JPH0121879B2 - - Google Patents

Info

Publication number
JPH0121879B2
JPH0121879B2 JP60018694A JP1869485A JPH0121879B2 JP H0121879 B2 JPH0121879 B2 JP H0121879B2 JP 60018694 A JP60018694 A JP 60018694A JP 1869485 A JP1869485 A JP 1869485A JP H0121879 B2 JPH0121879 B2 JP H0121879B2
Authority
JP
Japan
Prior art keywords
wear
plating
composite
silicon nitride
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60018694A
Other languages
Japanese (ja)
Other versions
JPS61179899A (en
Inventor
Mitsuharu Iwaizumi
Yoshio Harakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP1869485A priority Critical patent/JPS61179899A/en
Publication of JPS61179899A publication Critical patent/JPS61179899A/en
Publication of JPH0121879B2 publication Critical patent/JPH0121879B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、耐摩耗、耐焼付性に優れた摺動部
材、特に内燃機関のピストンリング、シリンダ或
いはロータリーポンプ、ロータリーコンプレツサ
ー等のベーン材に好適な耐摩耗、耐焼付性に優れ
た皮膜である複合ニツケル−燐合金めつきに関す
る。 〔従来の技術〕 従来、耐摩耗、耐焼付性を要求される部材、例
えば、内燃機関のピストンリング、シリンダ等の
摺動部材は耐摩耗、耐焼付性付与として、硬質ク
ロムめつき、溶射等の表面処理が使用されてい
る。 しかしながら、ピストンリングを例にとると、
硬質クロムめつきはエンジンの高速、高出力化に
伴う摺動条件の悪化に対応しきれなくなりつつあ
り、溶射は自身の耐摩耗、耐焼付性には優れたも
のを有しているが、相手シリンダ摩耗が多くなる
傾向にあり、充分普及するに至つていない。 また、最近、高鉛ガソリン使用対策として、硬
質クロムめつき、溶射以外の表面処理として、窒
化ケイ素を分散させた複合ニツケル−燐合金めつ
きが提案されている(特開昭59−96295号公報)。 しかし、窒化ケイ素を分散させた複合ニツケル
−燐合金の場合、相手材摩耗の低減および耐焼付
性については改善効果があるが、自身の耐摩耗性
についての問題が解消し切つてはいない。 〔発明が解決しようとする問題点〕 かかる状況の中で、自分自身の耐摩耗性、耐焼
付性に優れると共に、相手材摩耗も低減できる表
面処理技術の確立が望まれている。 本発明は、上記の要望に答える為に、自身の耐
摩耗、耐焼付性に優れるばかりでなく、相手材の
摩耗も低減させるべくなされたものである。 〔問題点を解決するための手段〕 ニツケル−燐合金めつき層中に粒径5μm以上
10μm以下の窒化ケイ素と粒径1μm以上3μm以下
の炭化チタンを、該窒化ケイ素と該炭化チタンの
複合比率が体積比で20:80〜80:20で、該窒化ケ
イ素と該炭化チタンの合計が上記ニツケル−燐合
金めつき層に対して5〜30Vol%で分散析出され
てなることを特徴とするものであり、それにより
自身の耐摩耗、耐焼付性を前記先提案の窒化ケイ
素単独分散析出の場合と同等以上にすると共に、
相手材摩耗を大巾に低減することができる。 本発明において、ニツケル−燐合金めつき層
(以下、Ni−Pめつき)中に窒化ケイ素と炭化チ
タンを分散析出させる理由は次の通りである。即
ち、第1図に概略を示す往復動摩擦試験機による
摩耗試験結果(第3図)に見られるように、Ni
−Pめつき中に分散させる複合材としてSiC、
TiC、Si3N4、Cr3C2の硬質粒子を候補に上げ摩耗
試験を実施した(以下、実験1という)結果、シ
リンダ相当のねずみ鋳鉄(FC25)相手の場合、
上記硬質粒子の単独をNi−Pめつき中に分散さ
せたのでは自身の耐摩耗性に優れるものは相手摩
耗が多く、相手摩耗の少いものは自身の耐摩耗性
に劣るという傾向を示し、双方を満足させ得るも
のが得られない。これに対し、自身の耐摩耗性に
優れたもの、相手摩耗の少いものとの組合せで複
合させたものは、双方の弱点を補い合う傾向を示
す。特にSi3N4とTiCの組み合せは、夫々単独に
Ni−Pめつき中に分散させた場合より、自身の
摩耗、相手摩耗共に減少し、著しい相乗効果を得
ることができる。従つて、本発明では、窒化ケイ
素と炭化チタンとを分散析出させることとしたの
である。 尚、第1図中、1はピン(上試片)、2は平板
(下試片((相手材)))、3は油圧シリンダー、4は
ロードセル、5は駆動源、矢印αは摺動方向を示
す。摩耗量の評価は、第2図Aに示すピン(上試
片)1の摩耗痕を矢印β方向に走らせたアラサ計
による段差aを2ケ所測定し、その平均値で表示
し、第2図Bに示す平板(下試片((相手材)))2
については矢印γ方向に走らせたアラサ計による
段差を3ケ所測定し、その平均値で示した。 また実験1のテスト条件は次の通りである。 1 テスト供試試料 下試片(相手材)(第1図中の2) FC25(JIS G5501(1976)ねずみ鋳鉄): 硬さ HRB96 70L×17w×7t(mm)の平板試験面をバフ研摩。 表面粗さ:0.4μm 上試片(第1図中の1) 母材:SK5(JIS G4401(1972)炭素工具鋼鋼
材)硬さ HRB98 形状:8〓×23L(mm)の端面を18Rの球面加工 めつき:端面に硬質粒子を分散させてNi−
Pめつきを0.18mm厚さでつけて、18Rの球
面仕上をした。 その時のめつき条件は次の通り。 浴組成: スルフアミン酸ニツケル: 400g/ ホ ウ 酸 : 60g/ 次亜燐酸ナトリウム : 2g/ ピツト防止剤(ラウリル硫酸ナトリウム):
2ml/ 浴温:53℃ 浴PH:4.0 電流密度:6A/dm2、時間:3.5Hr 複合材(微粒子):80g/、SiC、TiC、
Si3N4、Cr3C2、SiC+Si3N4(50:50)、SiC
+Cr3C2(50:50)、TiC+Si3N4(50:50)、
TiC+Cr3C2(50:50)
[Industrial Application Field] The present invention provides a sliding member with excellent wear resistance and seizure resistance, particularly a wear resistant material suitable for vane materials such as piston rings and cylinders of internal combustion engines, rotary pumps, and rotary compressors. This invention relates to composite nickel-phosphorus alloy plating, which is a coating with excellent seizure resistance. [Prior Art] Conventionally, parts that require wear resistance and seizure resistance, such as sliding members such as piston rings and cylinders of internal combustion engines, have been treated with hard chrome plating, thermal spraying, etc. to impart wear and seizure resistance. surface treatments are used. However, if we take piston rings as an example,
Hard chrome plating is becoming unable to cope with the deterioration of sliding conditions due to higher speeds and higher output engines, and thermal spraying has its own excellent wear and seizure resistance, but Cylinder wear tends to increase, so it has not become widely used. In addition, recently, as a countermeasure against the use of high-lead gasoline, composite nickel-phosphorus alloy plating with silicon nitride dispersed has been proposed as a surface treatment other than hard chrome plating and thermal spraying (Japanese Patent Laid-Open Publication No. 59-96295). ). However, in the case of a composite nickel-phosphorus alloy in which silicon nitride is dispersed, although it has the effect of reducing the wear of the mating material and improving the seizure resistance, the problem of its own wear resistance has not been completely resolved. [Problems to be Solved by the Invention] Under these circumstances, it is desired to establish a surface treatment technology that can improve its own wear resistance and seizure resistance and also reduce wear on the mating material. In order to meet the above-mentioned needs, the present invention has been made in order to not only improve the wear resistance and seizure resistance of the material itself, but also reduce the wear of the mating material. [Means to solve the problem] Particle size of 5 μm or more in the nickel-phosphorus alloy plating layer
Silicon nitride with a particle size of 1 μm or more and titanium carbide with a particle size of 1 μm or more and 3 μm or less is combined in a volume ratio of 20:80 to 80:20, and the total of the silicon nitride and the titanium carbide is 20:80 to 80:20 by volume. It is characterized by being dispersed and precipitated at 5 to 30 Vol% with respect to the above-mentioned nickel-phosphorus alloy plating layer, thereby improving its own wear resistance and seizure resistance compared to the previously proposed silicon nitride alone dispersed precipitation. In addition to making it equal to or better than the case of
Abrasion of the mating material can be greatly reduced. In the present invention, the reason why silicon nitride and titanium carbide are dispersed and precipitated in the nickel-phosphorus alloy plating layer (hereinafter referred to as Ni-P plating) is as follows. That is, as shown in the wear test results (Fig. 3) using a reciprocating friction tester shown schematically in Fig. 1, Ni
-SiC as a composite material to be dispersed during P plating,
As a result of conducting wear tests using hard particles of TiC, Si 3 N 4 , and Cr 3 C 2 as candidates (hereinafter referred to as Experiment 1), the results showed that in the case of a gray cast iron (FC25) counterpart equivalent to a cylinder,
When the above-mentioned hard particles were dispersed alone in Ni-P plating, there was a tendency that those with excellent wear resistance on their own would have more wear on the other side, and those with less wear on the other side would have poorer wear resistance on their own. , it is not possible to obtain something that can satisfy both parties. On the other hand, when a material is combined with a material that has excellent wear resistance and a material that has low wear resistance, the weak points of both materials tend to be compensated for. In particular, the combination of Si 3 N 4 and TiC is
Compared to when dispersed during Ni-P plating, both wear on itself and wear on the other party are reduced, and a remarkable synergistic effect can be obtained. Therefore, in the present invention, silicon nitride and titanium carbide are dispersed and precipitated. In Figure 1, 1 is the pin (upper specimen), 2 is the flat plate (lower specimen ((mate material))), 3 is the hydraulic cylinder, 4 is the load cell, 5 is the drive source, and arrow α is the sliding Show direction. To evaluate the amount of wear, the wear mark of the pin (upper specimen) 1 shown in Figure 2A is measured at two locations using a roughness meter running in the direction of arrow β, and the average value is displayed. Flat plate shown in B (lower specimen ((opposite material))) 2
For this, the height difference was measured at three locations using a roughness gauge running in the direction of the arrow γ, and the average value is shown. The test conditions for Experiment 1 are as follows. 1 Test specimen Lower specimen (counterpart material) (2 in Figure 1) FC25 (JIS G5501 (1976) gray cast iron): Hardness HRB96 70 L × 17 w × 7 t (mm) flat plate test surface Buffing. Surface roughness: 0.4μm Upper specimen (1 in Figure 1) Base material: SK5 (JIS G4401 (1972) carbon tool steel) Hardness HRB98 Shape: 8〓× 23L (mm) end face with 18R Spherical processing Plating: Hard particles are dispersed on the end surface to coat Ni-
P-plating was applied to a thickness of 0.18mm, giving it a 18R spherical finish. The plating conditions at that time were as follows. Bath composition: Nickel sulfamate: 400g/Boric acid: 60g/Sodium hypophosphite: 2g/Pitt inhibitor (sodium lauryl sulfate):
2ml/ Bath temperature: 53℃ Bath PH: 4.0 Current density: 6A/dm 2 , time: 3.5Hr Composite material (fine particles): 80g/, SiC, TiC,
Si 3 N 4 , Cr 3 C 2 , SiC + Si 3 N 4 (50:50), SiC
+Cr 3 C 2 (50:50), TiC + Si 3 N 4 (50:50),
TiC+ Cr3C2 ( 50:50 )

【表】【table】

【表】 注1. マイクロビツカース硬度計のピラミツド圧
子の荷重
2 摩耗試験条件 ならし:2Kgf×100cm/min(以下、cpmと略
す)×30分 テスト:10Kgf×600cpm×30分 潤滑油:SAE10W相当、0.2c.c./分ミスト状吹
き付け また、Ni−Pめつき中のPの析出量と硬さ
(平均値)の関係を第4図に示し、硬さを変えて
往復動摩耗試験(以下、実験2という)した結果
を第5図に示す。摩耗試験片の形状仕上は実験1
と同じである。 更に、窒化ケイ素と炭化チタンの合計複合率を
Ni−Pめつきに対して5〜30vol%にした理由
は、第6図に示した往復動摩擦試験(以下、実験
3という)結果で明らかなように、5vol%未満だ
と自身の摩耗が充分でなく、30vol%を越えると
めつき皮膜が硬くもろくなり、硬質粒子の脱落が
起こり、相手摩耗を促進させるだけでなく、自身
の摩耗も多くなつてくる為である。尚、自身及び
相手摩耗を考慮すると10〜20vol%の範囲がより
望ましい。 該Ni−Pめつき中のP含有量が1〜8wt%であ
り、硬化熱処理が施された該めつきのマイクロビ
ツカース硬さ800以上であることを好ましい実施
態様とした理由は、自身の摩耗量と硬さとの関
係をみると、第5図から明らかなようにHmv800
以上で著しく摩耗量が減少し、Hmv800以上を
確保するためには第4図から明らかなように、
1wt%以上のPの析出が必要だからであり、ま
たPが8wt%を越えるとNi−P合金めつき皮膜の
硬度は高くなるが、脆くなるので、耐摩耗性被覆
層には適さないからである。なお、硬度の上限と
しては、P含有量8wt%のめつき層に硬化熱処理
を施して、Hmv1100程度を得ることができる。 上記のNi−P合金めつきの硬化熱処理条件は、
300〜450℃×1〜2Hr、好ましくは300〜450℃×
1〜2Hrであり、300℃以下×1Hr以下の条件で
はNiとPの合金化が不完全であり、450℃以上×
2Hr以上では過時効となり硬度が低下する。 上記の実施2,3に供した試料は、相手材、そ
の形状、仕上、ピン(上試片)の母材、形状、仕
上、めつき条件とも実験1と同じである。摩耗試
験条件も実験1と同じである。
[Table] Note 1. Load 2 of the pyramid indenter of the Micro-Vickers hardness tester Wear test conditions Breaking in: 2Kgf x 100cm/min (hereinafter abbreviated as cpm) x 30 minutes Test: 10Kgf x 600cpm x 30 minutes Lubricating oil: SAE10W equivalent, 0.2cc/min Mist spraying Figure 4 shows the relationship between the amount of P precipitation during Ni-P plating and the hardness (average value), and the results of a reciprocating wear test (hereinafter referred to as Experiment 2) with varying hardness. is shown in Figure 5. The shape and finish of the wear test piece was determined in Experiment 1.
is the same as Furthermore, the total composite ratio of silicon nitride and titanium carbide is
The reason for setting the Ni-P plating to 5 to 30 vol% is that as shown in the reciprocating friction test (hereinafter referred to as Experiment 3) results shown in Figure 6, less than 5 vol% causes sufficient wear on the Ni-P plating. However, if it exceeds 30 vol%, the plating film becomes hard and brittle, causing hard particles to fall off, which not only accelerates the wear of the other but also increases the wear of itself. In addition, considering the wear of itself and the other party, a range of 10 to 20 vol% is more desirable. The reason why the P content in the Ni-P plating is 1 to 8 wt% and the micro-Vickers hardness of the plating that has been subjected to hardening heat treatment is 800 or more is that Looking at the relationship between quantity and hardness, as shown in Figure 5, Hmv800
As shown in Figure 4, in order to significantly reduce the amount of wear and secure Hmv800 or more, as shown in Figure 4,
This is because P precipitation of 1wt% or more is required, and if P exceeds 8wt%, the hardness of the Ni-P alloy plating film increases, but it becomes brittle, so it is not suitable as a wear-resistant coating layer. be. Note that the upper limit of hardness can be about Hmv1100 by subjecting a plating layer with a P content of 8 wt% to hardening heat treatment. The hardening heat treatment conditions for Ni-P alloy plating above are as follows:
300-450℃×1-2Hr, preferably 300-450℃×
1 to 2 hours, and under the conditions of 300℃ or less x 1 hour or less, the alloying of Ni and P is incomplete;
If it exceeds 2 hours, it will become over-aged and the hardness will decrease. The samples used in Examples 2 and 3 above were the same as those in Experiment 1 in terms of the mating material, its shape, finish, the base material of the pin (upper specimen), shape, finish, and plating conditions. The wear test conditions were also the same as in Experiment 1.

【表】【table】

【表】【table】

【表】 また、窒化ケイ素と炭化チタンの複合比率を体
積比で20:80〜80:20にすることを好ましい実施
態様とした理由は、第7図に示した往復動摩擦試
験(以下、実験4という)結果の如く、窒化ケイ
素の割合が20%未満になると相手材摩耗が急激に
増大し、80%を越えると自分自身の摩耗が増加し
てくる為である。なお、実験4に供した試料は相
手材、ピン母材、形状、仕上、めつき条件とも実
験1と同じであり、めつきの内容は表3に示すも
のと同じである。テスト条件は実験1と同じであ
る。 そして、窒化ケイ素の粒径を5μm以上10μm以
下、炭化チタンの粒径を1μm以上3μm以とした
理由は、次の通りである。 窒化ケイ素と炭化チタン(及び参考のため炭化
ケイ素)の粒径を種々変えて、Ni−Pめつきを
行い、往復動摩擦試験(以下、実験5という)を
実施した結果、第8図に示すように、窒化ケイ素
の粒径が10μmを越え、また炭化チタン(及び参
考のための炭化ケイ素)の粒径が3μmを越える
と、相手材の摩耗が急増する為である。自身の摩
耗及び相手材の摩耗の双方を考慮した場合、窒化
ケイ素の粒径は0.5〜10μm、炭化チタンの粒径は
1〜3μmの範囲とする必要がある(なお、参考
のための炭化ケイ素の粒径は最大1.0μm《分析値
の径0.3〜1.0μm》である)。実験5に供した試料
は、相手材、ピン母材、形状、仕上方法は実験1
と同じである。
[Table] In addition, the reason why the composite ratio of silicon nitride and titanium carbide is set to be 20:80 to 80:20 by volume is the reason why the reciprocating friction test shown in Fig. 7 (hereinafter referred to as Experiment 4 This is because when the proportion of silicon nitride is less than 20%, the wear of the other material increases rapidly, and when it exceeds 80%, the wear of the silicon nitride itself increases. The samples used in Experiment 4 were the same as those in Experiment 1 in terms of mating material, pin base material, shape, finish, and plating conditions, and the contents of the plating were the same as those shown in Table 3. The test conditions were the same as in Experiment 1. The reason why the particle size of silicon nitride is 5 μm or more and 10 μm or less and the particle size of titanium carbide is 1 μm or more and 3 μm or less is as follows. Ni-P plating was performed using various grain sizes of silicon nitride and titanium carbide (and silicon carbide for reference), and a reciprocating friction test (hereinafter referred to as Experiment 5) was performed, as shown in Figure 8. In addition, when the particle size of silicon nitride exceeds 10 μm and the particle size of titanium carbide (and silicon carbide for reference) exceeds 3 μm, wear of the mating material increases rapidly. When considering both its own wear and the wear of the other material, the particle size of silicon nitride should be in the range of 0.5 to 10 μm, and the particle size of titanium carbide should be in the range of 1 to 3 μm. The maximum particle size is 1.0 μm (analytical diameter 0.3 to 1.0 μm). The sample used in Experiment 5 had the same mating material, pin base material, shape, and finishing method as Experiment 1.
is the same as

〔実施例〕〔Example〕

以下、本発明の実施例について述べる。 第1図に示した往復動摩擦試験機の上試片1
(φ8×23L、SK−5、ピン)の端面を18Rの球面
に加工し、本発明によるNi−Pめつきを、0.2mm
厚さにつけた後、18Rの球面に研摩加工した。研
摩後のめつき厚さは0.15mmで、350℃×1hrの硬化
熱処理後の硬さは参考のためのSi3N4+SiCで
Hmv906、本発明のSi3N4+TiCでHmv896であ
つた。その時のめつき内容は次の通りである。 浴組成:スルフアミン酸ニツケル:400g/ ホウ酸:60g/ 次亜燐酸ナトリウム:2g/ ピツト防止剤(ラウリル硫酸ナトリウム):2
ml/ 浴温:53℃ 浴PH:4.0 電流密度:6A/dm2/、時間:3.5Hr 複合剤:Si3N4 40g/、SiC(参考例)40
g/ Si3N4 40g/、TiC(本発明例)40g/ 複合材として使用したSi3N4の最大粒径は1.5μ
m(平均粒径0.6μm)、TiC(及び参考のための
SiC)の最大粒径は1μm(平均粒径0.6μm)であ
り、めつき中へはほぼ体積比で50:50に入つてお
り、合計複合率は20vol%であつた。 比較材として、硬質クロムめつき及びプラズマ
溶射によるFe−C−Cr合金(JIS G2303相当材)
溶射をφ8×23Lのピンの端面につけ、18Rの球面加
工してテストに供した。なお、硬質クロムめつき
の硬さ(硬化熱処理は施していない)は
Hmv958、Fe−C−Cr溶射の硬さ(硬化熱処理
は施していない)はHmv786であつた。 以上の4種類のピンに対して、相手材として
FC25の鋳鉄材を、第1図に示した試験機の70L×
17W×7tm/mの平板(下試片)2に加工し、試
験面をバフ研摩して、往復動摩擦試験を実施した
結果を第9図に示す。試験条件は前述の実験1の
場合と同じである。なお、第9図中の参考材は
Si3N4+SiCを示している。 第9図から明らかなように、本発明によるめつ
きは、比較材の硬質クロムめつき及びFe−C−
Crのプラズマ溶射材に較べて、FC25の鋳鉄材を
相手にした場合、自身の摩耗は勿論、相手摩耗も
少なくなつている。 また本発明によるめつきは、自身も相手材も滑
らかな摩擦面を呈しており、摩擦材として優れた
特性を有していることがわかる。 また、第10図A,Bに、上記の本発明めつき
及び参考のためのめつきの100倍の顕微鏡写真を
示す。第10図Aは硬質粒子としてSi3N4+SiC
(参考例)を、第10図BはSi3N4+TiC(本発明
例)を、それぞれ用いた場合である。なお第10
図A,B中、11は母材(SK−5)、12はNi
−P層、13は複合Ni−Pめつき層である。Ni
−P層12は、複合めつきをする際に、液の撹拌
を行わずにめつきすることにより生成されるもの
であり、複合めつきを母材(SK−5)に直接行
うと密着不良を起すために、これを排除する目的
で生成される。 〔本発明の効果〕 以上のように、本発明の複合めつきは、従来の
単独複合材による複合めつきの場合に生じた自身
の摩耗が少い場合は相手摩耗が多く、相手摩耗が
少ない場合は自身の摩耗が多いという欠点を解消
し、単独添加によつて得られるものより自身の摩
耗、相手摩耗共少なくなるという相乗効果を奏す
ることができ、従つて本発明複合めつきを摺動部
材に適用すれば極めて有用な効果を発揮し、工業
的価値は大である。
Examples of the present invention will be described below. Upper specimen 1 of the reciprocating friction tester shown in Figure 1
(φ8×23 L , SK-5, pin) The end face was processed into an 18R spherical surface, and the Ni-P plating according to the present invention was applied by 0.2 mm.
After applying it to a certain thickness, it was polished to an 18R spherical surface. The plating thickness after polishing is 0.15 mm, and the hardness after hardening heat treatment at 350℃ x 1 hr is Si 3 N 4 + SiC for reference.
Hmv906 and Hmv896 were Si 3 N 4 +TiC of the present invention. The details of the plating at that time are as follows. Bath composition: Nickel sulfamate: 400g/Boric acid: 60g/Sodium hypophosphite: 2g/Pitt inhibitor (sodium lauryl sulfate): 2
ml/ Bath temperature: 53℃ Bath PH: 4.0 Current density: 6A/dm 2 /, time: 3.5Hr Composite agent: Si 3 N 4 40g/, SiC (reference example) 40
g/ Si 3 N 4 40 g/, TiC (example of the present invention) 40 g/ The maximum particle size of Si 3 N 4 used as a composite material is 1.5μ
m (average particle size 0.6 μm), TiC (and for reference
The maximum particle size of SiC) was 1 μm (average particle size 0.6 μm), and the volume ratio was approximately 50:50 during plating, and the total composite ratio was 20 vol%. As a comparison material, Fe-C-Cr alloy (JIS G2303 equivalent material) made by hard chrome plating and plasma spraying.
Thermal spray was applied to the end face of a φ8×23 L pin, which was machined into a 18 R spherical surface and used for testing. The hardness of hard chrome plating (no hardening heat treatment applied) is
The hardness of the Fe-C-Cr thermal spraying (no hardening heat treatment was applied) was Hmv958 and Hmv786. As a mating material for the above four types of pins,
FC25 cast iron material was tested using the test machine shown in Figure 1 at 70 L ×
It was processed into a flat plate (lower specimen) 2 of 17 W × 7 t m/m, the test surface was buffed, and a reciprocating friction test was performed. The results are shown in FIG. The test conditions were the same as in Experiment 1 above. In addition, the reference materials in Figure 9 are
It shows Si 3 N 4 +SiC. As is clear from FIG. 9, the plating according to the present invention is different from the hard chrome plating of the comparative material and the Fe-C-
Compared to plasma-sprayed Cr material, when using FC25 cast iron material, not only the wear of the material itself but also the wear of the other material is less. Furthermore, it can be seen that the plating according to the present invention has smooth friction surfaces on both itself and the mating material, and has excellent properties as a friction material. Further, FIGS. 10A and 10B show micrographs of the above-mentioned plating according to the present invention and plating for reference at a magnification of 100 times. Figure 10A shows Si 3 N 4 +SiC as hard particles.
(Reference example) and FIG. 10B shows the case where Si 3 N 4 +TiC (Example of the present invention) were used, respectively. Furthermore, the 10th
In Figures A and B, 11 is the base material (SK-5), 12 is Ni
-P layer 13 is a composite Ni-P plating layer. Ni
-P layer 12 is generated by plating without stirring the liquid during composite plating, and if composite plating is performed directly on the base material (SK-5), poor adhesion will occur. It is created for the purpose of eliminating this. [Effects of the present invention] As described above, in the composite plating of the present invention, when there is little wear on the plate itself, there is a lot of wear on the other side, and when there is little wear on the other side, there is a large amount of wear on the other side. The composite plating of the present invention can eliminate the disadvantage of a large amount of wear on the sliding member and produce a synergistic effect of reducing both the wear and the wear of the other party compared to those obtained by adding it alone. When applied, it exhibits extremely useful effects and has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の摩耗試験に使用した公知の往
復動摩擦試験機の概要図、第2図は摩耗量の評価
方法を示す図、第3図はNi−Pめつき中への各
種複合材を添加した場合の耐摩耗性を見る為に実
施した摩耗試験結果を示すグラフ、第4図はNi
−Pめつき層中のP含有量の変化に伴うめつき層
の硬さを示すグラフ、第5図はめつき層の硬さを
変えてテストした摩耗試験結果を示すグラフ、第
6図はSi3N4+SiC、Si3N4+TiCの複合比率を変
えてテストした摩耗試験結果を示すグラフ、第7
図はSi3N4とTiC(及び参考のためのSiC)の夫々
の配合比率を変えてテストした摩耗試験結果を示
すグラフ、第8図はSi3N4とTiC(及び参考のため
のSiC)の粒径と摩耗量の関係を示す摩耗試験結
果のグラフ、第9図は本発明及び参考例による複
合めつきと、従来の硬質クロムめつきとプラズマ
溶射材との比較摩耗試験結果を示すグラフ、第1
0図A,Bは参考例及び本発明例による複合めつ
きの金属組成を示す断面写真である。
Figure 1 is a schematic diagram of a known reciprocating friction tester used in the wear test of the present invention, Figure 2 is a diagram showing the method for evaluating the amount of wear, and Figure 3 is a diagram showing various composite materials during Ni-P plating. Figure 4 is a graph showing the results of a wear test conducted to check the wear resistance when Ni was added.
- A graph showing the hardness of the plating layer with changes in the P content in the P plating layer, Fig. 5 is a graph showing the results of wear tests conducted with varying hardness of the plating layer, Fig. 6 is Si Graph showing the results of wear tests with different composite ratios of 3 N 4 +SiC and Si 3 N 4 +TiC, No. 7
The figure is a graph showing the results of wear tests conducted by changing the blending ratios of Si 3 N 4 and TiC (and SiC for reference). ) is a graph of the wear test results showing the relationship between the particle size and the amount of wear. Figure 9 shows the comparative wear test results of the composite plating according to the present invention and the reference example, the conventional hard chrome plating, and the plasma sprayed material. Graph, 1st
Figures A and B are cross-sectional photographs showing the metal composition of composite plating according to the reference example and the example of the present invention.

Claims (1)

【特許請求の範囲】 1 ニツケル−燐合金めつき層中に粒径5μm以
上10μm以下の窒化ケイ素と粒径1μm以上3μm以
下の炭化チタンを、該窒化ケイ素と該炭化チタン
の複合比率が体積比で20:80〜80:20で、該窒化
ケイ素と該炭化チタンの合計が前記ニツケル−燐
合金めつき層に対して5〜30Vol%で分散析出さ
れてなることを特徴とする耐摩耗性に優れた複合
ニツケル−燐合金めつき。 2 複合ニツケル−燐合金めつき層中の燐含有量
が1〜8重量%であり、硬化熱処理が施された該
めつき層のマイクロビツカース硬さが800以上で
あることを特徴とする特許請求の範囲1項記載の
耐摩耗性に優れた複合ニツケル−燐合金めつき。
[Claims] 1. Silicon nitride with a grain size of 5 μm or more and 10 μm or less and titanium carbide with a grain size of 1 μm or more and 3 μm or less in a nickel-phosphorus alloy plating layer, such that the composite ratio of the silicon nitride and the titanium carbide is a volume ratio. 20:80 to 80:20, and the total of the silicon nitride and the titanium carbide is dispersed and precipitated at 5 to 30 Vol% on the nickel-phosphorus alloy plating layer. Excellent composite nickel-phosphorus alloy plating. 2. A patent characterized in that the phosphorus content in the composite nickel-phosphorus alloy plating layer is 1 to 8% by weight, and the plating layer that has been subjected to hardening heat treatment has a microvitkers hardness of 800 or more. A composite nickel-phosphorus alloy plating with excellent wear resistance as claimed in claim 1.
JP1869485A 1985-02-04 1985-02-04 Composite ni-p alloy plating excellent in wear resistance Granted JPS61179899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1869485A JPS61179899A (en) 1985-02-04 1985-02-04 Composite ni-p alloy plating excellent in wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1869485A JPS61179899A (en) 1985-02-04 1985-02-04 Composite ni-p alloy plating excellent in wear resistance

Publications (2)

Publication Number Publication Date
JPS61179899A JPS61179899A (en) 1986-08-12
JPH0121879B2 true JPH0121879B2 (en) 1989-04-24

Family

ID=11978730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1869485A Granted JPS61179899A (en) 1985-02-04 1985-02-04 Composite ni-p alloy plating excellent in wear resistance

Country Status (1)

Country Link
JP (1) JPS61179899A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822507B2 (en) * 1987-03-10 1996-03-06 三菱重工業株式会社 Electroplated whetstone
JPH049499A (en) * 1990-04-26 1992-01-14 Nkk Corp Plated metallic plate having superior exfoliation resistance and high hardness

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073839A (en) * 1973-11-01 1975-06-18
JPS5383938A (en) * 1976-12-29 1978-07-24 Suzuki Motor Co Complex alloy plating method
JPS5614859A (en) * 1979-07-13 1981-02-13 Hitachi Ltd Centrifugal type angle leading device for internal combustion engine switchboard
JPS5996295A (en) * 1982-11-26 1984-06-02 Riken Corp Wear resistant sliding parts
JPS60196465A (en) * 1984-03-15 1985-10-04 Riken Corp Piston ring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073839A (en) * 1973-11-01 1975-06-18
JPS5383938A (en) * 1976-12-29 1978-07-24 Suzuki Motor Co Complex alloy plating method
JPS5614859A (en) * 1979-07-13 1981-02-13 Hitachi Ltd Centrifugal type angle leading device for internal combustion engine switchboard
JPS5996295A (en) * 1982-11-26 1984-06-02 Riken Corp Wear resistant sliding parts
JPS60196465A (en) * 1984-03-15 1985-10-04 Riken Corp Piston ring

Also Published As

Publication number Publication date
JPS61179899A (en) 1986-08-12

Similar Documents

Publication Publication Date Title
JPH0583636B2 (en)
JPH11189860A (en) Sliding member
JPH044361A (en) Piston ring
US20140137831A1 (en) Cylinder Bore Coating System
JPS61177400A (en) Wear resistant sliding member
JPS5996295A (en) Wear resistant sliding parts
JPH0121879B2 (en)
JP2003013163A (en) Sliding member made from powder aluminum alloy, and combination of cylinder and piston ring
Gologan et al. Friction and wear of some engineering materials against hard chromium plating
JP4281368B2 (en) Abrasion resistant spray coating
JPS6210236A (en) Aluminum alloy cylinder
JPS59150080A (en) Sliding member
JPS58117896A (en) Sliding member
JPS6334239B2 (en)
Ye et al. Tribological behavior of advanced material pairs of piston-ring/cylinder-liner
JPH03186667A (en) Sliding member
JPH06235096A (en) Sliding member
JPS62218532A (en) Fiber reinforced metallic composite material for sliding
JPS6217162A (en) Sliding contact member
JPS6229749A (en) Structure of sliding section of internal combustion engine
JPH0379865A (en) Combination of piston ring and cylinder
JP2004176848A (en) Combination of amorphous hard carbon coated member and ferrous member
JPH03180491A (en) Sliding member
JPS6217168A (en) Sliding contact member having self-lubricity
JPH11287326A (en) Piston ring for aluminum cylinder