JPH01219033A - Production of optical-fiber bundle - Google Patents

Production of optical-fiber bundle

Info

Publication number
JPH01219033A
JPH01219033A JP63043513A JP4351388A JPH01219033A JP H01219033 A JPH01219033 A JP H01219033A JP 63043513 A JP63043513 A JP 63043513A JP 4351388 A JP4351388 A JP 4351388A JP H01219033 A JPH01219033 A JP H01219033A
Authority
JP
Japan
Prior art keywords
optical
rods
guide means
glass tube
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63043513A
Other languages
Japanese (ja)
Inventor
Tsutomu Hirose
広瀬 謹
Riyuusuke Adachi
安達 滝介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP63043513A priority Critical patent/JPH01219033A/en
Publication of JPH01219033A publication Critical patent/JPH01219033A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/028Drawing fibre bundles, e.g. for making fibre bundles of multifibres, image fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To easily heap up many optical rods in a glass tube in an orderly manner by using a specified aligning guide means when many optical rods are regularly packed in the acid-soluble glass tube, the diameter of the tube is reduced by heating, and then the tube is dissolved to produce the title optical fiber bundle. CONSTITUTION:Many optical rods 2 are regularly packed in the glass tube 4 soluble in acid, etc., the diameter is then reduced by heating, and thereafter the tube 4 is dissolved by acid, etc., to produce an optical fiber bundle. In this case, the rods 2 are packed in the tube 4 as described later. Namely, the rods 2 are placed in the aligning guide means 1 with the polygonal inner surface having plural sides directed at an angle of 60 deg. or 180 deg. to a datum side, and heaped up in an orderly manner. The regularly arranged rods 2 as such are transferred into the tube 4, and packed (by using an extruding jig 5, etc.).

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、多数の光学繊維を整列して像を伝達する光
学繊維束の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing an optical fiber bundle in which a large number of optical fibers are aligned to transmit an image.

[従来の技術] 光学繊維束の作り方は、旧来は、光学繊維を整列しなが
ら巻きとって、最後に切断していた。しかし、近年は製
法の合理化がすすみ、酸等により溶解する断面円形のガ
ラス管内に多数の光学ロッドを整列して充填した後に、
それらを加熱して軸方向に引張って直径を細く成形し、
その後で、酸等によりガラス管を溶解して光学繊維束を
製造していた。
[Prior Art] Conventionally, optical fiber bundles were made by winding the optical fibers while arranging them and cutting them at the end. However, in recent years, manufacturing methods have been streamlined, and after a large number of optical rods are arranged and filled in a glass tube with a circular cross section that is dissolved by acid, etc.
They are heated and pulled in the axial direction to form a thinner diameter.
Thereafter, the glass tube was melted using acid or the like to produce an optical fiber bundle.

[発明が解決しようとする課題] 光学繊維束によって光像を正しく伝達するためには、光
学繊維束を構成する多数の光学繊維が。
[Problems to be Solved by the Invention] In order to correctly transmit an optical image by an optical fiber bundle, a large number of optical fibers are required to constitute the optical fiber bundle.

光学R18束の両端において規則正しく整列していなけ
ればならない。そのために、光学繊維は、第9図に示さ
れるような、いわゆる俵積み状に整列する必要がある。
There must be regular alignment at both ends of the optical R18 bundle. For this purpose, the optical fibers need to be arranged in a so-called stacked arrangement as shown in FIG.

しかし、従来の光学m離京の製造方法においては、第1
0図に示されるように、断面円形のガラス管51内に光
学ロッド52を直接入れていたので、光学ロッド52が
円周に沿って並んでしまって、俵積み状に整列するため
の基準面がなく、また、光学ロッド52を入れ足してい
く度にガラス管51内で光学ロッド52が移動してしま
うので、光学ロッド52を俵積み状に整列させるのは困
難を極め、偶然に俵積み状に整列するまで振動や回転を
加える等の、不安定かつ不確実な作業をしなければなら
なかった。
However, in the conventional optical m-resonance manufacturing method, the first
As shown in Fig. 0, since the optical rods 52 were placed directly inside the glass tube 51 with a circular cross section, the optical rods 52 were lined up along the circumference, resulting in a reference surface for arranging them in a stacked shape. Moreover, each time an optical rod 52 is added, the optical rod 52 moves within the glass tube 51, so it is extremely difficult to align the optical rods 52 in a stacked bale shape, and it is extremely difficult to arrange the optical rods 52 in a stacked bale shape. This required unstable and uncertain work such as applying vibration and rotation until the parts were aligned.

また、くり返して振動や回転を加える際に、光学ロー2
ドの隙間に微小なガラス片や異物等が混入して、その後
の加熱工程中に光学繊維を傷つけ。
Also, when applying repeated vibrations or rotations, the optical
Tiny pieces of glass or foreign objects may get into the gaps between the fibers and damage the optical fibers during the subsequent heating process.

黒点や半黒点などの画像欠陥を生じていた。Image defects such as sunspots and half-sunspots occurred.

この発明は、そのような従来の欠点を解消し、多数の光
学ロッドをガラス管内に容易に俵積み状に整列させるこ
とができる光学lam束の製造方法を提供することを目
的とする。
It is an object of the present invention to provide a method for manufacturing an optical lam bundle, which eliminates such conventional drawbacks and allows a large number of optical rods to be easily arranged in a stacked manner in a glass tube.

[課題を解決するための手段] 上記の目的を達成するために、大発明の光学繊維束の製
造方法は、酸等により溶解するガラス管内に多数の光学
ロッド゛を整列して充填した後に、それらを加熱して直
径を細く成形し、その後で、酸等によりガラス管を溶解
して光学繊維束を製造するようにした光学繊維束の製造
方法において、上記ガラス管内に多数の光学ロッドを充
填するに先だって、まず、基準となる一辺に対して60
度又は120度の角度をなす複数の辺を有する多角形状
に内面が形成された整列案内手段内に上記光学ロッドを
入れて、これら光学ロッドを俵積みに整列し、この整列
された状態で光学ロッドを上記ガラス管内に移して充填
するようにしたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the method for manufacturing an optical fiber bundle of the great invention includes the following steps: After aligning and filling a large number of optical rods into a glass tube that is dissolved by acid or the like, In a method for manufacturing an optical fiber bundle, the glass tube is heated to have a narrow diameter, and then the glass tube is melted with acid or the like to manufacture an optical fiber bundle.A large number of optical rods are filled in the glass tube. Before doing so, first, measure 60
The above-mentioned optical rods are placed in an alignment guide means whose inner surface is formed into a polygonal shape having a plurality of sides forming an angle of 120 degrees, and the optical rods are arranged in a stack, and in this aligned state, the optical rods are It is characterized in that the rod is moved into the glass tube and filled.

[作用] 俵積み状の整列には、互いの挟角が60度及び120度
となる3木の基準線がある。したがって、基準となる一
辺に対して60度又は120度の角度の複数の辺を有す
る整列案内手段に光学ロッドを入れると、光学ロウドは
それらの辺を基準として極めて容易に俵積み状に整列さ
れる。そして、整列案内手段内で俵積み状に整列された
光学口7ドをそのままの整列状態でガラス管内に移せば
、光学ロッドはガラス管内において俵積み状に整列され
た状態で充填される。
[Function] In the bale stack arrangement, there are three reference lines whose included angles are 60 degrees and 120 degrees. Therefore, when the optical rods are placed in an alignment guide means having multiple sides at an angle of 60 degrees or 120 degrees with respect to one reference side, the optical rods can be very easily aligned in a stacked shape using those sides as a reference. Ru. Then, by transferring the optical ports 7 arranged in a bale-like manner within the alignment guide means into a glass tube in the same aligned state, the optical rods are filled in the glass tube in a state in which they are arranged in a bale-like manner.

整列案内手段の内面を正6角形状に形成すれば、すべて
の辺が60度又は120度となるので、光学ロッドは、
その6辺を基準として俵積み状に整列される。また、整
列案内手段の内面を、互いの挟角が60度又は120度
である3辺によって樋状に形成すれば光学ロッドはそれ
ら3辺を基準として俵積み状に整列される。
If the inner surface of the alignment guide means is formed into a regular hexagonal shape, all sides will be 60 degrees or 120 degrees, so the optical rod will be
They are arranged in a stacked bale shape using the six sides as a reference. Furthermore, if the inner surface of the alignment guide means is formed into a trough-like shape with three sides having an included angle of 60 degrees or 120 degrees, the optical rods can be aligned in a stacked manner with these three sides as a reference.

[実施例] 図面を参照して実施例を説明する。[Example] Examples will be described with reference to the drawings.

第1図において、1は、内面が正6角形に成形された例
えば直径10c+s程度の管状の整列案内手段であり、
その中に例えば直径0.5■程度の太さのそろった多数
の光学ロッド2を入れる。この光学ロッド2は、第2図
に示されるように、屈折率が高く透明度の高いガラス材
よりなるコア2aの外側を、屈折率の低いガラス材より
なるクララ12bで被覆し、さらにその外側を酸に溶解
される酸溶解ガラス2cで被覆したものである。
In FIG. 1, 1 is a tubular alignment guide means with a diameter of about 10c+s, the inner surface of which is formed into a regular hexagon;
A large number of optical rods 2 having uniform thicknesses, for example, about 0.5 square meters in diameter, are placed therein. As shown in FIG. 2, this optical rod 2 has a core 2a made of a glass material with a high refractive index and high transparency, the outer side of which is covered with a clara 12b made of a glass material with a low refractive index. It is coated with acid-soluble glass 2c that is dissolved in acid.

整列案内手段lの上端部には、スリット3が開口形成さ
れており、光学ロッド2をこのスリット3から整列案内
手段1内に入れることができる。
A slit 3 is formed at the upper end of the alignment guide means 1, and the optical rod 2 can be inserted into the alignment guide means 1 through the slit 3.

第3図は、光学ロッド2が一部だけ整列案内手段1内に
入れられた状態の断面図である。このように、整列案内
手段1内に数十木ないし数百本の光学ロー、ド2を入れ
て、全体に小さな震動をご〈短時間加える。すると、本
実施例の整列案内手段1は内面が正6角形であり、俵積
みの基準線と一致しているので、整列案内手段1内に入
れられた光学ロッド2は、ごく自然に俵積みの状態に整
列する。
FIG. 3 is a sectional view of the optical rod 2 partially inserted into the alignment guide means 1. In this way, several tens to hundreds of optical rods 2 are inserted into the alignment guide means 1, and small vibrations are applied to the whole for a short period of time. Then, since the inner surface of the alignment guide means 1 of this embodiment has a regular hexagonal shape and coincides with the reference line for bale stacking, the optical rod 2 inserted into the alignment guide means 1 naturally stacks bales. Align to the state of.

整列案内手段内に光学ロッド2をいっばいに充填したら
、第4図に示されるように、整列案内手段1と同程度の
直径の断面円形のガラス管4を整列案内手段1と直列に
並べる。このガラス管4は、酸により溶解する酸溶解ガ
ラス材で形成されている0次いで、押し出し治具5を整
列案内手段1の端部から挿入して、光学ロッド2をガラ
ス管4内に押し込む、すると、光学ロッド2は整列案内
手段lで俵積みに整列した状態を保ったままガラス管4
内に移動する。押し出し治具5は1例えば整列案内手段
1の内面形状に沿った形状の平板5aと押し棒5bとを
連結したものが用いられるが、作業の実情にあわせて種
々の形状のものを用いることができる。
Once the optical rods 2 are filled in the alignment guide means 1, a glass tube 4 having a circular cross section and a diameter comparable to that of the alignment guide means 1 is arranged in series with the alignment guide means 1, as shown in FIG. This glass tube 4 is made of an acid-dissolved glass material that dissolves in acid.Next, the extrusion jig 5 is inserted from the end of the alignment guide means 1, and the optical rod 2 is pushed into the glass tube 4. Then, the optical rod 2 is aligned with the glass tube 4 by the alignment guide means l while keeping it aligned in the bale stack.
move inside. The extrusion jig 5 is, for example, one in which a flat plate 5a shaped to match the inner surface shape of the alignment guide means 1 and a push rod 5b are connected, but various shapes can be used depending on the actual situation of the work. can.

ガラス管4内に光学ロッド2が俵積みに整列されて充填
された後の工程は公知である。したがって図示は省略す
るが、次には、これらを加熱して引張って直径を細く成
形し、必要な長さに切断した後に両端部以外を酸に浸し
て酸溶解ガラス材部を溶かし、全体をフレキシブルに形
成する。用途によっては酸溶解ガラス材部を溶かさず、
細い棒状のまま使用する場合もある。
The steps after the optical rods 2 are arranged in bales and filled into the glass tube 4 are well known. Therefore, although not shown in the drawings, the next step is to heat and stretch them to make them thinner in diameter, cut them to the required length, and then immerse all but the ends in acid to melt the acid-dissolved glass material, and then complete the entire structure. Form flexibly. Depending on the application, the acid-soluble glass material part may not be melted.
Sometimes it is used as a thin stick.

第5図は、本発明の第2の実施例を示しており、ガラス
管24の内径が、正6角形の整列案内手段21に内接す
る円になるようにしたものである。この場合には、押し
出し治具25の平板25aは、ガラス管24の内径より
僅かに小さい程度の円形形状とされる。このようにする
と、押し出し治具25の1回の押し出し操作で、ガラス
管24内に光学ロッド22を全くすき間なく俵積みに充
填することができる。22aは、押し出し操作の際に整
列案内手段1側に残留する光学ロッドである。
FIG. 5 shows a second embodiment of the present invention, in which the inner diameter of the glass tube 24 is a circle inscribed in the regular hexagonal alignment guide means 21. In this case, the flat plate 25a of the extrusion jig 25 has a circular shape slightly smaller than the inner diameter of the glass tube 24. In this way, by one extrusion operation of the extrusion jig 25, the optical rods 22 can be filled into the glass tube 24 in bales without any gaps. 22a is an optical rod that remains on the alignment guide means 1 side during the extrusion operation.

第6図は、本発明の第3の実施例の整列案内手段である
。この整列案内手段31は、断面が正6角形の6辺のう
ちの連続する3辺によって樋状に形成されている。この
場合には、例えば数百本ないし数千木程度のある程度ま
とまった量の光学ロッドを整列案内手段31上で俵積み
状に配列してガラス管内に押し込み、その後、同様にし
てガラス管内に光学ロッドを追加挿入する作業をくり返
して充填する。このように、本発明の整列案内手段は、
内面が必ずしも正6角形のすべての辺を含む必要はなく
、少なくとも3辺があれば充分に使用することができる
FIG. 6 shows an alignment guide means according to a third embodiment of the present invention. The alignment guide means 31 is formed into a gutter shape by three consecutive sides of six sides of a regular hexagon in cross section. In this case, a certain amount of optical rods, for example several hundred to several thousand rods, are arranged in a stack on the alignment guide means 31 and pushed into the glass tube, and then the optical rods are inserted into the glass tube in the same manner. Fill by repeating the process of inserting additional rods. In this way, the alignment guide means of the present invention
The inner surface does not necessarily have to include all sides of the regular hexagon, and at least three sides can be used sufficiently.

また、本発明の整列案内手段は、内面が必ずしも正6角
形でなくても、各辺が60度又は1201&の角度をな
す6角形であればよく、隣り合う各辺の長さが各々異な
っていてもさしつかえない、また、必ずしも6角形であ
る必要もなく、6の倍数の角数の多角形状であって、基
準となる一辺に対し−て60度又は120度の角度の5
つの辺を有する多角形であればよい、第7図は正12角
形の場合を示しており、整列案内手段61内に光学ロッ
ドを充填すると、光学ロッドは下辺62を基準として俵
積み状に整列すると共に、これと60度又は120度を
なす他の5辺63に沿った部分でも俵積み状に整列し、
これら6辺を基準として全体に俵積み状に整列される。
Furthermore, the inner surface of the alignment guide means of the present invention does not necessarily have to be a regular hexagon, but may be a hexagon in which each side forms an angle of 60 degrees or 1201°, and the lengths of adjacent sides are different. Also, it does not necessarily have to be a hexagon; it is a polygonal shape with angles that are a multiple of 6, and a 5-sided polygon with an angle of 60 degrees or 120 degrees with respect to one standard side.
Any polygon having two sides may be used. FIG. 7 shows a case of a regular dodecagon. When the optical rods are filled in the alignment guide means 61, the optical rods are aligned in a stacked shape with the lower side 62 as a reference. At the same time, the parts along the other five sides 63 that form 60 degrees or 120 degrees are also arranged in a stacked bale shape,
The whole is arranged in a stacked bale shape using these six sides as a reference.

さらに本発明の整列案内手段は、内面が3の倍数の多角
形であればよい、第8図は正三角形の場合を略示してい
る。光学ロッド82は実際より太く図示されている。こ
の場合には、正六角形と同様に、極めて容易に俵積み状
の整列を得ることができる。また、正9角形等のように
6の倍数でない3の倍数の多角形の場合には、基準とな
る一辺に対して60度又は120度の角度の2辺を有し
ておれば、それら3辺を基準として上記と同様の動作で
全体が俵積み状に整列される。
Further, the alignment guide means of the present invention may have an inner surface having a polygonal shape that is a multiple of 3, and FIG. 8 schematically shows a case where the inner surface is an equilateral triangle. The optical rod 82 is shown thicker than it actually is. In this case, as in the case of a regular hexagon, it is very easy to obtain a bale-like arrangement. In addition, in the case of a polygon that is a multiple of 3 and not a multiple of 6, such as a regular nonagon, if it has two sides that are at an angle of 60 degrees or 120 degrees with respect to the standard side, then those 3 The whole is arranged in a stacked bale shape using the sides as reference and the same operation as above.

[発明の効果] 本発明の光学繊維束の製造方法によれば、光学ロッドが
、整列案内手段内でその内面に沿って容易に俵積み状に
整列され、それをガラス管内に移動させることにより、
光学ロッドを、ガラス管内に極めて容易に俵積み状に整
列して充填することができる。
[Effects of the Invention] According to the method for manufacturing an optical fiber bundle of the present invention, the optical rods are easily aligned in a bale-like manner along the inner surface within the alignment guide means, and by moving the optical rods into a glass tube. ,
The optical rods can be packed in a glass tube very easily in an array in a bale-like manner.

したがって、配列の良い光学繊維束を短い作業時間で安
定して製造することができ、また、作業中にガラス片や
異物が混入する機会がなくなり、黒点や半黒点が減少す
る等、光学繊維束の品質が大幅に向上する優れた効果を
も有する。
Therefore, it is possible to stably manufacture well-aligned optical fiber bundles in a short working time, and there is no chance of glass fragments or foreign matter getting mixed in during the work, reducing sunspots and half-spots, etc. It also has the excellent effect of significantly improving the quality of.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の整列案内手段の斜視図
、第2図はその光学ロッドの断面図、第3図は整列案内
手段の正面断面図、第4図は第1の実施例の側面断面図
、第5図は本発明の第2の実施例の側面断面図、第6図
は本発明の第3の実施例の斜視図、第7図及び第8図は
、整列案内手段の内面を正12角形又は正3角形にした
場合の略示図、第9図は俵積みの状態を示す略示図、第
10図は従来の光学繊維束の製造方法を示す略示図であ
る。 1.21.31・・・整列案内手段、2,22・・・光
学ロッド、4.24・・・ガラス管、5.25・・・押
し出し治具。 代理人 弁理士  三 井 和 彦 第6図 第3図 第9図        第10図 5ノ
1 is a perspective view of the alignment guide means of the first embodiment of the present invention, FIG. 2 is a sectional view of the optical rod, FIG. 3 is a front sectional view of the alignment guide means, and FIG. 4 is the first embodiment of the alignment guide means. FIG. 5 is a side sectional view of the second embodiment of the invention; FIG. 6 is a perspective view of the third embodiment of the invention; FIGS. 7 and 8 are aligned A schematic diagram showing a case where the inner surface of the guide means is a regular dodecagon or a regular triangle; FIG. 9 is a schematic diagram showing a state of bale stacking; FIG. 10 is a schematic diagram showing a conventional manufacturing method of an optical fiber bundle. It is a diagram. 1.21.31... Alignment guide means, 2, 22... Optical rod, 4.24... Glass tube, 5.25... Extrusion jig. Agent Patent Attorney Kazuhiko Mitsui Figure 6 Figure 3 Figure 9 Figure 10 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)酸等により溶解するガラス管内に多数の光学ロッ
ドを整列して充填した後に、それらを加熱して直径を細
く成形し、その後で、酸等によりガラス管を溶解して光
学繊維束を製造するようにした光学繊維束の製造方法に
おいて、上記ガラス管内に多数の光学ロッドを充填する
に先だって、まず、基準となる一辺に対して60度又は
120度の角度をなす複数の辺を有する多角形状に内面
が形成された整列案内手段内に上記光学ロッドを入れて
、これら光学ロッドを俵積みに整列し、この整列された
状態で光学ロッドを上記ガラス管内に移して充填するよ
うにしたことを特徴とする光学繊維束の製造方法。
(1) After arranging and filling a large number of optical rods into a glass tube that can be melted with acid, etc., they are heated to form a thinner diameter, and then the glass tube is melted with acid, etc. to form an optical fiber bundle. In the method for manufacturing an optical fiber bundle, before filling a large number of optical rods into the glass tube, first, the glass tube has a plurality of sides forming an angle of 60 degrees or 120 degrees with respect to one side serving as a reference. The optical rods are placed in an alignment guide means whose inner surface is formed into a polygonal shape, and the optical rods are arranged in a stacked manner, and in this aligned state, the optical rods are transferred into the glass tube and filled. A method for manufacturing an optical fiber bundle, characterized in that:
(2)上記整列案内手段の内面が、6の倍数の角数の多
角形状であって、基準となる一辺に対して60度又は1
20度の角度の5つの辺を有する請求項1記載の光学繊
維束の製造方法。
(2) The inner surface of the alignment guide means has a polygonal shape with an angle that is a multiple of 6, and is 60 degrees or 1
2. The method of manufacturing an optical fiber bundle according to claim 1, wherein the optical fiber bundle has five sides with an angle of 20 degrees.
(3)上記整列案内手段の内面が、正6角形状である請
求項2記載の光学繊維束の製造方法。
(3) The method for manufacturing an optical fiber bundle according to claim 2, wherein the inner surface of the alignment guide means has a regular hexagonal shape.
(4)上記整列案内手段の内面が、互いの挟角が60度
又は120度である3辺によって樋状に形成されている
請求項1記載の光学繊維束の製造方法。
(4) The method for manufacturing an optical fiber bundle according to claim 1, wherein the inner surface of the alignment guide means is formed into a trough-like shape with three sides having an included angle of 60 degrees or 120 degrees.
JP63043513A 1988-02-26 1988-02-26 Production of optical-fiber bundle Pending JPH01219033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63043513A JPH01219033A (en) 1988-02-26 1988-02-26 Production of optical-fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63043513A JPH01219033A (en) 1988-02-26 1988-02-26 Production of optical-fiber bundle

Publications (1)

Publication Number Publication Date
JPH01219033A true JPH01219033A (en) 1989-09-01

Family

ID=12665815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63043513A Pending JPH01219033A (en) 1988-02-26 1988-02-26 Production of optical-fiber bundle

Country Status (1)

Country Link
JP (1) JPH01219033A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041037A3 (en) * 2000-11-16 2003-05-01 Schott Glas Method for transferring a large number of fiber ends into a specified position
EP1616844A1 (en) * 2003-02-12 2006-01-18 Mitsubishi Cable Industries, Ltd. Method of producing photonic crystal fiber
JP2022170743A (en) * 2016-11-03 2022-11-10 チラル フォトニクス, インコーポレイテッド Multichannel optical coupler array

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979204A (en) * 1982-10-29 1984-05-08 Showa Electric Wire & Cable Co Ltd Manufacture of base material for optical transmission
JPS5979205A (en) * 1982-10-29 1984-05-08 Showa Electric Wire & Cable Co Ltd Method and device for manufacturing base material for optical transmission
JPS6131326A (en) * 1984-07-23 1986-02-13 Sumitomo Electric Ind Ltd Apparatus for producing base material for bundled fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979204A (en) * 1982-10-29 1984-05-08 Showa Electric Wire & Cable Co Ltd Manufacture of base material for optical transmission
JPS5979205A (en) * 1982-10-29 1984-05-08 Showa Electric Wire & Cable Co Ltd Method and device for manufacturing base material for optical transmission
JPS6131326A (en) * 1984-07-23 1986-02-13 Sumitomo Electric Ind Ltd Apparatus for producing base material for bundled fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041037A3 (en) * 2000-11-16 2003-05-01 Schott Glas Method for transferring a large number of fiber ends into a specified position
EP1616844A1 (en) * 2003-02-12 2006-01-18 Mitsubishi Cable Industries, Ltd. Method of producing photonic crystal fiber
EP1616844A4 (en) * 2003-02-12 2006-02-08 Mitsubishi Cable Ind Ltd Method of producing photonic crystal fiber
US7841213B2 (en) 2003-02-12 2010-11-30 Mitsubishi Cable Industries, Ltd. Method of manufacturing photonic crystal fiber using structure-indicating rods or capillaries
JP2022170743A (en) * 2016-11-03 2022-11-10 チラル フォトニクス, インコーポレイテッド Multichannel optical coupler array

Similar Documents

Publication Publication Date Title
US3933556A (en) Fiber optic image shape converter and method of making the same
US4026693A (en) Method for producing an image dissector
DE69022568T2 (en) Fiber optic 1xN coupler and manufacturing process.
US3653739A (en) Leachable bundle of optical fibers
DE3035089C2 (en)
WO2004057394A1 (en) Photonic bandgap optical waveguide
WO2020195739A1 (en) Multicore fiber preform manufacturing method, multicore fiber preform, and multicore fiber
US3607560A (en) Apparatus for making monofilament fiber optic ribbons for coherent fiberscopes
JPH01219033A (en) Production of optical-fiber bundle
US3193363A (en) Light-conducting devices and apparatus for making the same
DE69025737T2 (en) Process for the production of 1xN couplers for optical fibers
DE68924807T2 (en) Process for the reproducible production of optical couplers.
AU742142B2 (en) 1xN fiber optic coupler/splitter
JPH0310580B2 (en)
CN116002965B (en) Wire arranging die, device and method for preparing quartz image-transmitting optical fiber bundle
JP2519699B2 (en) Optical fiber bundle manufacturing method
JPS6114489B2 (en)
JPS6128907A (en) Optical demultiplexer and its manufacture
JP3841849B2 (en) Method for producing radiation-resistant tape-type multi-core fiber
JPS60233604A (en) Method for arranging optical fiber into jacket pipe
GB2251954A (en) Fiber assembly where each fibre is in peak-to-valley relation
CN115047566A (en) Method for preparing space division multiplexing/demultiplexing device for multi-core optical fiber
JPS5952204A (en) Manufacture of image fiber base material
EP2744759A2 (en) Method for producing a preform, and preform for drawing a microstructured optical fiber
JP2000066053A (en) Polarization maintaining type optical fiber assemblage and its production