い。 以上の点より本発明は検出々力の頂点に雑音が
あつても安定してピーク値を抽出し得る方法を提
示するものである。 まず本発明の原理を第2図によつて説明する。 同図で検出々力Sはt期間ごとにサンプリング
されて、順次隣合う周期t1・t2・t3……tnでの測
定値を比較しながら検出々力が増加傾向から減少
傾向へと転換するときの測定値をピーク値と判定
するのは従来と変わつていない。しかしながら、
本発明に依ると、測定誤差によりt期間で変動す
る分を見越して予じめ基準値Lが設定されてお
り、前記増加傾向の領域に於ける比較過程では隣
合う周期での測定値の差と基準値Lとを比較する
ことで最新の周期で得た測定値は雑音の影響を受
けているか否かの判定を行なうことを特徴として
いる。例えば隣合う周期t2・t3での測定値の差
(D3−D2)が基準値Lより小さい場合にt3周期で
得た測定値D3は雑音の影響を受けていないもの
として採用するが、tl周期での測定値Dlとtl-1周期
で復た測定値Dl-1との差は基準値Lより大きく雑
音の影響を受けていることを判定し測定値Dlは採
用しない。そして雑音を検出した次の周期tl+1
測定値Dl+1は1つ前の周期tl-1の測定値Dl-1と比
較し、その差が基準値Lの2倍より小さい場合に
測定値Dl+1は雑音の影響が無いものとして採用
し、また大きい場合に連続して雑音の影響を受け
ているものとして更に周期tl+2の測定値Dl+2と測
定値Dl-1との差が基準値Lの3倍の値と比較す
る。このように或る周期で雑音を検出すると1つ
前の周期での測定値を保持し、以後の各周期では
夫々検出される測定値とこの保持している測定値
との差を各周期毎に夫々2倍・3倍・4倍……し
た基準値Lと順次比較することで連続して雑音の
影響を受けているかが判定される。また検出々力
が周期tmで増加傾向から減少傾向へ転換すると
周期tmでの測定値Dmは続く周期tm+1・tm+2
での測定値Dm+1・Dm+2…より大きく測定値Dm
は保持される。そして、以後周期tnまで何回か比
較を行なつた結果全てDmの方が大きい場合に、
これをピーク値と確定する。 上記方法に依ると、例えば検出々力の頂点に雑
音N2が乗つており周期tm-1での測定値Dm-1を採
用後に周期tmで雑音の影響を受けた測定値D′m
が検出されても、D′mとDm-1との差は基準値L
より大きくこの測定値を採用することはない。 そして周期tm+1・tm+2…tnでの各測定値
Dm+1・Dm+2…DnよりDm-1が大きいとこの値を
ピーク値とするため正規の検出々力と殆んど変わ
らない結果を得ることができる。 第3図は自動販売機で使用される硬貨選別装置
の場合に於ける本発明の装置化した実施例を示
し、第4図はその制御動作のフローチヤートを示
す。 第3図で1は検出硬貨2が転動する硬貨通路、
3は硬貨選別センサーで定常時200KHz以上の一
定周波数で発振している発振器4の出力が印加さ
れてコイル5により交番磁界を形成している。 そして硬貨2が硬貨通路1を転動してコイル5
に接近するにしたがいインダクタンスが小さくな
るため発振周波数が大きくなり、次にコイル5よ
り離反するにしたがいインダクタンスが大きくな
つて発振周波数は小さくなる。硬貨選別装置に於
いてはこのときの周波数変化の最大値に基づき硬
貨2の適正及び種類を判定するもので発振器4の
発振出力は1ms毎の所定の周期でサンプリング
されて各周期での周波数がカウンタ6にて計数さ
れる。したがつてANDゲート7の一方にサンプ
リング信号SPが入力し且つサンプリング信号SP
の立上がりでカウンタ6がリセツトされると、発
振器4の出力がサンプリング期間中カウンタ6に
導入され発振出力のピーク数がカウントされて周
波数が検出される。8は書換可能なメモリで記憶
領域M0・M1・M2・M3・M4があり、M0には最
新の周期での検出周波数、M1には前回の周期に
おいて検出した雑音の影響を受けていない周波
数、M2にはM0とM1に記憶している周波数の差、
M3には連続した周期で雑音が検出された場合の
通算周波数、M4には検出周波数が減少したとき
減少範囲内の周期の数を夫々記憶するものであ
る。また9は、判定用のデータを記憶するメモリ
でM5には前述の基準値L、M6にはピーク値終了
判定データが夫々設定されている。そしてメモリ
8,9はメモリ制御回路10によつて記憶領域が
指定されると共に読出或いは書込が制御される。
11は演算回路でM0とM1に夫々記憶している値
の差を演算すると共に、M3及びM4に記憶してい
る値に1を加算する。そして12は比較回路で
M2に記憶している値が正であるか、またM2に記
憶している値が1を加算したM3の値と前記基準
値との積より大きいか、更にM4に記憶している
値が前記ピーク値終了判定データより大きいかを
夫々判定する。13は書込回路でM3或いはM4
零を書込み更にM0の値をM1に書込むものであ
る。また14は制御回路で前記サンプリング信号
SPをANDゲート7に出力して発振器4の出力を
サンプリングし且つ第4図に示す制御をシーケン
シヤルに実行すべく制御信号を出力する。 次に第4図のフローチヤートに基づき動作を説
明する。例えば周期aに係わる周波数の測定値
Daがカウンタ6にて検出されると、先ず制御回
路14はメモリ制御回路10によりM0を指定し
てDaをM0に書込む(Da→M0)。そして制御回路
14はM0及びM1を順次指定すると共に制御信号
CT1を出力し、演算回路11はM0に記憶してい
るDaとM1に記憶している周期(a−1)での測
定値Da-1との差を演算し、続いて制御回路14
はM2を指定してこの差をM2に書込む(M0−M1
→M2)。 そして制御回路14はM2を指定すると共に制
御信号CT2を出力し、比較回路12はM2での値
が零より大きいかを判定する(M2>0)。この判
定の結果M2が零より大きいと制御回路14に判
定信号J1が入力し、即ちDa>Da-1であり、測定
値が増加傾向にあることが判明し、制御回路14
はM2・M3・M5を順次指定すると共に制御信号
CT3を出力し、比較回路12はM2に記憶してい
る値が1を加算したM3の値とM5に設定している
基準値Lとの積より大きいかを判定する(M2
L・(M3+1))。 この結果M2が大きいと制御回路14に判定信
号J2が入力しDaは雑音にて影響された測定値と
して、制御回路14はM3を指定すると共に制御
信号CT4を出力し、演算回路11はM3の値に1
を加算して加算結果はM3に書込まれる。即ちM3
には雑音検出周期が1回あつたことが記憶されて
フローは次の周期(a+1)での測定値の取込と
なる(Da+1→M0)。また(M2>L・(M3+1))
の判定でM2が小さい場合制御回路14に判定信
号J3が入力しDaは雑音を含まない適正な測定値
として、制御回路14はM0及びM1を順次指定す
ると共に制御信号CT5を出力し、書込回路13は
M0の値を読出してM1に書込み(M0→M1)、測
定値DaをM1に保持する。次に制御回路14は
M3を指定すると共に制御信号CT6を出力し、書
込回路13はM3をリセツトする(M3→0)。即
ちM3は連続した周期で雑音が検出された場合に
通算雑音周期数を記憶するため、雑音が検出され
ない場合は、リセツトされる。そして制御回路1
4はM4を指定すると共に制御信号CT7を出力し、
書込回路14はM4をリセツトする(M4→0)。
即ちM4は測定値が各周期で減少傾向を示してM2
が零より小さくなる連続周期数を記憶するため、
測定値が雑音の影響を受けずに増加傾向を示した
場合はリセツトされる。 更に(M2>0)の判定でM2が小さい場合制御
回路14に判定信号J4が入力し、測定値は減少傾
向を示していることが判明して、制御回路14は
M4を指定すると共に制御信号CT8を出力し、演
算回路11はM4の値に1を加算して加算結果は
M4に書込まれる(M4+1→M4)。続いて制御回
路14はM4及びM6を順次指定する共に制御信号
CT9を出力し、比較回路12はM4の値とM6のピ
ーク値終了判定データAとを比較する(M4
A)。M4は先に述べた如く各周期での測定値が連
続して減少傾向にある場合の通算周期数が記憶さ
れており、この周期数が所定数(即ちピーク値終
了判定データA)に達すると比較回路12より判
定信号J5が入力し、制御回路14は、M1に記憶
している測定値をピーク値と確定し、M4の値が
小さい場合再び次の周期に於けるカウンタ6の測
定値の取込動作となる。 上記構成に依り、例えば周期aで始めて、測定
値が減少傾向を示すと前回の周期(a−1)で取
り込んだ測定値Da-1がM1に保持され、以後a+
1・a+2……周期での測定値が何れもDa-1
り小さいとM1は継続してDa-1を保持し、周期a
よりA周期経過した周期(a+A)での測定値
Da+AもDa-1より小さいとこのDa-1をピーク値と
確定する。また周期aでの測定値Daに雑音が検
出された場合も周期(a−1)での測定値Da-1
がそのままM1に保持されDaは比較の対象から外
され次の周期(a+1)での測定値Da+1はDa-1
と比較される。 以上詳述した本発明に依ると、従来の如く測定
値が減少傾向を示してから、始めて雑音の影響を
判定するのではなく、各サンプリング周期毎にそ
の検出測定値を前回に採用した雑音を含まない測
定値と比較することで雑音を検出しているために
安定した雑音検出が行なわれる。しかも、上記比
較動作に於いて雑音が検出された周期での測定値
を採用することがないため非適正な測定値をピー
ク値とすることが防止される。更に雑音が検出さ
れるとその後の前記比較動作では雑音検出周期か
らの通算周期数と基準値の積に基づき行なうため
に連続した周期に雑音がまたがつていてもこれを
検出することができると共に、雑音が2周期・3
周期……にまたがる場合の基準値を夫々用意する
ことが無く制御が容易となる利点がある。
[Detailed Description of the Invention] Conventionally, a method for extracting a peak value from the detected power of a measuring device is to sample the detected power S at a constant cycle, and the measured value extracted at each cycle changes from an increasing trend to a decreasing trend. There is a method of determining the measured value at the time of conversion as the peak value. However, according to this method, as is clear from Figure 1, when the noise N 1 is superimposed on the upward slope of the detected power, the detected power temporarily starts to decrease from the peak of the noise, so this peak is set to the peak value. A problem occurs where it is determined that As a countermeasure for this, a standard value that takes into account fluctuations due to measurement errors.
L0 was set in advance, and when the measured value followed a decreasing trend after the peak value was detected, the difference d0 between the peak value and subsequent measured values was extracted by comparing the above reference value L0 . There is a method of determining whether the peak value is due to the influence of noise or whether it is the true peak value of the detection power. In this case, if the above difference is larger than the reference value L0 , it is determined that the detected peak value is due to the influence of noise, and the detected power is again in an increasing trend and the true peak value appears, and the difference is the reference value L If it is smaller than 0, it is determined that the detected peak value is the true peak value of the detected force and that it follows a decreasing direction. However, even with the above method, if the noise N 2 is superimposed on the peak of the detection force, there is only one switch from an increasing trend to a decreasing trend, so the peak value of the noise N 2 is judged to be the peak value, which is inaccurate. values are not measured. In view of the above points, the present invention proposes a method capable of stably extracting a peak value even if there is noise at the peak of the detection force. First, the principle of the present invention will be explained with reference to FIG. In the figure, the detected power S is sampled every t period, and the detected power changes from an increasing trend to a decreasing trend while sequentially comparing the measured values at adjacent periods t 1 , t 2 , t 3 ...tn. The measurement value at the time of conversion is determined to be the peak value, which has not changed from before. however,
According to the present invention, the reference value L is set in advance in anticipation of fluctuations in the period t due to measurement errors, and in the comparison process in the area of increasing tendency, the difference between the measured values in adjacent periods is determined in advance. The feature is that it is determined whether or not the measured value obtained in the latest cycle is affected by noise by comparing the value L with the reference value L. For example, if the difference (D 3 − D 2 ) between the measured values at adjacent cycles t 2 and t 3 is smaller than the reference value L, the measured value D 3 obtained at the t 3 cycle is assumed to be unaffected by noise. However, it is determined that the difference between the measured value D l in the t l period and the measured value D l-1 returned in the t l-1 period is greater than the reference value L and is influenced by noise, and the measured value is D l will not be adopted. Then, the measured value D l +1 of the next cycle t l+1 in which noise was detected is compared with the measured value D l -1 of the previous cycle t l-1 , and the difference is greater than twice the reference value L. If it is small, the measured value D l+1 is assumed to be unaffected by noise, and if it is large, it is assumed that it is continuously affected by noise, and the measured value D l+2 with period t l +2 is used. The difference from the measured value D l-1 is compared with a value three times the reference value L. In this way, when noise is detected in a certain cycle, the measured value in the previous cycle is held, and in each subsequent cycle, the difference between the detected measured value and this held measured value is calculated for each cycle. It is determined whether or not the signal is continuously affected by noise by sequentially comparing it with the reference value L which is doubled, tripled, quadrupled, etc., respectively. Furthermore, when the detected force changes from an increasing trend to a decreasing trend in a period tm, the measured value Dm in a period tm changes to a continuing period tm +1・tm +2 ...
Measured value Dm +1・Dm +2 …larger measured value Dm
is retained. Then, after comparing several times up to the period tn, if Dm is larger in all cases, then
This is determined as the peak value. According to the above method, for example, noise N 2 is superimposed on the peak of the detection force, and after adopting the measured value Dm -1 at period tm -1 , the measured value D′m affected by the noise at period tm
Even if D′m and Dm -1 are detected, the difference between D′m and Dm -1 is the reference value L
No larger value will be used for this measurement. And each measurement value at period tm +1・tm +2 ...tn
Dm +1・Dm +2 ...If Dm -1 is larger than Dn, this value is taken as the peak value, so it is possible to obtain a result that is almost the same as the normal detection power. FIG. 3 shows a device embodiment of the present invention in the case of a coin sorting device used in a vending machine, and FIG. 4 shows a flowchart of its control operation. In Fig. 3, 1 is a coin path in which the detected coin 2 rolls;
Reference numeral 3 denotes a coin sorting sensor, to which the output of an oscillator 4 which oscillates at a constant frequency of 200 KHz or more during normal operation is applied, and an alternating magnetic field is formed by a coil 5. Then, the coin 2 rolls through the coin passage 1 and coils 5.
As the inductance approaches the coil 5, the inductance decreases and the oscillation frequency increases, and then as the coil 5 moves away from the coil 5, the inductance increases and the oscillation frequency decreases. The coin sorting device judges the suitability and type of the coin 2 based on the maximum value of the frequency change at this time, and the oscillation output of the oscillator 4 is sampled at a predetermined period of 1 ms, and the frequency at each period is determined. It is counted by the counter 6. Therefore, the sampling signal SP is input to one side of the AND gate 7, and the sampling signal SP
When the counter 6 is reset at the rising edge of the oscillator 4, the output of the oscillator 4 is introduced into the counter 6 during the sampling period, the number of peaks of the oscillation output is counted, and the frequency is detected. 8 is a rewritable memory with storage areas M 0 , M 1 , M 2 , M 3 , and M 4 , where M 0 contains the detected frequency in the latest cycle, and M 1 contains the noise detected in the previous cycle. The unaffected frequency, M 2 contains the difference between the frequencies stored in M 0 and M 1 ,
M3 stores the total frequency when noise is detected in continuous cycles, and M4 stores the number of cycles within the decreasing range when the detected frequency decreases. Reference numeral 9 is a memory for storing data for determination, and M5 is set with the aforementioned reference value L, and M6 is set with peak value end determination data, respectively. The storage areas of the memories 8 and 9 are specified by the memory control circuit 10, and reading or writing is controlled.
11 is an arithmetic circuit that calculates the difference between the values stored in M 0 and M 1 , and adds 1 to the values stored in M 3 and M 4 . And 12 is a comparison circuit
Is the value stored in M 2 positive? Is the value stored in M 2 larger than the product of the value of M 3 plus 1 and the reference value? It is determined whether each value is larger than the peak value end determination data. 13 is a write circuit that writes zero to M3 or M4 and further writes the value of M0 to M1 . Further, 14 is a control circuit that outputs the sampling signal.
SP is output to the AND gate 7 to sample the output of the oscillator 4 and output a control signal to sequentially execute the control shown in FIG. Next, the operation will be explained based on the flowchart shown in FIG. For example, the measured value of the frequency related to period a
When Da is detected by the counter 6, the control circuit 14 first specifies M 0 using the memory control circuit 10 and writes Da into M 0 (Da→M 0 ). Then, the control circuit 14 sequentially specifies M 0 and M 1 and also outputs a control signal.
CT 1 is output, and the arithmetic circuit 11 calculates the difference between Da stored in M0 and the measured value Da -1 at the period (a- 1 ) stored in M1, and then the control circuit 14
specifies M 2 and writes this difference to M 2 (M 0 −M 1
M2 ). Then, the control circuit 14 specifies M 2 and outputs a control signal CT 2 , and the comparison circuit 12 determines whether the value of M 2 is greater than zero (M 2 >0). As a result of this judgment, if M 2 is larger than zero, a judgment signal J 1 is input to the control circuit 14, that is, Da>Da -1 , and it is found that the measured value is on an increasing trend.
specifies M 2 , M 3 , and M 5 sequentially and also outputs the control signal.
CT 3 is output, and the comparison circuit 12 determines whether the value stored in M 2 is greater than the product of the value of M 3 added by 1 and the reference value L set in M 5 (M 2
L. (M 3 +1)). As a result, if M 2 is large, a judgment signal J 2 is input to the control circuit 14, and since Da is a measured value affected by noise, the control circuit 14 specifies M 3 and outputs a control signal CT 4 , and the arithmetic circuit 11 is 1 to the value of M 3
are added and the addition result is written to M3 . i.e. M3
It is stored that one noise detection period has occurred, and the flow is to take in the measured value in the next period (a+1) (Da +1 → M 0 ). Also (M 2 > L・(M 3 +1))
If it is determined that M 2 is small, a determination signal J 3 is input to the control circuit 14, and assuming that Da is an appropriate measurement value that does not include noise, the control circuit 14 sequentially specifies M 0 and M 1 and sends a control signal CT 5 The write circuit 13 outputs
Read the value of M 0 and write it to M 1 (M 0 → M 1 ), and hold the measured value Da in M 1 . Next, the control circuit 14
The write circuit 13 designates M3 and outputs the control signal CT6 , and resets M3 ( M3 →0). That is, since M3 stores the total number of noise cycles when noise is detected in consecutive cycles, it is reset when no noise is detected. and control circuit 1
4 specifies M 4 and outputs a control signal CT 7 ,
The write circuit 14 resets M 4 (M 4 →0).
In other words, M 4 shows a decreasing tendency in each cycle, and M 2
In order to remember the number of consecutive periods where is smaller than zero,
If the measured value shows an increasing trend without being affected by noise, it is reset. Furthermore, if it is determined that (M 2 > 0), and M 2 is small, a determination signal J 4 is input to the control circuit 14, and it is found that the measured value shows a decreasing tendency, so the control circuit 14
Specifying M4 and outputting the control signal CT8 , the arithmetic circuit 11 adds 1 to the value of M4 , and the addition result is
Written to M 4 (M 4 +1→M 4 ). Next, the control circuit 14 sequentially designates M 4 and M 6 and sends the control signal.
CT 9 is output, and the comparator circuit 12 compares the value of M 4 with the peak value end judgment data A of M 6 (M 4 =
A). As mentioned earlier, M4 stores the total number of cycles when the measured value in each cycle is in a continuous decreasing trend, and this number of cycles reaches a predetermined number (i.e., peak value end judgment data A). Then, the judgment signal J5 is input from the comparison circuit 12, and the control circuit 14 determines the measured value stored in M1 as the peak value, and if the value of M4 is small, the control circuit 14 determines the measurement value stored in M1 as the peak value, and if the value of M4 is small, the control circuit 14 determines the measurement value stored in M1 to be the peak value. The measurement value will be taken in. According to the above configuration, for example, starting from period a, when the measured value shows a decreasing tendency, the measured value Da -1 acquired in the previous period (a-1) is held in M 1 , and from then on a+
1・a+2...If all the measured values in the period are smaller than Da -1 , M 1 will continue to hold Da -1 and the period a
Measured value at period (a+A) after A period has elapsed
If Da +A is also smaller than Da -1 , this Da -1 is determined as the peak value. Also, if noise is detected in the measured value Da at period a, the measured value Da -1 at period (a-1)
is kept as it is at M 1 , Da is excluded from comparison, and the measured value Da +1 in the next cycle (a+1) becomes Da -1
compared to According to the present invention described in detail above, instead of determining the influence of noise only after the measured value shows a decreasing tendency as in the past, the detected measured value is used for each sampling period to determine the noise that was previously adopted. Since noise is detected by comparing it with measured values that do not include it, stable noise detection is performed. Moreover, in the comparison operation, a measurement value at a cycle in which noise is detected is not employed, so that an inappropriate measurement value is prevented from being set as a peak value. Furthermore, when noise is detected, the subsequent comparison operation is performed based on the product of the total number of cycles from the noise detection cycle and the reference value, so even if noise spans consecutive cycles, it can be detected. At the same time, the noise is 2 cycles/3
There is an advantage that control becomes easy because there is no need to prepare reference values for each period.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のピーク値検出の原理図、第2図
は本発明の原理図を夫々示し、第3図は硬貨選別
装置に適用した実施例、第4図は制御動作のフロ
ーチヤートを示す。 1……硬貨通路、……硬貨選別センサー、6
……カウンタ、8,9……メモリ、11……演算
回路、12……比較回路、13……書込回路、1
4……制御回路。
Fig. 1 shows the principle of conventional peak value detection, Fig. 2 shows the principle of the present invention, Fig. 3 shows an embodiment applied to a coin sorting device, and Fig. 4 shows a flowchart of control operation. . 1... Coin passageway, 3 ... Coin sorting sensor, 6
... Counter, 8, 9 ... Memory, 11 ... Arithmetic circuit, 12 ... Comparison circuit, 13 ... Write circuit, 1
4...Control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 測定装置の検出々力を一定周期でサンプリン
グして順次隣合う周期での測定値を比較しながら
前記検出々力が増加傾向から減少傾向へと転換す
るときの測定値をピーク値と判定する方法に関し
て、測定誤差により一つの周期で変動する分を見
越して基準値が設定されており、前記増加傾向の
領域に於ける比較過程では隣合う周期での測定値
の差が前記基準値より小さい場合に新しい周期で
得た測定値を順次採用し、隣合う周期での測定値
の差が前記基準値より大きい場合に新しい周期で
得た測定値を雑音として前回の測定値を続けて採
用すると共に、次の周期では検出した測定値と現
在採用している測定値との差を前記基準値の2倍
した値と比較し、検出した測定値が大きい場合更
に次の周期では検出した測定値と現在採用してい
る測定値との差を前記基準値の3倍した値と比較
する関係で雑音が雑音検出周期以後の各周期に連
続しているかを検出し、或る周期で検出した測定
値と現在採用している測定値との差が前記基準値
と前記雑音検出周期からの通算周期数との積より
小さくなつたとき検出した測定値を採用して以後
の周期では隣合う周期の測定値を比較するもの
で、採用した測定値が以後の所定数の周期での測
定値より全て大きいとこの測定値をピーク値とす
ることを特徴とした測定装置出力のピーク値検出
方法。
1. Sampling the detected force of the measuring device at regular intervals and sequentially comparing the measured values in adjacent cycles, determining the measured value when the detected force changes from an increasing trend to a decreasing trend as the peak value. Regarding the method, a reference value is set in anticipation of fluctuations in one cycle due to measurement errors, and in the comparison process in the area of increasing trend, the difference between measured values in adjacent cycles is smaller than the reference value. If the difference between the measured values in adjacent cycles is larger than the reference value, the measured values obtained in the new cycle are used as noise and the previous measured values are continuously adopted. At the same time, in the next cycle, the difference between the detected measurement value and the currently adopted measurement value is compared with a value that is twice the reference value, and if the detected measurement value is larger, the detected measurement value is compared in the next cycle. The difference between the measured value and the currently adopted measurement value is compared with a value multiplied by three times the reference value, and it is detected whether the noise is continuous in each period after the noise detection period, and the measurement detected in a certain period is performed. When the difference between the measured value and the currently adopted measured value becomes smaller than the product of the reference value and the total number of cycles from the noise detection cycle, the detected measured value is adopted and in subsequent cycles, adjacent cycles are used. A method for detecting a peak value of a measuring device output, which compares measured values and is characterized in that if the adopted measured value is larger than all measured values in a predetermined number of subsequent cycles, this measured value is taken as the peak value.
JP7188779A 1979-06-07 1979-06-07 Peak value detecting method of output from measuring device Granted JPS55163459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7188779A JPS55163459A (en) 1979-06-07 1979-06-07 Peak value detecting method of output from measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7188779A JPS55163459A (en) 1979-06-07 1979-06-07 Peak value detecting method of output from measuring device

Publications (2)

Publication Number Publication Date
JPS55163459A JPS55163459A (en) 1980-12-19
JPH0121913B2 true JPH0121913B2 (en) 1989-04-24

Family

ID=13473487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7188779A Granted JPS55163459A (en) 1979-06-07 1979-06-07 Peak value detecting method of output from measuring device

Country Status (1)

Country Link
JP (1) JPS55163459A (en)

Also Published As

Publication number Publication date
JPS55163459A (en) 1980-12-19

Similar Documents

Publication Publication Date Title
US4749074A (en) Coin sorting apparatus with reference value correction system
US4368428A (en) Method and arrangement for determining the velocity of a vehicle
US4350950A (en) Frequency measuring method and apparatus
EP0341445B1 (en) Method of and apparatus for measuring revolution speed
KR20040068971A (en) High accuracy method for determining the frequency of a pulse input signal over a wide frequency range
US5508698A (en) Vehicle detector with environmental adaptation
US5229894A (en) Method and apparatus for reading and decoding information using a magnetoresistive sensor
US5729133A (en) Noncontact type magnetic head for detecting rate-of-wear in a rotating magnetic head
US5223742A (en) Circuit and method for monitoring a pulse width modulated waveform
JPH0121913B2 (en)
US6940931B2 (en) Clock-synchronism evaluating apparatus and method
US4600959A (en) Tape measuring method
US5563860A (en) Optical disk drive
JP3168737B2 (en) Coin sorting equipment
JP2547594B2 (en) Coin identification device
JP2769233B2 (en) Flow measurement method
JPH08233842A (en) Speed detector and detection of abnormality thereof
JPH0821101B2 (en) Coin sorter
JP3303955B2 (en) Material sensor for coin processing machine
JP3102830B2 (en) Measurement data output method and measurement data output circuit
KR940002190B1 (en) Method of measuring the change of liquid level
JPH08279839A (en) Error detector
JPH0831155B2 (en) Coin sorter
JP2744949B2 (en) Dropout measuring instrument
JPS6211760B2 (en)