JPH01217351A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH01217351A
JPH01217351A JP63043220A JP4322088A JPH01217351A JP H01217351 A JPH01217351 A JP H01217351A JP 63043220 A JP63043220 A JP 63043220A JP 4322088 A JP4322088 A JP 4322088A JP H01217351 A JPH01217351 A JP H01217351A
Authority
JP
Japan
Prior art keywords
charge
layer
photoreceptor
binder resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63043220A
Other languages
Japanese (ja)
Inventor
Norio Saruwatari
紀男 猿渡
Tsuneo Watanuki
恒夫 綿貫
Tomosumi Kamisaka
友純 上坂
Koji Tsukamoto
浩司 塚本
Shunichi Fukuyama
俊一 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63043220A priority Critical patent/JPH01217351A/en
Publication of JPH01217351A publication Critical patent/JPH01217351A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0578Polycondensates comprising silicon atoms in the main chain

Abstract

PURPOSE:To enhance mechanical strength and abrasion resistance of a photosensitive body and to improve printing resistance by using a specified silicone resin composition heat hardened as a binder resin. CONSTITUTION:The photosensitive body contains as the binder resin the silicone resin composition having a weight average molecular weight of 10<3>-10<6> obtained by hydrolyzing a mixture of methyltrialkoxysilane represented by formula I and tetraalkoxysilane represented by formula II, preferably, in an equal molar ratio, and heat hardening it. In formulae I and II, each of R1 and R2 is methyl or ethyl, thus permitting excellent durability and printing resistance never realized in the organic photosensitive body to be ensured.

Description

【発明の詳細な説明】 〔概 要〕 本発明は電子写真感光体に関し、感光体の機械的強度、
耐摩耗性を同上し、耐刷性の良好な長寿命電子写真感光
体を提供することをai!gとし、導電性支持体上に光
導電材料と結着剤からなる光導電層を有する電子写真感
光体において結着剤樹脂として下記一般式(A)のメチ
ルトリアルコキシシランと下記一般式(B)のテトラア
ルコキシシランの混合物を加水分解して得られ重量平均
分子量が103〜106のシリコーン樹脂組成物を熱硬
化して用いて構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to an electrophotographic photoreceptor, and relates to mechanical strength of the photoreceptor,
ai! provides a long-life electrophotographic photoreceptor with excellent abrasion resistance and good printing durability. g, and in an electrophotographic photoreceptor having a photoconductive layer consisting of a photoconductive material and a binder on a conductive support, methyltrialkoxysilane of the following general formula (A) and the following general formula (B) are used as a binder resin. ) A silicone resin composition obtained by hydrolyzing a mixture of tetraalkoxysilanes and having a weight average molecular weight of 103 to 106 is thermally cured.

CHs S l (OR+ ) m・・ ・・・・・・
・・・・・・・・(ん)S i (OR4)4   ・
・・ ・・・・・・・・・・・・・・・・(B)ただし
、RI、 R1はCH,またはC,H。
CHs S l (OR+) m......
・・・・・・・・・(n)S i (OR4)4 ・
・・・・・・・・・・・・・・・・・・・・・(B) However, RI and R1 are CH, or C, H.

本発明は、光導電材料と結着剤からなる光導電層を有す
る電子写真感光体において結着剤樹脂としてメチルトリ
アルコキシシランとテトラアルコキンシランの混合物を
イオン交換水により加水分解して得られるシリコーン樹
脂組成物を熱硬化して用いることにより、感光体の機械
的強度、耐摩耗性を向上し、耐刷性の良好な長寿命電子
写真感光体を得るものである。
The present invention provides an electrophotographic photoreceptor having a photoconductive layer consisting of a photoconductive material and a binder, which is obtained by hydrolyzing a mixture of methyltrialkoxysilane and tetraalcoquine silane as a binder resin with ion-exchanged water. By using a thermally cured silicone resin composition, the mechanical strength and abrasion resistance of the photoreceptor are improved, and a long-life electrophotographic photoreceptor with good printing durability is obtained.

〔産業上の利用分野〕[Industrial application field]

本発明の電子写真感光体は、複写機・プリンタなどに広
く適用できる。
The electrophotographic photoreceptor of the present invention can be widely applied to copying machines, printers, and the like.

電子写真のプロセスは、帯電、露光、現像、転写、およ
び定着の各工程から成υ、これらの繰り返しによって印
刷物を得る。帯電は、光導電性を有する感光体の表面に
正または負の均一静電荷を施す。続く露光プロセスでは
、レーザ光などを照射して特定部分の表面電荷を消去す
ることによって感光体上に画像情報に対応した静電潜像
を形成する。次に、この潜像をトナーという粉体インク
によって静電的に現像することにより、感光体上にトナ
ーによる可視儂を形成する。最後に、このトナー像を記
録紙上に静電的に転写し、熱、光、および圧力などによ
って融着させることによシ印刷物を得る。
The electrophotographic process consists of charging, exposure, development, transfer, and fixing steps, and prints are obtained by repeating these steps. Charging applies a uniform positive or negative electrostatic charge to the surface of a photoconductive photoreceptor. In the subsequent exposure process, an electrostatic latent image corresponding to the image information is formed on the photoreceptor by irradiating it with laser light or the like to erase the surface charge on a specific portion. Next, this latent image is electrostatically developed with a powder ink called toner, thereby forming a visible image of the toner on the photoreceptor. Finally, this toner image is electrostatically transferred onto recording paper and fused using heat, light, pressure, etc. to obtain a printed matter.

〔従来の技術〕[Conventional technology]

電子写真用の感光体として、有機物を用いた有機感光体
の開発が盛んである。これは、簡便な塗布法によって製
造できるため、量産によるコスト低減が容易であること
、セレンなどの無機物を用いる無機感光体に比べて材料
選択範囲が広いため有害性の無い化合物を選ぶことがで
き、ユーザ廃棄によるメインテナンスフリーが可能であ
ることなどという特長を持つ。
As photoreceptors for electrophotography, organic photoreceptors using organic substances are being actively developed. This is because it can be manufactured using a simple coating method, making it easy to reduce costs through mass production.Compared to inorganic photoreceptors that use inorganic substances such as selenium, this material has a wider range of material selection, so non-toxic compounds can be selected. It has the advantage of being maintenance-free by being disposed of by the user.

一般に有機感光体はセレンなどの無機感光体に比べて低
感度であったが、11荷発生1−と電荷輸送層とを積層
した機能分離積層型感光体を構成することにより、高い
感度を実現できるようになった。
Generally, organic photoreceptors have lower sensitivity than inorganic photoreceptors such as selenium, but high sensitivity has been achieved by constructing a functionally separated laminated photoreceptor in which 11 charge generation 1- and a charge transport layer are laminated. Now you can.

ここで、電荷発生層は入射光を吸収して電子・正孔ペア
(キャリアベア)を発生させる機能を有し、電荷輸送層
は電荷発生層で発生したキャリアの片方を感光体表面ま
で輸送して静を潜像を形成させる機能を持つ。このよう
に感光体の機能を二つの膚に分離することによりそれぞ
れの機能に最適な化合物をほぼ独豆に選択することがで
き、感度、分光特性などの緒特性を飛躍的に向上させる
ことができる。
Here, the charge generation layer has the function of absorbing incident light and generating electron-hole pairs (carrier bears), and the charge transport layer transports one of the carriers generated in the charge generation layer to the surface of the photoreceptor. It has the function of forming a latent image from static images. By separating the functions of the photoreceptor into two layers in this way, it is possible to select the most suitable compound for each function almost exclusively, and it is possible to dramatically improve the characteristics such as sensitivity and spectral characteristics. can.

電荷発生層としては、光を吸収してキャリアベアを発生
させる電荷発生物質を結着樹脂中に溶解あるいは分散さ
せて形成する。電荷発生物質としては、フタロシアニン
顔料、アゾ顔料などが、結着樹脂としては、ポリエステ
ル、ポリビニルブチラールなどが一般的に用いられる。
The charge generation layer is formed by dissolving or dispersing in a binder resin a charge generation substance that absorbs light and generates carrier bears. Phthalocyanine pigments, azo pigments, etc. are generally used as the charge generating substance, and polyester, polyvinyl butyral, etc. are generally used as the binder resin.

また、結着樹脂を用いずに、フタロシアニンなどの蒸着
によって電荷発生層を形成することもできる。一方、電
荷輸送層は、電荷キャリアの輸送を行う電荷輸送物質を
結着樹脂中に溶解させて構成する。電荷輸送物質(CT
M)としては、電子親和力が大きく電子を輸送し易い電
子輸送性CTM(クロラニル、ブロマニル、トリニトロ
フルオレノンナト)、およびイオン化ポテンシアルが小
さく正孔を輸送し易い正孔輸送性CTM(ピラゾリン、
ヒドラゾン。
Further, the charge generation layer can also be formed by vapor deposition of phthalocyanine or the like without using a binder resin. On the other hand, the charge transport layer is formed by dissolving a charge transport material that transports charge carriers in a binder resin. Charge transport material (CT
As M), electron-transporting CTMs (chloranil, bromanil, trinitrofluorenonato) that have a large electron affinity and easily transport electrons, and hole-transporting CTMs that have a small ionization potential and easily transport holes (pyrazoline,
hydrazone.

オキサゾールなど)などがある。電荷輸送層の結着樹脂
としてはポリエステル、ポリカーボネートなどが一般に
用いられる。
oxazole, etc.). Polyester, polycarbonate, etc. are generally used as the binder resin for the charge transport layer.

さらに、製造性の面から単層型感光体本用いられている
。これは結着樹脂中に電荷発生物質、あるいは電荷発生
物質と電荷輸送物質を含有するものでアシ、ボl) (
N−ビニルカルバゾール)/2゜4.7− トリニトロ
フルオレノン−1/1電荷移動錯体系感光体やポリエス
テル樹脂中にフタロシアニン粒子を分散したもの、ジア
ゾ顔料とヒドラゾン化合物を添加した単層型有機感光体
などがある。
Furthermore, from the viewpoint of manufacturability, a single-layer type photoreceptor is used. This is a binder resin containing a charge generating substance, or a charge generating substance and a charge transporting substance.
N-vinylcarbazole)/2゜4.7-trinitrofluorenone-1/1 charge transfer complex photoreceptor, phthalocyanine particles dispersed in polyester resin, single-layer organic photoreceptor with added diazo pigment and hydrazone compound There are bodies, etc.

一般に電荷輸送層、電荷発生層々どの光導電層の形成は
、各層の構成材料を有機溶媒中に溶解あるいは分散させ
た塗工液を塗布・乾燥させることによって行う。塗布方
法は支持体の形状等によシ、ドクターブレード法、スフ
レ−コート法などの中から適宜選択されるが、円筒状支
持体の場合には浸漬法が最も優れている。これは、塗工
溶液中に支持体を浸漬した後、所定の速度で引上げるこ
とによって支持体上に塗膜を得る方法でおり、比較的簡
便な装置で精密な膜厚匍]御が可能である。この方法を
用いて上述の二層構造感光体を製造するにはまず、1萌
発生層塗工液中に円筒状支持体を浸漬・引上げ・乾燥さ
せることによって電荷発生層を形成し、続いて、正孔輸
送性の電荷輸送層塗工液中に電荷発生層の形成された支
持体を所定の速度で引上げ、乾燥させることによって電
荷輸送層を形成し、目的の感光体を得ることができる。
Generally, photoconductive layers such as a charge transport layer and a charge generation layer are formed by coating and drying a coating liquid in which the constituent materials of each layer are dissolved or dispersed in an organic solvent. The coating method is appropriately selected from the following, depending on the shape of the support, the doctor blade method, the souffle coating method, etc., but the dipping method is the best in the case of a cylindrical support. This is a method to obtain a coating film on the support by immersing the support in a coating solution and then pulling it up at a predetermined speed, allowing precise control of film thickness using relatively simple equipment. It is. To produce the above-mentioned two-layer structure photoreceptor using this method, first, a charge generation layer is formed by dipping a cylindrical support in a coating solution for one generation generation layer, pulling it up, and drying it. By pulling up the support on which the charge generation layer is formed in the hole-transporting charge transporting layer coating solution at a predetermined speed and drying it, a charge transporting layer is formed, and the desired photoreceptor can be obtained. .

従って、単層型感光体、二層構造感光体のいずれにして
も最上層は゛電荷輸送物質、要すれば電荷発生物質を含
有した熱可塑性樹脂を結着樹脂としだ光導゛醒層が用い
られる。
Therefore, regardless of whether the photoreceptor is a single-layer photoreceptor or a two-layer photoreceptor, the uppermost layer is a photoconductive layer made of a thermoplastic resin containing a charge transport material, and if necessary a charge generation material as a binder resin. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

電子写真感フを体は、適用される電子写真フロセスに応
じた所望の感度、′に気持性、光学特性を備えているこ
とが要求され、更に耐湿性や耐久性が良好であることが
望まれる。しかし、上述のように有機感光体は光4電ノ
ーが樹脂をバインダ(結着剤)とするため、魚機感光体
に比較して表面硬度が低く、゛誕子写真プロセスにおけ
るトナーのクリーニング工程において、ナイロンブラシ
やゴムブレードなどで操られる際、表面が摩耗して光導
電性が変化するという間眺がおる。また、二成分現像剤
に用いられる磁性キャリアとの摩擦接触により、同様に
表面の摩耗による光導電性の変化などが起こりやすい。
Electrophotographic materials are required to have the desired sensitivity, feel, and optical properties according to the electrophotographic process to which they are applied, and are also desirable to have good moisture resistance and durability. It will be done. However, as mentioned above, since organic photoreceptors use resin as a binder, their surface hardness is lower than that of photoreceptors. There is speculation that when manipulated with a nylon brush or rubber blade, the surface wears down and the photoconductivity changes. In addition, due to frictional contact with the magnetic carrier used in the two-component developer, changes in photoconductivity due to surface abrasion are also likely to occur.

従って、有機感光体はその耐久性が最も欠点とされ、セ
レン系感光体の5〜30万枚、アモルファスシリコン感
光体の50〜100万枚と比較して、1〜5万枚と耐刷
性が低く、中速、高速タイプの複写機や元プリンタへの
適用を考えるといっそうの耐刷性同上が必要とされてい
た。
Therefore, the biggest drawback of organic photoreceptors is their durability, with a printing durability of 10,000 to 50,000 sheets, compared to 50,000 to 300,000 sheets for selenium-based photoreceptors and 500,000 to 1,000,000 sheets for amorphous silicon photoreceptors. Considering the application to medium-speed and high-speed copying machines and original printers, there was a need for even higher printing durability.

〔課題を解決する手段〕[Means to solve problems]

において結着剤樹脂として下記一般式(A)のメチルト
IJアルコキノシランと下記一般式(B)のテトラアル
コキシシランの混合物を加水分解して得られ重量平均分
子量が103〜106のシリコーン樹脂組成物を熱硬化
して用いることによυ解決できる。
A silicone resin composition having a weight average molecular weight of 103 to 106 obtained by hydrolyzing a mixture of methyltoIJ alkoxysilane of the following general formula (A) and tetraalkoxysilane of the following general formula (B) as a binder resin in υ can be solved by heat curing and using.

CH,S 1<OR+ )3    ・ ・ ・ (A
)8 i (0R2)、         ・ ・・ 
(B)ただし、L 、RtはCH,またはC,■I。
CH, S 1<OR+ )3 ・ ・ ・ (A
)8 i (0R2), ・・・
(B) However, L and Rt are CH, or C, ■I.

〔作用〕[Effect]

本発明における光導電層とは、結着樹脂中に電荷発生物
質、おるいは電荷発生物質および電荷輸送物質を含む単
層型有機感光体における光導電層を意味する。さらに、
導電性支持体上に電荷発生層、電荷輸送層とを順次設け
た二層構造有機感光体において、結着樹脂中に電荷輸送
物質を含む電荷輸送層を意味する。又、導電性支持体上
に電荷輸送層、電荷発生層とを順次設けた積層構造有機
感光体において結着樹脂中に電荷発生物質を含む電荷発
生層も意味する。
The photoconductive layer in the present invention refers to a photoconductive layer in a single-layer organic photoreceptor containing a charge-generating substance, or a charge-generating substance and a charge-transporting substance in a binder resin. moreover,
In a two-layer organic photoreceptor in which a charge generation layer and a charge transport layer are sequentially provided on a conductive support, it refers to a charge transport layer containing a charge transport substance in a binder resin. It also means a charge generation layer containing a charge generation substance in a binder resin in a laminated organic photoreceptor in which a charge transport layer and a charge generation layer are sequentially provided on a conductive support.

本発明のノリコーン樹脂組成物は重量平均分子量1.O
OQ〜1.000.000を有する有機溶媒に可溶な有
機ノリコーン重合体であり、好ましい範囲は1.000
〜100,000でおる。1N平均分子量が1.000
以下であると熱硬化後の重合体の架橋密度が高くなり過
ぎ、膜にクラックが入りやすい。また、重量子均分子量
が1.000,000以上であると、逆に架橋密度が低
くなり、硬化物硬度として望ましい値が得られない。ま
た、ノエニル基、トリル基のようなアリール基、あるい
はイソアミル基、イソアミル基々どの比較的高級なアル
キル基を有するポリシルセスキオキサンも知られている
が、このよりなアリール基含有および高級アルギル基含
有シリコーン樹脂は、塗膜化する除結晶化しやすく均一
が成膜性が得られないという欠点がある。
The noricone resin composition of the present invention has a weight average molecular weight of 1. O
An organic nolicone polymer soluble in organic solvents having an OQ of ~1.000.000, with a preferred range of 1.000.
~100,000. 1N average molecular weight is 1.000
If it is less than that, the crosslinking density of the polymer after thermosetting becomes too high, and the film is likely to be cracked. On the other hand, if the weight average molecular weight is 1.000,000 or more, the crosslinking density becomes low, and a desirable value for the hardness of the cured product cannot be obtained. Furthermore, polysilsesquioxanes having relatively higher alkyl groups such as aryl groups such as noenyl groups and tolyl groups, or isoamyl groups and isoamyl groups are also known. Group-containing silicone resins have the disadvantage that they are easily decrystallized and cannot form a uniform film.

本発明のシリコーン樹脂組成物はメチル) IJアルコ
キシ7ランとテトラアルコキシシランをブテルセルンル
プ等の溶媒に溶解し、イオン変換水を加えて加水分解し
た後、分散ロートを用い水層を除去し、さらにエバボレ
ートにより水分を除去することにより、メチルトリアル
コキンシランとテトラアルコキシシランの共縮合重合体
の高分子量のシリコーン樹脂組成物として得られる。メ
チルトリアルコキンノランとテトラアルコキシシランの
混合比は任意に設定できるが、好ましくは等モルである
The silicone resin composition of the present invention is prepared by dissolving methyl) IJ alkoxy 7rane and tetraalkoxysilane in a solvent such as butersenolp, adding ion-converted water to hydrolyze, removing the aqueous layer using a dispersion funnel, and then dissolving the evaporate. By removing water, a high molecular weight silicone resin composition of a co-condensation polymer of methyltrialcoquine silane and tetraalkoxysilane is obtained. The mixing ratio of methyltrialcoquinolane and tetraalkoxysilane can be set arbitrarily, but is preferably equimolar.

本発明によれば、前記シリコーン樹脂組成物を光導電層
の結着剤樹脂として用いることにより、従来用いられて
きた熱可塑性樹脂と比較し2、格段に表面硬度を高くで
き、従って電子写真プロセスにおける厳しいクリーニン
グ条件やさらに磁性キャリアからなる磁気ブラシ現偉剤
との多数回接触によっても光導電層が削られて摩耗する
という・ことがなく、従来の有機感光体では実現不可能
とされていた100,000枚以上の寿命を有し、優れ
た耐久性を得ることができる。
According to the present invention, by using the silicone resin composition as a binder resin for the photoconductive layer, the surface hardness can be significantly increased compared to conventionally used thermoplastic resins2, and thus the electrophotographic process The photoconductive layer is not scraped or worn out even by the harsh cleaning conditions of the process or by repeated contact with a magnetic brush developing agent made of magnetic carriers, something that was thought to be impossible with conventional organic photoreceptors. It has a lifespan of 100,000 sheets or more and can provide excellent durability.

光導電層は、トルエン、アセトン、メチルエチルケトン
あるいはメチルイソブチルケトンなどを有機溶媒とする
メチルトリアルコキシシランとテトラアルコキシシラン
の共縮合重合体の高分子量のシリコーン樹脂組成物の溶
液中に電荷発生物質、あるいは電荷発生物質および電荷
輸送物質、または電荷輸送物質単独を分散・溶解させた
土工液を導電性支持体または電荷発生層上、もしくは電
荷輸送層上に塗布、乾燥させて形成する。電荷発生物質
としては、公知のものを使用することができ、例えば、
ビスアゾ系化合物、トリスアゾ系化合物、ペリレン系化
合物、インジゴ系化合物、シアニン系化合物、スクアリ
リウム化合物、フタロシアニン系化合物などを用いるこ
とができる。また、電荷輸送物質も公知のものを使用す
ることができ、例えば、ヒドラゾン系化合物、ピラゾリ
ン化合物、オギサゾール化合物々どかある。また、導電
性支持体と光導電層の間には、密着性の改良、熱キャリ
ア注入の防止などのために下引層を設けることができる
。下引層としては、ポリビニルアルコール、ポリビニル
ブチラール、ポリアミド、エポキシなどの樹脂、あるい
はこれら樹脂中に酸化錫、酸化インジウム、酸化チタン
等の添加剤を加えたものが用いられる。
The photoconductive layer contains a charge-generating substance or It is formed by applying an earthwork liquid in which a charge generating substance and a charge transporting substance, or a charge transporting substance alone are dispersed and dissolved, onto a conductive support, a charge generating layer, or a charge transporting layer and drying it. As the charge generating substance, known ones can be used, for example,
Bisazo compounds, trisazo compounds, perylene compounds, indigo compounds, cyanine compounds, squarylium compounds, phthalocyanine compounds, and the like can be used. Furthermore, known charge transport materials can be used, such as hydrazone compounds, pyrazoline compounds, oxisazole compounds, and the like. Further, an undercoat layer can be provided between the conductive support and the photoconductive layer in order to improve adhesion, prevent thermal carrier injection, and the like. As the undercoat layer, resins such as polyvinyl alcohol, polyvinyl butyral, polyamide, and epoxy, or resins in which additives such as tin oxide, indium oxide, and titanium oxide are added to these resins are used.

一般に電荷輸送層の膜厚は5〜30μm、を荷発生層の
膜厚は0.01〜3μrn好ましくは1μm以下、下引
層の膜厚は0.01〜3μmである。
Generally, the thickness of the charge transport layer is 5 to 30 .mu.m, the thickness of the charge generation layer is 0.01 to 3 .mu.m, preferably 1 .mu.m or less, and the thickness of the undercoat layer is 0.01 to 3 .mu.m.

以下、本発明を実施例に従って説明する。Hereinafter, the present invention will be explained according to examples.

〔実施例〕〔Example〕

合成例:メチルトリエトキシシラン50 m l %テ
トラエトキシ/ラン50m1をブチルセルソルブに溶解
し、イオン交換水を加えて加水分解した後、分液ロート
を用い水層を除去し、さらにエバボレートによシ水分を
除去することによシ、メチルトリエトキシシランとテト
ラエトキシシランの共縮合重合体のブチルセルソルブ溶
液を得た。得られた樹脂溶液を濃縮し、50wt%のシ
リコーン樹脂溶液を得た。GPC分析の結果、重量平均
分子量は3,000、重量平均分子量と数平均分子量の
比は1.4であった。
Synthesis example: Dissolve 50 ml of methyltriethoxysilane and 50 ml of %tetraethoxy/ran in butyl cellosolve, add ion-exchanged water to hydrolyze, remove the aqueous layer using a separating funnel, and further dissolve with evaborate. By removing water, a butyl cellosolve solution of a cocondensation polymer of methyltriethoxysilane and tetraethoxysilane was obtained. The obtained resin solution was concentrated to obtain a 50 wt % silicone resin solution. As a result of GPC analysis, the weight average molecular weight was 3,000, and the ratio of weight average molecular weight to number average molecular weight was 1.4.

実施例1:合成例で得られたシリコーン樹脂(固形分)
70重量部、C型銅フタロシアニン30重量部、ブチル
セルソルブ20oxIi部を硬質ガラスポットに投入し
、硬質ガラスピーズと共に24時間分散・混合して塗工
液とした。次に、600X250nのアルミ素管上に浸
漬法で塗工液を塗布した後、120’Qで60分熱処理
を行い、膜厚約20μmの単層型正帯電有機感光体を試
作した。
Example 1: Silicone resin obtained in synthesis example (solid content)
70 parts by weight, 30 parts by weight of C-type copper phthalocyanine, and 20 oxIi parts of butyl cellosolve were placed in a hard glass pot, and dispersed and mixed together with hard glass beads for 24 hours to obtain a coating liquid. Next, the coating solution was applied onto a 600 x 250 nm aluminum tube by a dipping method, and then heat treated at 120'Q for 60 minutes to fabricate a single-layer positively charged organic photoreceptor with a film thickness of about 20 μm.

本感元体に対し、矢の測定を行った。まず6kVでコロ
ナ帯電し、1秒後の表面電位をVoCV)とする。続い
て1秒間暗減衰式せた時の表面電位を■1(V)とし、
その瞬間から780nm、10μ苛億で露光を行い、表
面電位がVOの半分になるまでの時間t1/、を求め、
半減無光量El、、 <μJ7メ)を計算する。さらに
、露光開始後10 t+/ tの表面電位Vr(V)を
記録して1フロセスを終える。また100xV+/vo
を計算上、帯電保持率DI(%)とした。得られた結果
を表1に示す。
Arrow measurements were performed on this Kangen body. First, corona charging is performed at 6 kV, and the surface potential after 1 second is set to VoCV). Then, the surface potential when dark decayed for 1 second is 1 (V),
From that moment, perform exposure at 780 nm and 10μ radiation, and find the time t1/ until the surface potential becomes half of VO.
Calculate the half-reduced no-light amount El,, <μJ7m). Furthermore, one process is completed by recording the surface potential Vr (V) at 10 t+/t after the start of exposure. Also 100xV+/vo
was calculated as the charge retention rate DI (%). The results obtained are shown in Table 1.

矢に繰り返し使用時の安定性、すなわち耐久性を評価す
るため、本実施例で作成した感光体を富士通Mv−サブ
リンクM3722Lを用いて100,000枚印刷を行
い、初期と100,000枚印刷後の感光体特性を比較
した。結果を初期と比較して表1に示す。
In order to evaluate the stability during repeated use, that is, durability, the photoreceptor produced in this example was printed for 100,000 sheets using Fujitsu Mv-Sublink M3722L, and the initial and 100,000 sheets were printed. The subsequent photoreceptor characteristics were compared. The results are shown in Table 1 in comparison with the initial results.

表1 この結果、実施例1の感光体はioo、ooo印刷後も
感光体特性にほとんど変化なく、きわめて耐刷性に優れ
−Cいるのは明らかである。
Table 1 As a result, it is clear that the photoreceptor of Example 1 shows almost no change in photoreceptor characteristics even after printing ioo and ooo, and has extremely excellent printing durability.

実施例2 s型銅7p口シ−J”二ン50重量部、ポリエステル樹
脂50重量部をテトラヒドロフランに溶解シたものを硬
質カラスビーズと共に硬質ガラスポットに投入し、24
時間分散混合して電荷発生層塗工液とした。実施例1と
同様に59p、X250朋のアルミ素管上に浸漬法で塗
工液を塗布し友後、120’0で60分熱処理を行い、
膜厚約0.5μmの電荷発生層ケ形成した。
Example 2 50 parts by weight of S-type copper 7p C-J"2 and 50 parts by weight of polyester resin were dissolved in tetrahydrofuran and put into a hard glass pot together with hard glass beads.
The charge generation layer coating solution was prepared by time-dispersed mixing. As in Example 1, the coating solution was applied onto a 59p x 250mm aluminum tube using the dipping method, and then heat treated at 120'0 for 60 minutes.
A charge generation layer having a thickness of about 0.5 μm was formed.

矢に、ヒドラゾン化合物50重食部、合成例で得られた
シリコーン樹脂(固形分)50重量部を一メチルエチル
ケトンに完全に溶解させた。この塗工液を甲いて前記電
荷発生層を塗工したアルミ支持体を浸漬・弓1き上げ法
により塗布し、加熱硬化して膜厚約20μmの電荷輸送
層を形成し、負帯電型二層構造有機感光体を試作した。
Fifty parts by weight of the hydrazone compound and 50 parts by weight of the silicone resin (solid content) obtained in the synthesis example were completely dissolved in one methyl ethyl ketone. The aluminum support coated with the charge generation layer was coated with this coating solution by dipping/bowing method, and heated and cured to form a charge transport layer with a thickness of approximately 20 μm. We prototyped a layered organic photoreceptor.

この感光体に対し5、実施例1と同様の方法で感光体特
性を評価し、さらに、繰り返し使用時の安定性、すガわ
ち耐久性を評価するため、富士通レーザプリンタM37
22Lの帯電極性、転写極性などを負帯汽性感光体用に
改造したレーザプリンタを甲いて100.000枚印刷
を行い、初期と100,000枚印刷後の感光体特性を
比較し、た。なお、コロナ帯電は一6kVとした。
5. The photoconductor characteristics of this photoconductor were evaluated in the same manner as in Example 1, and furthermore, in order to evaluate the stability and durability during repeated use, Fujitsu Laser Printer M37
100,000 sheets were printed using a 22L laser printer whose charge polarity, transfer polarity, etc. had been modified to use a negative band photoreceptor, and the photoreceptor characteristics at the initial stage and after printing 100,000 sheets were compared. Note that corona charging was set at -6 kV.

結果を表2に示す。この結り、実施例2の感光体は10
0,000印刷後も感光体特性にほとんど変化なく、き
わめて耐刷性に優れているのは明らかである。
The results are shown in Table 2. Based on this conclusion, the photoreceptor of Example 2 has 10
It is clear that there is almost no change in the photoreceptor characteristics even after 0,000 printings, and that the printing durability is extremely excellent.

なお積層構造感光体の場合、最上層を電荷発生層として
も良い。
In the case of a photoreceptor having a laminated structure, the uppermost layer may be used as a charge generation layer.

〔発明の効果〕〔Effect of the invention〕

このように、本発明の感光体は、従来の有機感光体では
実現不可能であった耐久性、耐刷性を実現することがで
きる。
In this manner, the photoreceptor of the present invention can achieve durability and printing durability that were unachievable with conventional organic photoreceptors.

Claims (2)

【特許請求の範囲】[Claims] (1)導電性支持体上に光導電材料と結着剤からなる光
導電層を有する電子写真感光体において結着剤樹脂とし
て下記一般式(A)のメチルトリアルコキシシランと下
記一般式(B)のテトラアルコキシシランの混合物を加
水分解して得られ重量平均分子量が10^3〜10^6
のシリコーン樹脂組成物を熱硬化して用いることを特徴
とする電子写真感光体。 CH_3Si(OR_1)_3…(A) Si(OR_2)_4…(B) ただし、R_1、R_2はCH_3またはC_2H_5
(1) In an electrophotographic photoreceptor having a photoconductive layer consisting of a photoconductive material and a binder on a conductive support, methyltrialkoxysilane of the following general formula (A) and the following general formula (B) are used as a binder resin. ) obtained by hydrolyzing a mixture of tetraalkoxysilanes with a weight average molecular weight of 10^3 to 10^6
1. An electrophotographic photoreceptor characterized in that the silicone resin composition is thermally cured. CH_3Si(OR_1)_3...(A) Si(OR_2)_4...(B) However, R_1 and R_2 are CH_3 or C_2H_5
(2)上記光導電層として、結着剤樹脂中に電荷発生物
質、あるいは電荷発生物質および電荷輸送物質、もしく
は電荷輸送物質を含むことを特徴とする請求項1記載の
電子写真感光体。
(2) The electrophotographic photoreceptor according to claim 1, wherein the photoconductive layer contains a charge generating substance, a charge generating substance and a charge transporting substance, or a charge transporting substance in a binder resin.
JP63043220A 1988-02-25 1988-02-25 Electrophotographic sensitive body Pending JPH01217351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63043220A JPH01217351A (en) 1988-02-25 1988-02-25 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63043220A JPH01217351A (en) 1988-02-25 1988-02-25 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH01217351A true JPH01217351A (en) 1989-08-30

Family

ID=12657831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63043220A Pending JPH01217351A (en) 1988-02-25 1988-02-25 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01217351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001125301A (en) * 1999-10-28 2001-05-11 Konica Corp Electrophotographic photoreceptor, coating solution composition, electrophotographic image forming device and process cartridge
EP1102126A1 (en) * 1999-11-17 2001-05-23 Fuji Electric Imaging Device Co., Ltd. Electrophotographic photoconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001125301A (en) * 1999-10-28 2001-05-11 Konica Corp Electrophotographic photoreceptor, coating solution composition, electrophotographic image forming device and process cartridge
EP1102126A1 (en) * 1999-11-17 2001-05-23 Fuji Electric Imaging Device Co., Ltd. Electrophotographic photoconductor
US6451493B1 (en) 1999-11-17 2002-09-17 Fuji Electric Imaging Device Co., Ltd. Electrophotographic photoconductor

Similar Documents

Publication Publication Date Title
JP3740389B2 (en) Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge
JP3937836B2 (en) Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus
US7875411B2 (en) Photoreceptor containing substituted biphenyl diamine and method of forming same
JP3267526B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus and process cartridge using the electrophotographic photoreceptor
EP2112557B1 (en) Imaging member and imaging apparatus using the same
JP2003186222A (en) Electrophotographic photoreceptor, and process cartridge and electrophotographic device having the electrophotographic photoreceptor
JP2004341528A (en) Image forming member
JPH01217351A (en) Electrophotographic sensitive body
JP2707795B2 (en) Electrophotographic photoreceptor
JP2004093802A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JPH01217352A (en) Electrophotographic sensitive body
JP3848153B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US20090197196A1 (en) Imaging member and methods of forming the same
JP3994638B2 (en) Electrophotographic photoreceptor, image forming method, image forming apparatus, and process cartridge
JP3684044B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor
JP3299934B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
US7811729B2 (en) Imaging member
JPH01217364A (en) Electrophotographic sensitive body
JP2003186220A (en) Electrophotographic photoreceptor, and process cartridge and electrophotographic device having the electrophotographic photoreceptor
JP2784657B2 (en) Electrophotographic photoreceptor
JPH0456866A (en) Electrophotographic photosensitive body
JP2004037740A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
US8057974B2 (en) Imaging member
JPH01217363A (en) Electrophotographic sensitive body
JPS5915250A (en) Electrophotographic receptor