JPH01217980A - Bridge type grain boundary josephson element - Google Patents

Bridge type grain boundary josephson element

Info

Publication number
JPH01217980A
JPH01217980A JP63041915A JP4191588A JPH01217980A JP H01217980 A JPH01217980 A JP H01217980A JP 63041915 A JP63041915 A JP 63041915A JP 4191588 A JP4191588 A JP 4191588A JP H01217980 A JPH01217980 A JP H01217980A
Authority
JP
Japan
Prior art keywords
bridge
grain
grain boundary
bank
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63041915A
Other languages
Japanese (ja)
Inventor
Tsutomu Yamashita
努 山下
Masasuke Takada
雅介 高田
Naoya Kawada
川田 尚哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP63041915A priority Critical patent/JPH01217980A/en
Publication of JPH01217980A publication Critical patent/JPH01217980A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a bridge type grain boundary Josephson element exhibiting a clear Chapiro step at a liquid nitrogen temperature (77 deg.K), by specifying the grain boundary number on a current flowing path in a bridge. CONSTITUTION:Oxide superconductor particles constituting a bridge communicate with each other via grain boundary, and connected from one bank to the other bank in a superconducting state. It is important that the number of grain boundary by linking particles in the bridge is 1-5. The dimension of bridge is not limited, but available for 500mum or less in width, 100mum or less in length and 50mum or less in thickness. At the forming method of the bridge having 1-5 grain boundaries is as follows; Factors of manufacturing process, such as the grain diameter of film forming material and annealing treatment conditions are suitably selected, and a prescribed grain number is obtained by growing the layer in a crystal of specified size. In other way, after a film of superconductor particles is formed, the grain diameter in a bridge forming region is measured, the film is worked so as to have a desired number of grain boundaries, and the bank and the bridge are formed.

Description

【発明の詳細な説明】 [イ、産業上の利用分野] 本発明はブリッジ内の酸化物超電導体粒子がつくる粒界
数を1〜6にしたシャピロステップ(定電圧ステップ)
の大きいジョセフソン素子に関する。
[Detailed description of the invention] [A. Field of industrial application] The present invention is a Shapiro step (constant voltage step) in which the number of grain boundaries formed by oxide superconductor particles in a bridge is 1 to 6.
Regarding large Josephson elements.

[口、従来の技術] ジョセフソン索子(Josephson Juncti
on)はジョセフソン効果に基づいて作られた素子で、
広帯域あるいは微弱な電磁波検出用素子としてエレクト
ロニクス分野への応用が注目されている。
[Background Art] Josephson Juncti
on) is an element made based on the Josephson effect,
Applications in the electronics field are attracting attention as devices for detecting broadband or weak electromagnetic waves.

そのようなジョセフソン素子には従来数種のタイプのも
のが開発されており、本願のブリッジ型もその一つであ
る。
Several types of such Josephson elements have been developed in the past, and the bridge type of the present application is one of them.

ブリッジ型粒界ジョセフソン素子の基本的構造は第1図
に示すようにアルミナ、ジルコニア等で作製された基板
l、超電導体でつくられた2つのバンク2.3およびそ
れらと接続したブリッジ4とからなる。
The basic structure of a bridge-type grain boundary Josephson element, as shown in Figure 1, consists of a substrate l made of alumina, zirconia, etc., two banks 2.3 made of superconductor, and a bridge 4 connected to them. Consisting of

酸化物超電導体を利用した該素子はブリッジ内の前記超
電導体粒子が相互に接して粒界をつくり、その粒界でジ
ョセフソン効果が現れる。
In this element using an oxide superconductor, the superconductor particles in the bridge contact each other to form grain boundaries, and the Josephson effect appears at the grain boundaries.

従来のブリッジ型粒界ジョセフソン素子の一例を挙げる
と基板上に臨界温度(Tc)81にの(Y、Er)Ba
CuO膜をスパッター法で製膜し、次いで890℃、8
時間酸素雰囲気中でアニール処理したのち、85%りん
酸でウェットエツチングしてつくられ、ブリッジの大き
さが幅4μm、長さ20μm、厚さ4μ慣、で、それを
構成する超電導体粒子径が2〜4μ鎖であるものが知ら
れている(電子情報通信学会技術研究報告S CE 8
?−38(、1987年))。
To take an example of a conventional bridge type grain boundary Josephson element, (Y,Er)Ba is deposited on a substrate at a critical temperature (Tc) of 81.
A CuO film was formed by sputtering, and then heated at 890°C for 8
After annealing in an oxygen atmosphere for an hour and then wet etching with 85% phosphoric acid, the bridge has a width of 4 μm, a length of 20 μm, and a thickness of 4 μm. Those with 2 to 4μ chains are known (IEICE technical research report S CE 8
? -38 (, 1987)).

[ハ1発明が解決しようとする問題点]従来のブリッジ
型粒界ジョセフソン素子のブリッジは、単に小径の超電
導体粒子を密に形成しただけであったために、電流が通
過する粒界数は著しく多かった。
[Problem to be solved by the invention] Since the bridge of the conventional bridge type grain boundary Josephson element is simply formed by densely forming small-diameter superconductor particles, the number of grain boundaries through which current passes is small. There were significantly more.

そのためブリッジ型粒界ジョセフソン素子を液体窒素(
77K)で冷却しながら電流を流し、電磁波を照射した
さい、電流が粒界を通過する都度、干渉を受け、I−V
特性上に、一定電圧が階段状に表れるはずのシャピロス
テップが非常に小さいか、場合によっては消失した。
Therefore, the bridge type grain boundary Josephson element is
When a current is applied while cooling at 77 K) and electromagnetic waves are irradiated, each time the current passes through a grain boundary, it is interfered with and the I-V
Due to the characteristics, the Shapiro step that should appear in a step-like manner at a constant voltage was very small, or in some cases disappeared.

そのため、従来のブリッジ型粒界ジョセフソン素子を液
体窒素温度で前述の検出器に応用するには不十分であっ
た。
Therefore, the conventional bridge type grain boundary Josephson element was insufficient to be applied to the above-mentioned detector at liquid nitrogen temperature.

[二8問題点を解決するための手段] そこで本発明者は大きなシャピロステップを具備する素
子をつくるためブリッジ内の粒界について研究した結果
、ブリッジ内の電流々路上の粒界数を特定することによ
り、明瞭なシャピロステップ現象を呈することを知見し
て以下に述べるような発明を完成させた。
[Means for Solving Problem 28] Therefore, in order to create an element with a large Shapiro step, the present inventor conducted research on grain boundaries in the bridge, and determined the number of grain boundaries on the current path in the bridge. As a result, they discovered that a clear Shapiro step phenomenon was exhibited, and completed the invention as described below.

すなわち、本発明はブリッジ内の酸化物超電導体粒子が
2つのバンク間を粒界数1〜5で連接しているブリッジ
型粒界ジョセフソン素子を提供するものである。
That is, the present invention provides a bridge type grain boundary Josephson element in which oxide superconductor particles in the bridge connect two banks with one to five grain boundaries.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明はブリッジ型粒界ジョセフソン素子のブリッジを
構成する酸化物超電導体粒子が粒界を介して連接し、一
方のバンクから他方のバンクへ超電導状態で接続してい
る。
In the present invention, oxide superconductor particles constituting the bridge of a bridge type grain boundary Josephson element are connected via grain boundaries, and one bank is connected to the other bank in a superconducting state.

酸化物超電導体粒子の連接の形態には該粒子が直線状、
ジグザグ状、X字状、Y字状等種々の形態が見られるが
、本発明はその形態について特に規定するものではない
The connected form of oxide superconductor particles includes linear,
Although various shapes such as a zigzag shape, an X-shape, a Y-shape, etc. can be seen, the present invention does not particularly specify these shapes.

ブリッジ内で連接した粒子による粒界数は1〜5である
ことが本発明において特に重要である。
It is particularly important in the present invention that the number of grain boundaries due to particles connected within the bridge is 1 to 5.

粒界数はブリッジ内にあるものを計数し、バンクとブリ
ッジとの境界にある粒界も含まれる。
The number of grain boundaries is counted within the bridge, and includes grain boundaries at the boundary between the bank and the bridge.

粒界数が1未溝(すなわち零)とは、たとえばブリッジ
内において、酸化物超電導体粒子がバンク間で不連続状
態のものであり、このようなブリッジはシャピロステッ
プ現象を呈さない、また逆に粒界数が6以上になると電
磁波による干渉が大きくなり、呈するシャピロステップ
が小さくなるので好ましくない。
A groove in which the number of grain boundaries is less than 1 (that is, zero) means that, for example, within a bridge, oxide superconductor particles are discontinuous between banks, and such a bridge does not exhibit the Shapiro step phenomenon, or vice versa. If the number of grain boundaries is 6 or more, interference by electromagnetic waves will increase and the Shapiro step will become smaller, which is not preferable.

ブリッジの大きさは本発明では特に限定しないが、おお
よそ巾500μ■以下、長さ100μ−以下、厚さ50
μ−以下程度のものに適用できる。
The size of the bridge is not particularly limited in the present invention, but it is approximately 500μ in width or less, 100μ or less in length, and 50μ in thickness.
Applicable to things below μ.

なお、本発明では電導体粒子の大きさおよびブリッジ内
における該粒子の直径の相違による配列の仕方も特に限
定されない。
In addition, in the present invention, there are no particular limitations on the size of the conductor particles and the manner in which they are arranged depending on the difference in diameter within the bridge.

1〜50粒界数を有するブリッジのつくり方はいかなる
方法によってもよい、具体的には、ブリッジ寸法が決め
られている場合には膜形成用原料の粒径、アニール処理
条件等製造工程上の要因を適宜に選んで、所要の大きさ
の結晶に成長させて規定の粒界数にする方法、またブリ
ッジ寸法が任意である場合には、基板−面に超電導体粒
子の膜をつくったのち、ブリッジ想定箇所の粒子径を測
定し、所望の粒界数になるように前記膜を加工して、バ
ンクとブリッジを形成する方法などが挙げられる。
Any method may be used to create a bridge having a grain boundary number of 1 to 50. Specifically, if the bridge dimensions are determined, the grain size of the film forming raw material, annealing treatment conditions, etc. A method of growing crystals of the required size and a specified number of grain boundaries by selecting factors appropriately, or if the bridge size is arbitrary, after forming a film of superconductor particles on the substrate surface. , a method of forming a bank and a bridge by measuring the grain size at a location where a bridge is expected and processing the film so as to have a desired number of grain boundaries.

酸化物超電導体粒子の材質はB a−L a−Cu−0
系、B a−Y −Cu−0系、B a−E r−Cu
−0系、B i−9r−Cu−0系等の4元素系、B 
a−3r−Y −Cu−0系、Bi−白r−Ca−Cu
−0系の5元素系等があり具体的には、B azY C
u30 ?−δ、B a2E rCu307−δ、B 
iS rCaCu20 x等が示される。
The material of the oxide superconductor particles is B a-L a-Cu-0
system, B a-Y -Cu-0 system, B a-E r-Cu
-0 system, 4-element system such as B i-9r-Cu-0 system, B
a-3r-Y -Cu-0 system, Bi-white r-Ca-Cu
-0 series, five element systems, etc. Specifically, B azY C
u30? -δ, B a2E rCu307-δ, B
iS rCaCu20 x etc. are shown.

基板材料には従来のものが採用され、本願では特に限定
しない。
Conventional substrate materials are used, and are not particularly limited in this application.

次に本発明を実施例に基づいて説明する。Next, the present invention will be explained based on examples.

[ホ、実施例] 実施例1〜2 比較例I Cuを蒸着した表面がIOX 10mmのジルコニア基
板上に、平均粒径1μIの超電導体粉末(Ba2YCu
307−δ)をエタノールに分散させたスリップ(固形
分濃度20x)を滴下し、110’Cで乾燥した。
[E, Examples] Examples 1 to 2 Comparative Example I Superconductor powder (Ba2YCu
A slip (solid content concentration 20x) in which 307-δ) was dispersed in ethanol was added dropwise and dried at 110'C.

その滴下、乾燥作業を5回繰り返したのち、1000℃
、2時間酸素雰囲気でアニール処理して膜を形成させ、
3個の積層基板をつくった。
After repeating the dropping and drying process 5 times,
, form a film by annealing in an oxygen atmosphere for 2 hours,
Three laminated boards were made.

これらの膜の臨界温度を四端子法で測定した結果、92
に〜93にであった。
As a result of measuring the critical temperature of these films using the four-probe method, it was found that 92
It was in ~93.

次いで、上記積層基板の膜を拡大鏡で観察しながら、カ
ッターを用いて連接した粒界数が(A)2〜3、(B)
4〜5、(C)6〜8になるように切削加工して第1図
に示すような形状のブリッジ型粒界ジョセフソン素子を
つくった。ブリッジの長さはそれぞれ20μ曙、40μ
欄、75μ曙であった。ブリ・ンジを構成する超電導体
粒子径は2〜l十μ−であった。
Next, while observing the film of the laminated substrate with a magnifying glass, use a cutter to determine whether the number of connected grain boundaries is (A) 2 to 3, (B)
4-5 and (C) 6-8, a bridge type grain boundary Josephson element having a shape as shown in FIG. 1 was fabricated. The length of the bridge is 20μ and 40μ respectively.
column, it was 75μ Akebono. The diameter of the superconductor particles constituting the bridge was 2 to 10 μ-.

次いで(A)、(B)、(C)の各ジョセフソン素子の
バンクに電流電圧測定用端子を取り付け、電磁波(8,
15G H2)を照射して77KにおけるACジョセフ
ソン効果を測定し、各々のシャピロステップを得た。 
得られた結果について(A)は第2図に、(B)は第3
図(以上実施例1.2)に、(C)は第4図(比較例1
)にそれぞれ示した。
Next, current and voltage measurement terminals were attached to the banks of Josephson elements (A), (B), and (C), and electromagnetic waves (8,
The AC Josephson effect at 77K was measured by irradiating with 15G H2) to obtain each Shapiro step.
Regarding the obtained results, (A) is shown in Figure 2, and (B) is shown in Figure 3.
(Example 1.2 above), (C) is shown in Figure 4 (Comparative Example 1).
) are shown respectively.

その結果、粒界数5以下のブリッジ型粒界ジョセフソン
素子は明瞭なシャピロステップを呈した。
As a result, the bridge-type grain boundary Josephson device with five or fewer grain boundaries exhibited a clear Shapiro step.

[へ0発明の効果] 本発明は粒界ジョセフソン素子のシャピロステップにつ
いて、従来配慮されていなかったブリッジ内の粒界数に
着目して研究し、その数を特定したことにより液体窒素
温度(77K)で明瞭なシャピロステップを呈するブリ
ッジ型粒界ジョセフソン素子を開発したものである。そ
の結果従来できなかった微弱な電磁波の検出測定が高温
で可能とな第1図はブリッジ型粒界ジョセフソン素子の
全体図、第2〜4図は粒界数の異なる場合のシャピロス
テップである。
[Effects of the Invention] The present invention has focused on the number of grain boundaries in the bridge, which has not been taken into account in the past, and has researched the Shapiro step of a grain-bounded Josephson element. We have developed a bridge-type grain-boundary Josephson device that exhibits a clear Shapiro step at 77K). As a result, it is possible to detect and measure weak electromagnetic waves at high temperatures, which was previously impossible. Figure 1 shows the overall view of a bridge-type grain boundary Josephson element, and Figures 2 to 4 show Shapiro steps with different numbers of grain boundaries. .

特許出願人 日本セメント株式会社 M1図      2バンク  3バンク1基板 電圧(μV)Patent applicant: Nippon Cement Co., Ltd. M1 diagram 2 banks 3 banks 1 board Voltage (μV)

Claims (1)

【特許請求の範囲】[Claims]  ブリッジ内の酸化物超電導体粒子が2つのバンク間を
粒界数1〜5で連接していることを特徴とするブリッジ
型粒界ジョセフソン素子
A bridge type grain boundary Josephson device characterized in that oxide superconductor particles in the bridge connect two banks with 1 to 5 grain boundaries.
JP63041915A 1988-02-26 1988-02-26 Bridge type grain boundary josephson element Pending JPH01217980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63041915A JPH01217980A (en) 1988-02-26 1988-02-26 Bridge type grain boundary josephson element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63041915A JPH01217980A (en) 1988-02-26 1988-02-26 Bridge type grain boundary josephson element

Publications (1)

Publication Number Publication Date
JPH01217980A true JPH01217980A (en) 1989-08-31

Family

ID=12621552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63041915A Pending JPH01217980A (en) 1988-02-26 1988-02-26 Bridge type grain boundary josephson element

Country Status (1)

Country Link
JP (1) JPH01217980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264849A (en) * 1995-11-27 1996-10-11 Matsushita Electric Ind Co Ltd Manufacture of superconducting element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153482A (en) * 1981-03-17 1982-09-22 Nippon Telegr & Teleph Corp <Ntt> Josephson element
JPS59210677A (en) * 1983-05-14 1984-11-29 Nippon Telegr & Teleph Corp <Ntt> Photodetecting element using josephson junction
JPH01161881A (en) * 1987-12-18 1989-06-26 Nec Corp Josephson element and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153482A (en) * 1981-03-17 1982-09-22 Nippon Telegr & Teleph Corp <Ntt> Josephson element
JPS59210677A (en) * 1983-05-14 1984-11-29 Nippon Telegr & Teleph Corp <Ntt> Photodetecting element using josephson junction
JPH01161881A (en) * 1987-12-18 1989-06-26 Nec Corp Josephson element and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264849A (en) * 1995-11-27 1996-10-11 Matsushita Electric Ind Co Ltd Manufacture of superconducting element

Similar Documents

Publication Publication Date Title
Li et al. Phonon thermal Hall effect in strontium titanate
Chen et al. Humidity sensors: a review of materials and mechanisms
Shapira et al. Semiconductor-superconductor transition in granular Al-Ge
Bondarenka et al. Thin films of poly-vanadium-molybdenum acid as starting materials for humidity sensors
US4379406A (en) Relative humidity detector systems and method of increasing the calibration period of relative humidity detector systems
Biju et al. Analysis of AC electrical properties of nanocrystalline nickel oxide
Couch et al. Metallic conduction through Langmuir-Blodgett films
JPH06506411A (en) Sensors based on nanostructured composite films
DE2204153C3 (en) Temperature sensor for very low temperatures
DE2545473B2 (en) Reducing gas sensor and process for its manufacture
Arshak et al. Investigation of tin oxides as sensing layers in conductimetric interdigitated pH sensors
Dutta et al. Extreme sensitivity of the vortex state in a-MoGe films to radio-frequency electromagnetic perturbation
Daptary et al. Correlated non-Gaussian phase fluctuations in LaAlO 3/SrTiO 3 heterointerfaces
EP0464243B1 (en) Oxygen sensor with semiconducting gallium oxide
US4288775A (en) Device and method of manufacturing a relative humidity sensor and temperature sensor
JPH01217980A (en) Bridge type grain boundary josephson element
Ahmed et al. Effect of dopant concentration on the electrical properties of polyvinyl alcohol (PVA)
JPS62185102A (en) Strain gage with thin discontinuous metallic layer
Kano et al. Liquid-dependent impedance induced by vapor condensation and percolation in nanoparticle film
Prasad et al. Electrical transport properties of EuVO4 single crystal
Wu et al. The switch-type humidity sensing properties of polyacrylic acid and its copolymers
Hsu et al. Temperature dependence of the resistivity and the Hall coefficient of thin bismuth film
Kounavis et al. Thermopower, conductivity and the Hall effect in V2O5 gels
Sebastian et al. Thermal properties of La 0.5 Sr 0.5 Co 1− x Ni x O 3− δ ceramics using photopyroelectric technique
Teh et al. Microstructure study on Gd-doped BaTiO3 sol-gel multilayer thin films using AFM for optoelectronic applications