JPH01218107A - Antenna for high frequency communication - Google Patents

Antenna for high frequency communication

Info

Publication number
JPH01218107A
JPH01218107A JP4468288A JP4468288A JPH01218107A JP H01218107 A JPH01218107 A JP H01218107A JP 4468288 A JP4468288 A JP 4468288A JP 4468288 A JP4468288 A JP 4468288A JP H01218107 A JPH01218107 A JP H01218107A
Authority
JP
Japan
Prior art keywords
antenna
frequency communication
high frequency
conductive
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4468288A
Other languages
Japanese (ja)
Inventor
Yoshinobu Ueha
上羽 良信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4468288A priority Critical patent/JPH01218107A/en
Publication of JPH01218107A publication Critical patent/JPH01218107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To improve the antenna efficiency with light weight by using a specific conductive high polymer member for the conductor part of the antenna or the structural member of the antenna main body. CONSTITUTION:The conductive member made of a conductive high polymer material whose conductivity is >=10<4>S/cm and whose specific gravity is nearly <=2.3 is used for the conductor part of the antenna or the structural member of the antenna main body. Since the antenna efficiency of the high frequency communication antenna using the conductive high polymer member as above is improved more than a conventional high frequency communication antenna, the size of antenna is reduced more than the conventional antenna size. Thus, the weight of the high frequency communication antenna is reduced, and the high frequency communication antenna with excellent antenna efficiency and ease of handling is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、衛星通信等に利用される高周波通信用アンテ
ナに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high frequency communication antenna used for satellite communication and the like.

[従来の技術] 衛星通信等に使用される高周波通信用アンテナには従来
よりパラボラアンテナや平面アンテナ等が使用されてい
る。これらのパラボラアンテナ本体を構成する導体材料
や平面アンテナのストリップ導体部分を構成する導体材
料としては、電導度が高くまた機械的強度も高くなけれ
ばならないので従来から金属材料が使用されている。パ
ラボラアンテナにおいては例えばAρやA(!とFeと
の合金等がアンテナ本体の導体部分の材料として使用さ
れ、平面アンテナにおいては例えば銅箔等がストリップ
導体部の導体材料として使用されている。
[Prior Art] Parabolic antennas, flat antennas, and the like have conventionally been used as high-frequency communication antennas used in satellite communications and the like. Conventionally, metal materials have been used as the conductive material constituting the main body of these parabolic antennas and the conductive material constituting the strip conductor portion of the planar antenna because they must have high electrical conductivity and high mechanical strength. In a parabolic antenna, for example, an alloy of Aρ or A(! and Fe) is used as the material for the conductor portion of the antenna body, and in a planar antenna, for example, copper foil or the like is used as the conductor material for the strip conductor portion.

[発明が解決しようとする課題] ところが上述した従来の高周波通信用アンテナは、アン
テナ効率が必ずしも十分でないのでそれを補うため形状
を大きくする必要があった。しかし従来の高周波通信用
アンテナの構成部材または導体材料には金属材料が使用
されているので、アンテナ形状を大きくするとアンテナ
の重量が大きくなり取り扱いが不便となる問題点があっ
た。
[Problems to be Solved by the Invention] However, the above-described conventional high-frequency communication antennas do not necessarily have sufficient antenna efficiency, so it is necessary to increase the size of the antennas to compensate for this. However, since metal materials are used for the structural members or conductor materials of conventional high-frequency communication antennas, there is a problem in that increasing the antenna shape increases the weight of the antenna, making it inconvenient to handle.

本発明は上述した問題点を解決するためになされたもの
で、軽量でかつアンテナ効率のよい高周波通信用アンテ
ナを提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a high-frequency communication antenna that is lightweight and has high antenna efficiency.

[課題を解決するための手段] 本発明は電導度が104S/cm以上であり、比重が約
2.3以下である導電性高分子材をアンテナの導体部ま
たはアンテナ本体の構成部材として使用したことを特徴
とする。
[Means for Solving the Problems] The present invention uses a conductive polymer material having an electrical conductivity of 104 S/cm or more and a specific gravity of about 2.3 or less as a conductor part of an antenna or a component of an antenna main body. It is characterized by

[作用] 金属材料より比重が小さい導電性高分子材を高周波通信
用アンテナの構成部や導体部に使用することで、高周波
通信用アンテナの重量を軽量化することができる。さら
に電導度が従来の金属材にてなる導体材料より優れる導
電性高分子材を使用することでアンテナ効率を向上させ
ることができる。
[Function] The weight of the high-frequency communication antenna can be reduced by using a conductive polymer material that has a lower specific gravity than a metal material for the constituent parts and conductor parts of the high-frequency communication antenna. Furthermore, antenna efficiency can be improved by using a conductive polymer material whose conductivity is superior to conventional conductor materials made of metal materials.

[実施例] 第1の実施例 本発明の一実施例を示す第1図において、Iは直径45
cmのパラボラアンテナである。パラボラアンテナlを
構成する材料は、外径10μmのピッチ系炭素単繊維を
基材とし、ベンゼンを1600℃にて熱CVDすること
により前記基材の周囲に易グラファイト化炭素を約10
μmの厚さでコーティングし、さらに2800℃にて焼
成することによりグラファイト化された約1000本の
単繊維を一本に束ねた繊維を用いた導電性織布である。
[Example] First Example In FIG. 1 showing an example of the present invention, I is a diameter of 45 mm.
cm parabolic antenna. The material constituting the parabolic antenna 1 is a pitch-based carbon single fiber with an outer diameter of 10 μm as a base material, and about 10% of easily graphitized carbon is added around the base material by thermal CVD of benzene at 1600°C.
It is a conductive woven fabric made of approximately 1,000 single fibers bundled into a single fiber that is coated with a thickness of μm and then graphitized by firing at 2,800°C.

パラボラアンテナlは上述の繊布にエポキシ樹脂を含浸
後硬化させ、所定のパラボラ形状に成形したものである
The parabolic antenna 1 is made by impregnating the above fabric with an epoxy resin and then curing it, and molding it into a predetermined parabolic shape.

上述のようなパラボラアンテナlを従来のAl1にてな
る同直径のパラボラアンテナと性能を比較した場合、ア
ンテナ効率はACにてなるパラボラアンテナの方が幾分
勝るが、パラボラアンテナ1の重量はACにてなるパラ
ボラアンテナの重量の約60%に低減された。
When comparing the performance of the parabolic antenna 1 described above with a conventional parabolic antenna of the same diameter made of Al1, the parabolic antenna made of AC is somewhat superior in antenna efficiency, but the weight of the parabolic antenna 1 is The weight was reduced to approximately 60% of the weight of a parabolic antenna made of .

第2の実施例 第2の実施例にて使用されたパラボラアンテナの材料は
、第1の実施例で用いたグラファイト化された繊維にさ
らにIC12(塩化ヨウ素)をドーピングしたものであ
る。このような繊維は電導度が3 X 104S/cm
の良好な値を示した。本実施例にて使用される材料は前
記繊維の1000本の繊維束を使用した織布にエポキシ
樹脂を含浸した後硬化させ第1図に示したような直径4
0cmのパラボラアンテナを形成した。
Second Example The material of the parabolic antenna used in the second example was the graphitized fiber used in the first example further doped with IC12 (iodine chloride). Such fibers have a conductivity of 3 x 104S/cm
showed good values. The material used in this example is a woven fabric using 1000 fiber bundles of the above-mentioned fibers, impregnated with epoxy resin and then cured to form a fabric with a diameter of 4 mm as shown in Figure 1.
A 0 cm parabolic antenna was formed.

このようなパラボラアンテナは、AQにてなる直径45
cmのパラボラアンテナと同等の性能を有するとともに
、重量はAQにてなる同寸法のパラボラアンテナの約5
0%に低減することができた。
Such a parabolic antenna has a diameter of 45 mm in AQ.
It has the same performance as an AQ parabolic antenna, and weighs about 5 cm compared to an AQ parabolic antenna of the same size.
It was possible to reduce it to 0%.

第3の実施例 本発明の一実施例である第2図(b)において;2はガ
ラス繊維が混入されているエポキシ樹脂にてなる板状の
平面アンテナの基板であり、基板2の上表面には1、ポ
リイミドにてなるテープを2800℃で焼成したグラフ
ァイトテープ3,4を接着してマイクロストリップ導体
としたものである。
Third Embodiment In FIG. 2(b), which is an embodiment of the present invention; 2 is a plate-shaped planar antenna substrate made of epoxy resin mixed with glass fiber; 1. Graphite tapes 3 and 4 made of polyimide and fired at 2800° C. are bonded together to form a microstrip conductor.

マイクロストリップ導体は範囲Aに示した形状であり、
−点鎖線Bに示す範囲にわたって設けられ、かつ第2図
(a)に示すように大なる矩形波状のグラファイトテー
プ3の凸部3aと小なる矩形波状のグラファイトテープ
4の凸部4aとは互いに相向き合った状態で、グラファ
イトテープ3及び4は互いに所定間隔離れて基板2の上
表面に配置される。このような構成にてなる平面アンテ
ナは、上述した第1、第2の実施例のパラボラアンテナ
と同様に軽量で、アンテナ効率のよい高周波通信用アン
テナである。また、前記導電性高分子材がポリイミド、
ポリアリレンビニレン、ポリオキサジアゾール等の高分
子フィルムの焼成により得られるグラファイトまたはグ
ラファイト層間化合物であってもよい。さらに前記導電
性高分子材・がポリエン、ポリイン、ポリアセン、ポリ
ペリナフタレン構造を持つ化合物またはドーピングされ
た化合物であってもよい。
The microstrip conductor has the shape shown in area A,
- The convex portion 3a of the graphite tape 3 having a large rectangular wave shape and the convex portion 4a of the graphite tape 4 having a small rectangular wave shape are provided over the range shown by the dotted chain line B, and as shown in FIG. The graphite tapes 3 and 4 are placed on the upper surface of the substrate 2 at a predetermined distance from each other while facing each other. The planar antenna having such a configuration is a high-frequency communication antenna that is lightweight and has good antenna efficiency, similar to the parabolic antennas of the first and second embodiments described above. Further, the conductive polymer material is polyimide,
Graphite or a graphite intercalation compound obtained by firing a polymer film such as polyarylene vinylene or polyoxadiazole may also be used. Further, the conductive polymer material may be a compound having a polyene, polyyne, polyacene, polyperinaphthalene structure, or a doped compound.

第1から第3の実施例にて使用された導電性高分子材の
比重は約2.3以下であり、金属材料の比重と比べ小さ
く、このような導電性高分子材を高周波通信用アンテナ
の構成部材または導体材料に使用することで高周波通信
用アンテナの重量を軽減することができる。また、導電
性高分子材の電導度は104S/cm以上であり銅及び
銀と同等の値を有する。また銅及び銀以上の電導度を有
する導電性高分子材もあり、このような導電性高分子材
を使用した高周波通信用アンテナは従来の高周波通信用
アンrすよりアンテナ効率が向上するので、アンテナ形
状を従来より小さくすることができる。また、導電性高
分子材の電荷の易動度及び電導度の異方性についてグラ
ファイトと銅を比較した値を次表に示す。
The specific gravity of the conductive polymer material used in the first to third embodiments is approximately 2.3 or less, which is smaller than the specific gravity of metal materials, and such a conductive polymer material is used as an antenna for high frequency communication. The weight of the high-frequency communication antenna can be reduced by using it as a component or a conductor material. Further, the conductivity of the conductive polymer material is 104 S/cm or more, which is equivalent to that of copper and silver. There are also conductive polymer materials with conductivity higher than that of copper and silver, and high-frequency communication antennas using such conductive polymer materials have higher antenna efficiency than conventional high-frequency communication antennas. The antenna shape can be made smaller than before. In addition, the following table shows values comparing graphite and copper regarding charge mobility and conductivity anisotropy of conductive polymer materials.

上表より明らかなように導電性高分子材は高周波特性に
優れている。さらに導電性高分子材はフィルム状、薄膜
状、繊維状、テープ状といった種々の形状に加工可能で
ありアンテナの形状に合わせ加工しやすい利点がある。
As is clear from the table above, conductive polymer materials have excellent high frequency characteristics. Furthermore, the conductive polymer material can be processed into various shapes such as film, thin film, fiber, and tape, and has the advantage of being easy to process to match the shape of the antenna.

[発明の効果] 以上詳述したように本発明によれば、金属材料に比べ比
重が小さく、電導度が同等であり、高周波特性に優れた
導電性高分子材を高周波通信用アンテナの構成部材また
は導体材料として使用することにより、高周波通信用ア
ンテナは軽量化され、アンテナ効率がよく、かつ取り扱
いの容易な高周波通信用アンテナを提供することができ
る。
[Effects of the Invention] As detailed above, according to the present invention, a conductive polymer material that has a lower specific gravity than metal materials, has the same electrical conductivity, and has excellent high frequency characteristics can be used as a component of a high frequency communication antenna. Alternatively, by using it as a conductive material, it is possible to provide a high-frequency communication antenna that is lightweight, has good antenna efficiency, and is easy to handle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるパラボラアンテナを示
す斜視図、第2図(a)は本発明の他の実施例である平
面アンテナを示す第2図(b)内の範囲Aの拡大図、第
2図(b)は平面アンテナを示す平面図である。 1・・・パラボラアンテナ、2・・・平面アンテナ、3
.4・・・グラファイトテープ。 特許出願人住友電気工業株式会社
FIG. 1 is a perspective view showing a parabolic antenna which is an embodiment of the present invention, and FIG. 2(a) is a perspective view of a range A in FIG. The enlarged view, FIG. 2(b) is a plan view showing the planar antenna. 1... Parabolic antenna, 2... Planar antenna, 3
.. 4...Graphite tape. Patent applicant Sumitomo Electric Industries, Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)電導度が10^4S/cm以上であり、比重が約
2.3以下である導電性高分子材にてなる導体材料をア
ンテナの導体部材またはアンテナ本体の構成部材として
使用したことを特徴とする高周波通信用アンテナ。
(1) A conductive material made of a conductive polymer material having an electrical conductivity of 10^4S/cm or more and a specific gravity of approximately 2.3 or less is used as a conductive member of an antenna or a component of the antenna body. Features of high-frequency communication antennas.
(2)前記導電性高分子材がポリイミド、ポリアリレン
ビニレン、ポリオキサジアゾール等の高分子フィルムの
焼成により得られるグラファイトまたはグラファイト層
間化合物である請求項1記載の高周波通信用アンテナ。
(2) The antenna for high frequency communication according to claim 1, wherein the conductive polymer material is graphite or a graphite intercalation compound obtained by firing a polymer film such as polyimide, polyarylene vinylene, or polyoxadiazole.
(3)前記導電性高分子材が液相熱分解、気相熱分解、
プラズマCVDにより得られる炭素の焼成により得られ
るグラファイトまたはグラファイト層間化合物である請
求項1記載の高周波通信用アンテナ。
(3) The conductive polymer material undergoes liquid phase pyrolysis, gas phase pyrolysis,
2. The antenna for high frequency communication according to claim 1, which is graphite or a graphite intercalation compound obtained by firing carbon obtained by plasma CVD.
(4)前記導電性高分子材がポリエン、ポリイン、ポリ
アセン、ポリペリナフタレン構造を持つ化合物またはド
ーピングされた化合物である請求項1記載の高周波通信
用アンテナ。
(4) The antenna for high frequency communication according to claim 1, wherein the conductive polymer material is a compound having a polyene, polyyne, polyacene, polyperinaphthalene structure, or a doped compound.
JP4468288A 1988-02-25 1988-02-25 Antenna for high frequency communication Pending JPH01218107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4468288A JPH01218107A (en) 1988-02-25 1988-02-25 Antenna for high frequency communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4468288A JPH01218107A (en) 1988-02-25 1988-02-25 Antenna for high frequency communication

Publications (1)

Publication Number Publication Date
JPH01218107A true JPH01218107A (en) 1989-08-31

Family

ID=12698203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4468288A Pending JPH01218107A (en) 1988-02-25 1988-02-25 Antenna for high frequency communication

Country Status (1)

Country Link
JP (1) JPH01218107A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840383A (en) * 1996-02-12 1998-11-24 Bgf Industries, Inc. Electromagnetic wave reflective fabric
JP2016039191A (en) * 2014-08-05 2016-03-22 株式会社カネカ coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840383A (en) * 1996-02-12 1998-11-24 Bgf Industries, Inc. Electromagnetic wave reflective fabric
JP2016039191A (en) * 2014-08-05 2016-03-22 株式会社カネカ coil

Similar Documents

Publication Publication Date Title
US5275880A (en) Microwave absorber for direct surface application
CN1151224A (en) High-frequency circuit element
CN112020294B (en) Ultra-wide spectrum wave-absorbing material and preparation method thereof
CN110400682A (en) Coil electronic building brick
US5757334A (en) Graphite composite structures exhibiting electrical conductivity
JPH02165512A (en) Flat cable
CN112968291A (en) Double-layer heterogeneous sequence structure microwave infrared compatible metamaterial based on rhombic elements
JPH01218107A (en) Antenna for high frequency communication
US6972366B2 (en) Multilayer structure for absorbing electromagnetic wave and manufacturing method thereof
JPH0156559B2 (en)
JPH037406A (en) Waveguide antenna
CN220107662U (en) Electronic equipment and wireless charger
GB2169240A (en) Sandwich structure laminate for printed circuit board substrate
CN111564704B (en) Tunable wave-absorbing metamaterial based on ferromagnetic resonance
CN218123703U (en) Ultrathin slice type double-frequency ceramic antenna
CN212462035U (en) Movably combined composite wave-absorbing material
JPH04501649A (en) Graphite composite structure exhibiting electrical conductivity
GB851923A (en) Improvements in or relating to radomes
CN116691084A (en) Graphene heat conduction film and preparation method thereof
JPH0199297A (en) Heat-shrinkable film for electromagnetic wave shield
JP2585579B2 (en) Superconductor manufacturing method
CN111775528A (en) Multifunctional anti-detection composite material and anti-detection composite structure
JP2565014Y2 (en) Dielectric loaded antenna
Li et al. A Multifunctional Polarization Converter Base on Solid Plasma Metasurface
JP2003336977A (en) Heat pipe and heat pipe adaptor