JPH01218681A - Pure water generator - Google Patents

Pure water generator

Info

Publication number
JPH01218681A
JPH01218681A JP4559188A JP4559188A JPH01218681A JP H01218681 A JPH01218681 A JP H01218681A JP 4559188 A JP4559188 A JP 4559188A JP 4559188 A JP4559188 A JP 4559188A JP H01218681 A JPH01218681 A JP H01218681A
Authority
JP
Japan
Prior art keywords
water
raw water
chamber
liquid chamber
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4559188A
Other languages
Japanese (ja)
Inventor
Akihiro Yasuda
安田 顕弘
Tamotsu Kodera
小寺 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Research and Development Co Ltd
Original Assignee
Takuma Research and Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Research and Development Co Ltd filed Critical Takuma Research and Development Co Ltd
Priority to JP4559188A priority Critical patent/JPH01218681A/en
Publication of JPH01218681A publication Critical patent/JPH01218681A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To produce pure water containing a small amount of oxygen efficiently, by providing a deaerator for removal of gases in raw water in a raw water feed line in a pure water generator by thermo pervaporation process. CONSTITUTION:Raw feed water (a) is fed to a deaerator 3 to be deaereted and cooled thereby and cools thereafter a steam chamber 1B through a heat transfer surface for cooling 5 and is heated at a beater 6 to be thereafter supplied to a liquid chamber 1A. As a result, a temperature difference is produced between the liquid chamber 1A and the steam chamber 1B, whereby a difference in partial pressure corresponding to said temperature difference causes the steam to be passed through a permeable membrane 4 from the liquid chamber 1A toward the steam chamber 1B so that the steam is condensed into pure water by cooing action of the heat transfer surface 5, while concentrated water (b) of high temperature is used as raw water (a). On the other hand, by the cooling effect caused by deaeretion at the deaerator 3, the raw water (a) having become high temperature by using the concentrated water (b) as raw water (a) can be cooled to a predetermined temperature, leading to an energy saving.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、両側の温度差に相当する水蒸気分圧差をもっ
て高温側から低温側に水蒸気のみを選択的に透過させる
多孔質又は非多孔質の透過膜を利用して純水を製造する
装置で、詳しくは、液室と蒸気室とに内部が仕切られた
分離器を設け、その分離器の液室に原水を供給するため
の給水路と、前記蒸気室内を液室内よりも低温に冷却す
る冷却手段とを設け、前記分離器のうち液室と蒸気室と
の仕切りに、前記の透過膜を設けてある、いわゆるサー
モパーベーパレーション法による純水製造装置に関する
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a porous or non-porous material that selectively transmits only water vapor from a high temperature side to a low temperature side with a water vapor partial pressure difference corresponding to the temperature difference between the two sides. A device that produces pure water using a permeable membrane. Specifically, it is equipped with a separator that is internally partitioned into a liquid chamber and a vapor chamber, and a water supply channel for supplying raw water to the liquid chamber of the separator. , a cooling means for cooling the vapor chamber to a temperature lower than that of the liquid chamber is provided, and the permeable membrane is provided as a partition between the liquid chamber and the vapor chamber in the separator, using a so-called thermopervaporation method. Regarding pure water production equipment.

〔従来の技術〕[Conventional technology]

従来のこの種の純水製造装置としては、第6図に示すよ
うに、分離器(1)内を、中央の液室(1A)とその両
側の蒸気室(1B)との3つに仕切り、それら仕切り夫
々を前述した透過膜(4)から構成したもの(例えば特
公昭49〜45461号公@)や、第7図に示すように
、分離器(1)内に複数の筒状透過膜(4)を設置し、
分離器(1)と筒状透過膜(4)との間を液質(1A)
に、筒状透過膜(4)内を蒸気室(1B)に夫々形成し
たもの(例えば特開昭60−118204号公報)が従
来より知られている。なお、(5)は、蒸気室(1B)
内を冷却するだめの伝熱面である。
As shown in Figure 6, in a conventional pure water production device of this type, the interior of the separator (1) is divided into three parts: a liquid chamber (1A) in the center and steam chambers (1B) on both sides. , each of these partitions may be composed of the above-mentioned permeable membranes (4) (for example, Japanese Patent Publication No. 49-45461@), or as shown in FIG. (4) installed,
Liquid (1A) is passed between the separator (1) and the cylindrical permeable membrane (4).
In addition, a device in which a steam chamber (1B) is formed inside the cylindrical permeable membrane (4) is conventionally known (for example, Japanese Patent Laid-Open No. 118204/1983). In addition, (5) is the steam room (1B)
It is a heat transfer surface that cools the inside.

・ 12発明が解決しようとする課題〕しかし、前記従
来装置によるときは、いずれの場合も、透過膜の面積を
大きくして蒸気透過量を増加しようとしたものであるが
、液質に供給される原水中の気体に対して何等、注意が
払われていなかった。
・12 Problems to be Solved by the Invention] However, when using the above-mentioned conventional devices, in each case, attempts were made to increase the amount of vapor permeation by increasing the area of the permeable membrane, but the amount of vapor permeation was increased. No attention was paid to the gases in the raw water.

ところが、純水製造装置では液室内の圧力を蒸気室内の
圧力よりも若干高くすることが通例であることから、原
水中の気体も蒸気とともにその液室と蒸気室との圧力差
を駆動力として液室から蒸気室側に向かって透過膜を透
過する。
However, in pure water production equipment, it is customary to make the pressure in the liquid chamber slightly higher than the pressure in the steam chamber, so the gas in the raw water and the steam are used as driving force by the pressure difference between the liquid chamber and the steam chamber. The liquid passes through the permeable membrane from the liquid chamber toward the vapor chamber.

そして、そのように原水中の気体が蒸気室内に侵入する
ことは次のような不都合を招来する。
Such intrusion of gas in the raw water into the steam chamber causes the following inconveniences.

つまり、第1に、液室側において気体の透過膜に付着す
ることにより、水蒸気の透過膜透過が妨げられて水蒸気
の透過量が低下する。しかし、だからといって液室と蒸
気室との差圧を大にして水蒸気の透過量を確保すること
は、加圧エネルギーの増大を招来し、省エネルギー面か
らみて好ましくない。
That is, firstly, by adhering to the gas permeable membrane on the liquid chamber side, the permeation of water vapor through the permeable membrane is hindered, and the amount of water vapor permeated is reduced. However, increasing the differential pressure between the liquid chamber and the steam chamber to ensure the amount of water vapor permeation increases pressurization energy, which is not preferable from an energy saving perspective.

第2に、この種の純水製造装置では、サーモパーヘーパ
レーション式故に冷却手段のうち蒸気室を冷却する伝熱
面と透過膜の面との間隔を大きくできないことから、透
過膜を透過して前記伝熱面と透過膜との間、つまり、蒸
気室内に侵入した気体をスムーズに排出することがむず
かしく、気体が伝熱面を覆うように滞留し易く、その結
果、伝熱面による水蒸気の冷却が阻害される。
Second, in this type of pure water production equipment, since it is a thermoparation type, it is not possible to increase the distance between the heat transfer surface of the cooling means that cools the steam chamber and the surface of the permeable membrane. Therefore, it is difficult to smoothly discharge the gas that has entered between the heat transfer surface and the permeable membrane, that is, into the steam chamber, and the gas tends to accumulate so as to cover the heat transfer surface. Cooling of water vapor is inhibited.

第3に、前記伝熱面での冷却で水蒸気が凝縮して生成さ
れた純水中に気体、つまり、酸素が含まれることになる
ため、純水が細菌の増殖を招来させ易いものとなる。
Thirdly, since the pure water produced by condensing water vapor during cooling on the heat transfer surface contains gas, that is, oxygen, the pure water becomes susceptible to the growth of bacteria. .

本発明の目的は、上述の原水中に含まれる気体に起因し
た不都合を解消して、酸素含有量の少ない純水を効率良
く製造できる純水製造装置を提供しようとする点にある
An object of the present invention is to provide a pure water production apparatus that can efficiently produce pure water with a low oxygen content by eliminating the above-mentioned disadvantages caused by gases contained in raw water.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による純水製造装置の特徴構成は、前記給水路に
、供給原水中の気体を除去するための脱気装置を設けて
ある点にあり、その作用・効果は次の通りである。
A feature of the pure water production apparatus according to the present invention is that the water supply channel is provided with a deaeration device for removing gas from the raw water to be supplied, and its functions and effects are as follows.

〔作 用〕[For production]

つまり、液室内には、気体含有量の少ない原水が供給さ
れることになるため、第1に、水蒸気が透過膜を液室側
から蒸気側に透過することに対する気体による阻害を抑
制して、液室と蒸気室との差圧を特別に大にすることな
く水蒸気の透過量を増大でき、第2に、自ずと透過膜を
透過して蒸気室内に侵入する気体の量が少なくなって冷
却手段の伝熱面による水蒸気の冷却を効率良く行わせる
ことができ、第3に、生成された純水の酸素含有量を少
なくできる。
In other words, since raw water with a low gas content is supplied into the liquid chamber, the first step is to suppress the gas from inhibiting water vapor from permeating through the permeable membrane from the liquid chamber side to the vapor side. The amount of water vapor that permeates can be increased without particularly increasing the differential pressure between the liquid chamber and the steam chamber, and secondly, the amount of gas that naturally passes through the permeable membrane and enters the steam chamber is reduced, which reduces the cooling means. The water vapor can be efficiently cooled by the heat transfer surface, and thirdly, the oxygen content of the produced pure water can be reduced.

〔発明の効果〕〔Effect of the invention〕

その結果、本発明は、酸素含有量が少なくて細菌の増殖
抑制効果の高い純水を効率良く、しかも、省エネルギー
、低コストの基で製造できるようになった。
As a result, the present invention has made it possible to efficiently produce pure water that has a low oxygen content and is highly effective in inhibiting bacterial growth, while saving energy and at low cost.

〔実施例〕〔Example〕

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

第1図に示すように、純水製造装置は、分離器(1)と
、給水路(2)と、冷却手段と、脱気装置(3)とを備
えている。
As shown in FIG. 1, the pure water production apparatus includes a separator (1), a water supply channel (2), a cooling means, and a deaerator (3).

前記分離器(1)は、液室(1A)と蒸気室(1B)と
に内部を仕切られており、仕切り(1a)は、両側の温
度差に相当する水蒸気分圧差をもって高温側から低温側
に水蒸気のみを選択的に透過させる多孔質の透過膜(4
)から形成されている。
The separator (1) is internally partitioned into a liquid chamber (1A) and a steam chamber (1B), and the partition (1a) is divided from the high temperature side to the low temperature side with a water vapor partial pressure difference corresponding to the temperature difference between the two sides. A porous permeable membrane (4) that selectively allows only water vapor to pass through the
) is formed from.

前記給水路(2)は、前記分離器(1)の液室(1A)
に原水(a)を供給するものであって、前記分離器(1
)内に前記蒸気室(1B)に隣接する状態で形成した冷
却用通路(2A)と、この冷却用通路(2A)に原水(
a)を供給する供給配管(2B)と、前記冷却用通路(
2A)から前記液室(1A)に原水(a)を導(中間配
管(2C)と、前記液室(1A)内での蒸発で濃縮され
た濃縮水(b)を原水(a)として前記供給配管(2B
)に返す濃縮水循環路(2D)と、水道水等の新規水(
c)を原水(a)として前記供給配管(2B)に供給す
る新規水供給路(2E)とからなる。つまり、この給水
路(2)では、濃縮水(b)と新規水(c)との混合水
が原水(a)として分離器(1)に供給するのであって
、新規水(c)の原水(a)としての使用量(Q2)は
、原水(a)の必要な供給量をQ、?1縮水(b)の量
をQlとすると、Q、=Q−Q、が基本である。換言す
ると、原水(a)が分離器(1)での濃縮(蒸発)で濃
縮水(b) となることで目減りした分量を補う形態で
新規水(c)を供給するのである。具体例を挙げると、
普通、濃縮水(b)が95に対して新規水(c)が5の
割合である。
The water supply channel (2) is connected to the liquid chamber (1A) of the separator (1).
The separator (1) supplies raw water (a) to the separator (1).
) and a cooling passage (2A) formed adjacent to the steam chamber (1B), and a cooling passage (2A) formed with raw water (
a) and a supply pipe (2B) that supplies the cooling passage (
2A) to the liquid chamber (1A) (through the intermediate pipe (2C) and the concentrated water (b) concentrated by evaporation in the liquid chamber (1A) as the raw water (a). Supply piping (2B
) and new water such as tap water (2D).
c) as raw water (a) and a new water supply path (2E) that supplies the water to the supply pipe (2B). In other words, in this water supply channel (2), mixed water of concentrated water (b) and new water (c) is supplied to the separator (1) as raw water (a), and the raw water for new water (c) is supplied to the separator (1) as raw water (a). The usage amount (Q2) as (a) is the required supply amount of raw water (a), Q,? 1. If the amount of condensed water (b) is Ql, the basic formula is Q, =Q-Q. In other words, new water (c) is supplied in a form to compensate for the amount lost when the raw water (a) becomes concentrated water (b) through concentration (evaporation) in the separator (1). To give a specific example,
Usually, the ratio is 95 parts concentrated water (b) to 5 parts fresh water (c).

前記冷却手段は、水蒸気が前記多孔質透過膜(4)を液
室(1A)側から蒸気室(1B)側に向かって透過する
ように前記蒸気室(1B)内を液室(1A)内よりも低
温に冷却して、その蒸気室(1B)内の水蒸気を凝縮す
るための手段であって、前記給水路(2)の冷却用通路
(2A)と蒸気室(1B)との仕切りをもって、供給原
水(a)で蒸気室(1B)内を冷却するための冷却用伝
熱面(5)を形成し、前記給水路(2)の中間配管(2
C)に供給原水(a)を加熱する加熱器(6)を介装し
て構成されている。前記加熱器(6)は、加熱流体(d
)との熱交換で原水(a)を加熱するものである。
The cooling means cools the inside of the vapor chamber (1B) into the liquid chamber (1A) so that water vapor permeates the porous permeable membrane (4) from the liquid chamber (1A) side toward the vapor chamber (1B) side. A means for condensing water vapor in the steam chamber (1B) by cooling it to a lower temperature than , forming a cooling heat transfer surface (5) for cooling the inside of the steam chamber (1B) with the supplied raw water (a), and forming an intermediate pipe (2) of the water supply channel (2).
A heater (6) for heating the supplied raw water (a) is interposed in the water supply system C). The heater (6) has a heating fluid (d
) The raw water (a) is heated by heat exchange with the water (a).

前記脱気装置(3)は、前記供給路(2)の供給配管(
2B)に介装されて、供給原水(a)中の気体を除去す
るものであって、具体的には、前記供給配管(2B)に
介装した脱気器(3A)と、冷却水(c)の噴出に伴っ
て前記脱気器(3八)から気体を吸引することでその脱
気器(3A)内を減圧するエゼクタ(3B)と、吸引気
体のうちの水蒸気を凝縮させる復水用のコンデンサ(3
C)とからなる。従って、この脱気装置(3)によれば
、脱気に加えて、原水(a)が冷却される。
The deaerator (3) includes a supply pipe (
2B) to remove gas in the feed raw water (a), specifically, a deaerator (3A) installed in the supply pipe (2B) and a cooling water ( an ejector (3B) that reduces the pressure inside the deaerator (3A) by suctioning gas from the deaerator (38) with the ejection of c); and a condenser that condenses water vapor in the suction gas. capacitor (3
C). Therefore, according to this deaerator (3), in addition to deaeration, the raw water (a) is cooled.

また、図中(7)は、蒸気室(1B)に接続させた・凝
縮水、つまり、純水取出路であり、(8)は、濃縮水の
一部をブロー水として排出する排水管である。
In addition, (7) in the figure is the condensed water, that is, pure water extraction path connected to the steam room (1B), and (8) is the drain pipe that discharges a part of the concentrated water as blow water. be.

従って、上記の構成によれば、供給原水(a)は、脱気
装置(3)に至り、この脱気装置(3)で脱気・冷却さ
れたのち、冷却用伝熱面(5)を介して蒸気室(1B)
を冷却し、加熱器(6)で加熱されたのち液室(1八)
に供給される。その結果、液室(1A)と蒸気室(1B
)との間に温度差が発生し、その温度差に相当する水蒸
気分圧差をもって、水蒸気が液室(1A)側から蒸気室
(1B)側に向かって透過膜(4)を通過し、冷却用伝
熱面(5)による冷却作用で凝縮し、純水が生成される
のである。
Therefore, according to the above configuration, the feed raw water (a) reaches the deaerator (3), is deaerated and cooled by the deaerator (3), and then passes through the cooling heat transfer surface (5). Steam room (1B) through
is cooled and heated by the heater (6), and then transferred to the liquid chamber (18).
is supplied to As a result, the liquid chamber (1A) and the vapor chamber (1B
), water vapor passes through the permeable membrane (4) from the liquid chamber (1A) side toward the vapor chamber (1B) side with a water vapor partial pressure difference corresponding to the temperature difference, and is cooled. The cooling effect of the heat transfer surface (5) causes condensation and pure water is produced.

そして、高温の濃縮水(b)を原水(a)として使用す
る一方、脱気装置(3)での脱気に付随する冷却作用に
より、濃縮水(b)を原水(a)として使用することで
高温となった原水(a)を所定の温度にまで冷却するた
め、省エネルギー化を図れる。
While the high temperature concentrated water (b) is used as raw water (a), the concentrated water (b) is used as raw water (a) due to the cooling effect accompanying degassing in the deaerator (3). Since the raw water (a), which has become high in temperature, is cooled down to a predetermined temperature, energy saving can be achieved.

つまり、純水を効率良く製造するにあたっては、液室(
1A)と蒸気室(1B)との温度差を十分に確保する必
要があるが、原水(a)の温度をむやみに低くすると、
加熱器(6)の負荷が大となって多大な加熱エネルギー
を要するようになる。
In other words, in order to efficiently produce pure water, the liquid chamber (
It is necessary to ensure a sufficient temperature difference between 1A) and the steam room (1B), but if the temperature of raw water (a) is lowered unnecessarily,
The load on the heater (6) becomes large and a large amount of heating energy is required.

その結果、純水の製造効率と省エネルギーとの2面から
考えると、冷却水として分離器(1)に供給する原水(
a)の温度は、設計によっても異なるが、40°程度と
なる場合があり、そのような場合、水道水等の新規水(
c)のみを原水(a)として供給するときは、その新規
水(c)を加熱する必要がある。ところが、上記実施例
においては、濃縮水(b)を原水(a)として使用する
ので、原水(a)を分離器(1)に供給する前に加熱す
る必要がなく、その分、省エネルギー化を図れるのであ
る。
As a result, from the viewpoint of pure water production efficiency and energy saving, the raw water (raw water) supplied to the separator (1) as cooling water (
The temperature in a) may vary depending on the design, but it may be around 40°, and in such cases, new water such as tap water (
When only c) is supplied as raw water (a), it is necessary to heat the new water (c). However, in the above embodiment, since the concentrated water (b) is used as the raw water (a), there is no need to heat the raw water (a) before supplying it to the separator (1), resulting in energy savings. It can be achieved.

しかも、定常運転状態となることで温度が安定化する濃
縮水(b)が原水(a)の大部分を占めるので、新規水
(c)の混入にかかわらず脱気装置(3)入口での原水
(a)の温度変化が少なく、脱気装置(3)の運転を容
易に行えながらも、分離器(1)入口での原水(a)の
温度のバラツキを抑制して、液室(1A)と蒸気室(1
B)との温度差を安定保持して、蒸気発生を安定良く行
わせ得る。
Moreover, since the concentrated water (b) whose temperature stabilizes when it is in a steady state of operation occupies most of the raw water (a), the temperature at the inlet of the deaerator (3) remains constant regardless of the mixing of fresh water (c). While the temperature change of the raw water (a) is small and the deaerator (3) can be operated easily, variations in the temperature of the raw water (a) at the inlet of the separator (1) are suppressed and the liquid chamber (1A ) and steam room (1
By stably maintaining the temperature difference with B), steam generation can be performed stably.

次に本発明者が行った実験を示す。Next, an experiment conducted by the present inventor will be described.

実験例1 実験は、第2図に示すように、サーモパーベ−パレーシ
ョン膜モジュールを分離器(1)とし、濃縮水(b)を
原水(a)に返さない構造で、水道水のみを原水(a)
とする純水製造装置を表1に示す条件下で運転し、純水
温度、濃縮水温度、純水生産量、純水型導度の各項目を
調べることで行った。結果は表2の通りである。なお、
サーモパーベーパレーション膜モジュールの仕様は、表
3の通りである。
Experimental Example 1 As shown in Fig. 2, the experiment was conducted using a thermopervaporation membrane module as the separator (1), with a structure in which concentrated water (b) is not returned to raw water (a), and only tap water is converted into raw water ( a)
The pure water production apparatus was operated under the conditions shown in Table 1, and the following items were examined: pure water temperature, concentrated water temperature, pure water production volume, and pure water type conductivity. The results are shown in Table 2. In addition,
The specifications of the thermopervaporation membrane module are shown in Table 3.

実験例2 実験は、第3図に示すように、前記実験例1の装置にお
いて、真空ポンプ(P)による真空脱気装置(3)を付
加した本発明適用の純水製造装置を表1に示す条件下で
運転し、前述した各項目を調べることで行った。結果は
表2の通りである。なお、真空脱気装置(3)の真空度
は、22TORRである。
Experimental Example 2 As shown in FIG. 3, the experiment was carried out using a pure water production apparatus according to the present invention, which was the same as the apparatus of Experimental Example 1, but added a vacuum degassing device (3) using a vacuum pump (P), as shown in Table 1. The test was conducted by operating the vehicle under the conditions shown and examining each of the items mentioned above. The results are shown in Table 2. Note that the degree of vacuum of the vacuum deaerator (3) is 22 TORR.

実験例3 実験は、第4図に示すように、実験例1の装置において
、濃縮水(b)を原水(a)に返すように改良した装置
を表1に示す条件下で運転し、前述した各項目を調べる
ことで行った。結果は表2の通りである。
Experimental Example 3 As shown in Fig. 4, an experiment was conducted in which the apparatus of Experimental Example 1 was modified to return concentrated water (b) to raw water (a), and was operated under the conditions shown in Table 1. This was done by examining each item. The results are shown in Table 2.

実験例4 実験は、第5図に示すように、実験例3の装置において
、真空ポンプ(P)と冷却器(10)とによる真空脱気
装置(3)を付加した本発明適用の純水製造装置を表1
に示す条件下で運転し、前述した各項目を調べることで
行った。結果は表2の通りである。
Experimental Example 4 As shown in Fig. 5, the experiment was conducted using the apparatus of Experimental Example 3 using pure water according to the present invention, which was equipped with a vacuum deaerator (3) comprising a vacuum pump (P) and a cooler (10). Table 1 shows the manufacturing equipment.
The tests were carried out by operating the vehicle under the conditions shown below and examining each of the items mentioned above. The results are shown in Table 2.

表   1 表   2 2〜2.4 1.82 表   3 以上の実験から明らかなように、原水を脱気することに
より、純水の製造量を増大させ得ることが判った。
Table 1 Table 2 2-2.4 1.82 Table 3 As is clear from the above experiments, it was found that the amount of pure water produced could be increased by degassing the raw water.

〔別実施例〕[Another example]

以下、本発明の別実施例を示す。 Another example of the present invention will be shown below.

〔1〕上記実施例では、脱気装置(3)として、エゼク
タ(3B)による吸引と、コンデンサ(3C)での冷却
とにより、供給原水(a)を冷却脱気すようにしたが、
脱気装置(3)としては、真空ポンプて脱気するものや
、蒸気凝縮と真空排気とを兼ねた水ゼットエゼクタコン
デンサを用いるもの等であっても良い。
[1] In the above embodiment, the deaerator (3) cools and deaerates the supplied raw water (a) by suction by the ejector (3B) and cooling by the condenser (3C).
The degassing device (3) may be one that performs deaeration using a vacuum pump, or one that uses a water jet ejector condenser that serves both steam condensation and vacuum evacuation.

〔2〕上記実施例では、加熱器(6)として、加熱流体
(b)との熱交換で原水を加熱するものを示したが、加
熱器(6)としては、ヒータやバーナ等であっても良い
[2] In the above embodiment, the heater (6) is one that heats the raw water by heat exchange with the heating fluid (b), but the heater (6) may be a heater, a burner, etc. Also good.

〔3〕分離器(1)の構造、形状は適宜変更可能である
[3] The structure and shape of the separator (1) can be changed as appropriate.

〔4〕上記実施例では、仕切り(1a)の全体を透過膜
(4)から構成したが、透過膜(4)は、仕切り(1a
)に部分的に設けても良い。
[4] In the above embodiment, the partition (1a) was entirely composed of the permeable membrane (4), but the permeable membrane (4)
) may be provided partially.

〔5〕上記実施例では、透過膜(4)として多孔質のも
のを示したが、透過質(4)は非多孔質のものであって
も良い。
[5] In the above embodiments, the permeable membrane (4) is porous, but the permeable membrane (4) may be non-porous.

〔6〕尚、特許請求の範囲の項に図面との対照を便利に
する為に符号を記すが、該記入により本発明は添付図面
の構造に限定されるものではない。
[6] Note that although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す構成図であり、第2図な
いし第5図は実験装置の概略構成図である。第6図、第
7図は従来例を示す構成図である。 (1八)・・・・・・液室、(1B)・・・・・・蒸気
室、(1)・・・・・・分離器、(2)・・・・・・給
水路、(1a)・・・・・・仕切り、(3)・・・・・
・脱気装置、(4)・・・・・・透過膜。
FIG. 1 is a configuration diagram showing an embodiment of the present invention, and FIGS. 2 to 5 are schematic configuration diagrams of an experimental apparatus. FIG. 6 and FIG. 7 are configuration diagrams showing a conventional example. (18)...Liquid chamber, (1B)...Steam chamber, (1)...Separator, (2)...... Water supply channel, ( 1a)...Partition, (3)...
- Deaerator, (4)... Permeable membrane.

Claims (1)

【特許請求の範囲】[Claims] 液室(1A)と蒸気室(1B)とに内部が仕切られた分
離器(1)を設け、その分離器(1)の液室(1A)に
原水(a)を供給するための給水路(2)と、前記蒸気
室(1B)内を液室(1A)内よりも低温に冷却する冷
却手段とを設け、前記分離器(1)のうち液室(1A)
と蒸気室(1B)との仕切り(1a)に、両側の温度差
に相当する水蒸気分圧差をもって高温側から低温側に水
蒸気のみを選択的に透過させる透過膜(4)を設けてあ
る純水製造装置であって、前記給水路(2)に、供給原
水中の気体を除去するための脱気装置(3)を設けてあ
る純水製造装置。
A separator (1) whose interior is partitioned into a liquid chamber (1A) and a steam chamber (1B) is provided, and a water supply channel is provided for supplying raw water (a) to the liquid chamber (1A) of the separator (1). (2) and a cooling means for cooling the inside of the vapor chamber (1B) to a lower temperature than the inside of the liquid chamber (1A), the liquid chamber (1A) of the separator (1)
Pure water is provided in the partition (1a) between the and steam chamber (1B) with a permeable membrane (4) that selectively transmits only water vapor from the high temperature side to the low temperature side with a water vapor partial pressure difference corresponding to the temperature difference on both sides. A pure water manufacturing apparatus, wherein the water supply channel (2) is provided with a deaerator (3) for removing gas from the raw water to be supplied.
JP4559188A 1988-02-26 1988-02-26 Pure water generator Pending JPH01218681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4559188A JPH01218681A (en) 1988-02-26 1988-02-26 Pure water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4559188A JPH01218681A (en) 1988-02-26 1988-02-26 Pure water generator

Publications (1)

Publication Number Publication Date
JPH01218681A true JPH01218681A (en) 1989-08-31

Family

ID=12723592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4559188A Pending JPH01218681A (en) 1988-02-26 1988-02-26 Pure water generator

Country Status (1)

Country Link
JP (1) JPH01218681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399188A (en) * 1993-12-01 1995-03-21 Gas Research Institute Organic emissions elimination apparatus and process for same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399188A (en) * 1993-12-01 1995-03-21 Gas Research Institute Organic emissions elimination apparatus and process for same

Similar Documents

Publication Publication Date Title
US9630862B2 (en) Desalination system and method for desalination
EP0226216B1 (en) Distilling apparatus
JP6303009B2 (en) Vacuum membrane distillation fresh water generator for ships
KR20080082627A (en) Membrane distillation process and membrane distillation device
JPH0634898B2 (en) Concentrator / dehydrator for organic / aqueous mixed solutions
US3766020A (en) Steam jet ejectors to reduce pressure in and produce stripping steam for deaerator
US3468761A (en) Staged vapor-liquid operated ejector arrangement for multi-stage evaporator system
JPH11267644A (en) Water treating apparatus
JPH01218681A (en) Pure water generator
US6306307B1 (en) Pervaporation apparatus and method
JPH0510964B2 (en)
KR0181317B1 (en) Process for continuously cleaning the auxiliary or working liquid of a compressor
KR101525546B1 (en) Method for separating hydrogen from a hydrogen-containing gas mixture and apparatus for carrying out this method
JP7217648B2 (en) Dehydrating apparatus and dehydrating method for mixed liquid containing organic solvent and water
JP7220597B2 (en) Organic solvent distillation purification device and distillation purification method
WO2014077739A2 (en) Method for separating and concentrating organic substances from liquid mixtures and device for the implementation thereof
CN205730909U (en) Membrane Materials unit and membrane component
JPH06246137A (en) Separator for mixed liquid
US1552534A (en) Multiple-effect evaporating apparatus
JPH0571287B2 (en)
JPS5861807A (en) Deaerator
JP4688062B2 (en) Clean steam generation system
RU2284208C2 (en) Method of separation of the alcohol-water mixture and the installation for its realization
JP7177733B2 (en) Purification system and purification method for mixed liquid containing organic solvent and water
SU1084530A1 (en) Device for degassing softened water